
Research Article
A Lightweight Convolutional Neural Network to Predict Steering
Angle for Autonomous Driving Using CARLA Simulator

Imtiaz Ul Hassan,1 Huma Zia ,2 H. Sundus Fatima,1 Syed Adnan Yusuf,3

and Muhammad Khurram1

1Smart City NCAI, NED University of Engineering and Technology, Karachi, Pakistan
2College of Engineering, Abu Dhabi University, Abu Dhabi, UAE
3Research and Development Department, Intelexica Pvt. Ltd., Southampton SO152RZ, UK

Correspondence should be addressed to Huma Zia; huma.zia@adu.ac.ae

Received 31 March 2022; Accepted 29 July 2022; Published 23 August 2022

Academic Editor: Noé López Perrusquia

Copyright © 2022 Imtiaz Ul Hassan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

End-to-end learning for autonomous driving uses a convolutional neural network (CNN) to predict the steering angle from a raw
image input. Most of the solutions available for end-to-end autonomous driving are computationally too expensive, which
increases the inference of autonomous driving in real time. Therefore, in this paper, CNN architecture has been trained which
is lightweight and achieves comparable results to Nvidia’s PilotNet. The data used to train and evaluate the network is
collected from the Car Learning to Act (CARLA) simulator. To evaluate the proposed architecture, the MSE (mean squared
error) is used as the performance metric. Results of the experiment shows that the proposed model is 4x lighter than Nvidia’s
PilotNet in term of parameters but still attains comparable results to PilotNet. The proposed model has achieved 5:1 × 10−4
MSE on testing data while PilotNet MSE was 4:7 × 10−4.

1. Introduction

Research on autonomous vehicles (AV) dates back to the last
century when the prototype of a radio-controlled autonomous
vehicle was designed in the 1920s [1]. Since that day, automo-
tive engineers, scientists, and researchers have done extensive
research in AV’s. Moreover, this research has gotten a lot of
attention due to the recent development in computing power
and artificial intelligence. Furthermore, automotive companies
and academic institutions like Tesla, Apple, Nissan, Audi, Stan-
ford University, Carnegie Mellon University, and MIT are
playing critical roles in the research on AV [2]. The three AV
competitions organized by the Defense Advanced Research
Project Agency (DARPA) in 2004, 2005, and 2007, respectively,
marked the beginning of a new era in AV research [3]. As in the
second competition, 4 out of 23 finalists successfully completed

132 miles of road passing through mountains, with tunnels and
sharp left and right turns [3]. Likewise, in the Third DARPA
competition, 6 out of 11 finalists completed a 60-mile route in
the urban environment following traffic rules. Subsequently,
the current autonomous driving system used by most of the
DARPA challenge participants is based on a modular approach
that consists of sensor inputs, environment perception module,
path planning module, and control module as shown in
Figure 1. Sensors like cameras, Lidar, and radar are used to
sense the world around them.

The perceptionmodule receives sensor input and uses it to
make sense of the world around the vehicle. The path planning
module uses the information passed by the perception module
to generate way-points to be followed. Consequently, the con-
trol module ensures these way-points are followed by creating
control values, i.e., throttle and steering.

Hindawi
Modelling and Simulation in Engineering
Volume 2022, Article ID 5716820, 11 pages
https://doi.org/10.1155/2022/5716820

https://orcid.org/0000-0001-9032-5981
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5716820


In addition to that, another approach toward autonomous
driving is known as end-to-end learning, which trains a CNN
on raw red green blue (RGB) images to predict the steering
angle required to keep the vehicle on the road as depicted in
Figure 2. Not only are RGB cameras cheap but they also
provide rich information about the environment [4]. The end-
to-end learning model learns the input features from the road
images taken from the RGB camera, which can generate steer-
ing commands to drive the car without human interference.

Overall, most of the work done in the domain of end-to-
end learning relies on deep learning models that are compu-
tationally expensive and designed to run high processing
graphical processing units (GPUs) [4, 5]. To save the compu-
tational resources and keep the overall cost of AV low, light-
weight architecture is required, which can run on low
computing devices with minimum inference time. As a result,
this work focuses on building lightweight architecture to
achieve the task of end-to-end learning by predicting the
steering values from RGB images. The MSE of the proposed
model was 5:1 × 10−4. The proposed architecture has achieved
almost the same results as Nvidia’s PilotNet [5] but is 4 times
lighter in terms of parameters. The data to train and evaluate
the architecture was obtained from different towns of CARLA
simulators under other weather conditions using CARLA-ROS-
Bridge. The rest of the paper has been organized as follows. Sec-
tion 2 represents a literature review of research in the field of
end-to-end learning. Section 3 provides implementation details.

In contrast, Section 4 discusses the results, followed by a conclu-
sion in Section 5.

2. Literature Review

The availability of high-power GPU’s and bulk amount of data
generated across the internet has led to significant develop-
ment in robust deep learning algorithms. CNNs is one of the
deep learning models that are used on visual imagery. Mean-
while, the ImageNet scale Visual Recognition Challenge [6]
turned out to be a milestone for computer vision as this com-
petition resulted in the development of state-of-the-art CNN
architectures, like AlexNet [7], VGG16 [8], and GoogleNet
[9], to name a few. Henceforth, convolutional networks have
been used in many sectors, including healthcare, agriculture,
robotics, and automotive industry. Moreover, recently, deep
learning has achieved astonishing development like automated
machine learning [10], playing the game of Go and Chess [11,
12] and end-to-end learning [13, 14].

End-to-end learning is aimed at solving complex systems
by training a single deep learning model, a CNN to be spe-
cific, bypassing intermediate layers. There has been extensive
research done in the domain of end-to-end learning for AV.
The subject of autonomous driving requires intensive study
and research. It has been observed that different modality
approaches have been implemented at advancement levels.
The first work was done by Pomerleau. The concept was
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initiated based on the concept of the neural network three-
layer architecture with a single convolution layer which
allowed vehicles to trace and track the vehicle movement in
a particular direction [15], who used a simple three-layer neu-
ral network architecture with a single hidden layer which was
able to find directions for the vehicle to follow [16] and used a
six-layered CNN, which was trained to control the robot using
radio signals and attained a max speed of 2m/s. Similarly, for
saving the computational resources and keeping the overall
cost of AV low, lightweight architecture is required, which can
run on low computing devices with minimum inference time.
Most of the solutions available for end-to-end autonomous
driving are computationally too expensive, which increases
the inference of autonomous driving in real time. As a result,
this work focuses on building lightweight architecture to
achieve the task of end-to-end learning by predicting the steer-
ing values from RGB images. The DARPA autonomous vehicle
(DAVE) was based on end-to-end learning. Moreover, in the
simulation of physics, rendering of the output sensors is also
controlled by the server side. On the other hand, the client side
is responsible for the client side initialization of scenarios and
control actors. CARLA provides a model of every sensor which
is used by AVs including Lidar, radar, camera, and IMU. The
parameters of all these sensors can be configured. CARLA also
provides the flexibility of creating custom sensors, DAVE used a
CNN with six layers to predict the necessary direction to be
taken by the vehicle [17]. DAVE was able to drive around an
alley full of junk, avoiding obstacles.

Recently, Nvidia [5] has developed a CNN architecture
PilotNet, which was trained on RGB images using a left,
right, and central camera. The PilotNet successfully achieved
lane-following in simple real-world scenarios. PilotNet was
able to drive on road with and without lane markings. More-
over, it was also able to drive on unpaved roads and even on
parking lots.

[18] modified the approach taken by PilotNet and added
throttle prediction to the system. [19] fed image input from
and front-facing camera as well as turning information i.e.,
indicator signals at junctions, to a CNN named 100 DriveNet.
CARLA also provides the functionality to change the weather
and time of day. ROS bag files to store the road images for every
timestamp which were published to CARLA Ego vehicle RGB
topic while the corresponding steering values were published
under CARLA Ego vehicle Status topic. CARLA basically pro-
vides a model of every sensor which is used by AVs including
Lidar, radar, camera, and IMU. The parameters of all these sen-
sors can be configured. DriveNet was evaluated in the real
world and was able to avoid obstacles dynamically

Following PilotNet, Chen et al. [4] used the comma.ai data-
set to train a CNN to predict the steering angle, which was
implemented using Caffe [20]. The model was evaluated using
mean squared error, and the testing MSE was 2.42 degrees.
[21] applied different techniques, including 3D CNN, LSTM,
and ResNet, with a minimum RMSE of 0.00709 achieved by
ResNet50.

Moreover, the network was also successful in taking
turns at intersections. The demonstrations design trained
on deep neural networks specifically for the ease of drivers,
i.e., the self-driving for the eradication of the human depen-

dency for training has indicated pronounced effects through
the training and learning of the models with the certainty in
route following and road hindrance avoidance [22], whereas
the policies based on which the training has been conducted
imitated learning techniques that were uncontrollable at the
time of testing. Imitation learning is basically providing prom-
ising outcomes on the approach of training [23]. The results of
the testing have indicated that the implemented policy for
driving has a continuous response to the commands given by
the navigator. The experiment was undertaken on the three-
dimensional simulators of urban driving. However, the study
has not addressed the usage of natural language for the
guidance of the human in the autonomous vehicle, because
the technique which was implemented is based on the vision
driving of the robotic vehicle [24]. Proposing a lightweight
model with low computational and memory requirements is
quite a challenging task [22–25]. Overall, most of the solutions
presented in the literature are computationally expensive,
requiring high computing devices like GPUs and TPU’s. For
this reason, we have propose a lightweight convolutional
network for end-to-end autonomous driving.

We have used the CARLA simulator [26] to collect the
data as it represents the real world most closely as other simu-
lators with available urban layouts, buildings, and vehicles.
ROS [27] is an open-source collection of software frameworks
that are used for robot software management. Integrating
CARLA with the ROS environment provides reproducibility
in the real world without any significant modifications.

3. Implementation Details

This section provides a brief overview regarding the
implementation of lightweight CNN for end-to-end AV. In
the details about the training setup, CARLA simulator envi-
ronment is discussed which is followed by data collection
and data preprocessing details. Finally, we present the architec-
tural details of the proposed model followed by the discussion
about PilotNet.

3.1. End-to-End Driving Training Setup. In end-to-end learn-
ing, the whole driving task is treated as one single instead of
breaking into different modules, unlike the traditional method
where the task is explicitly decomposed into different modules.
A neural network (NN) is trained using input images from a
front-facing camera. The NN instinctively learns the necessary
road features and their relation with the steering angle pro-
vided for the training dataset. We mounted the RGB camera
available in CARLA and used CARLA-ROS-Bridge in order
to extract the steer values and the RGB images. These images
and steer values were used to train a CNN. The MSE is used
to evaluate the model on test images which the model has
never seen before. The training setup can be seen in Figure 3.

The working of CARLA is based on the server-client-based
system. Based on the unreal engine the server side controls the
environment (town maps, weather, etc.) and actors (cars,
pedestrians, and traffic lights). Moreover, in the simulation of
physics, rendering of the output sensors are also controlled
by the server side. On the other hand, the client side is respon-
sible for the client side initialization of scenarios and control
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actors. CARLA provides a model of every sensor which is used
by AVs including Lidar, radar, camera, and IMU. The parame-
ters of all these sensors can be configured. Moreover, CARLA
also provides the flexibility of creating custom sensors. There
are different towns available in CARLA, and we have used four
of them to collect data Figure 4. Furthermore, CARLA also pro-
vides the functionality to change the weather and time of day.
Different weather conditions of the same road are provided in
Figure 5.

We used ROS bag files to store the road images for every
timestamp which were published to CARLA Ego vehicle RGB
topic while the corresponding steering values were published
under CARLA Ego vehicle status topic. The images and steer
values were extracted from ROS bag files using python script.
The images were rescaled from 800 × 600 to 220 × 220:110.

The dataset contained a total of 172982 which were resampled
to 86491 images with corresponding steering angles.

3.2. Data Preprocessing. Two versions of the dataset with and
without the region of interest (ROI) were prepared. The dimen-
sions of images with ROI cropped were 110 × 220 × 3, while the
original images had dimensions of 220 × 220 × 3. Images with
and without ROI cropped can be seen in Figure 6. Next, all
the images were normalized using the min-max scaling Equa-
tion (1), a normalization technique. Normalization ensures that
every image has the same distribution, which helps in the faster
convergence of neural networks.

xnorm = x − xmin
255 : ð1Þ

Steer values

Road RGB
images

Driving vehicle in auto-pilot
mode in CARLA simulator

 Neural network

Output
Compare

Adjust weights
(MSE)

Figure 3: End-to-end training setup.
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Figure 4: Four different towns of CARLA.
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3.3. Data Splitting. After normalization, we randomly split the
input data into 64% training, 16% validation, and 20% testing,
respectively. The validation data is used to tune hyperpara-
meters, i.e., the number hidden layers and the number of neu-
rons in those layers. Moreover, validation data is also used to
decide when to stop the training.

3.4. Network Architecture Overview. The proposed lightweight
architecture was trained and tested with different layers, ker-
nel sizes, loss functions, and activation functions. The aim

was to choose an optimal architecture that achieves high
accuracy and is lightweight. After many experiments, the
proposed architecture was chosen. Figure 7 represents the
architectural details of the proposed model. The model con-
sists of 4 convolutional layers, each followed by a max-
pooling layer. The last max-pooling layer is followed by a
flatten layer and two fully connected layers. The final fully
connected layer serves as a controller. The first layer of the
model consists of a 2D convolutional layer with 64 filters
each of size 3 × 3. This layer serves as a feature extractor from

Clear Noon Wet Noon

Hard Rain Sunset Cloudy Sunset

Figure 5: Same road under 4 different weather conditions.
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the raw input images. Equation (2) [28] represents the 2D
convolution performed by this layer.

s i, jð Þ =〠
m

〠
n

I i −m, j − nð ÞK m, nð Þ, ð2Þ

where s ði, jÞ represents the output of a convolutional
layer, which is a 2D feature map tensor. The dimensions of
the feature map, i.e., the output of 2D convolution can be cal-
culated using Equations (3) and (4) [28], respectively.

Wout =W − F + 2P S + 1, ð3Þ

Hout =H − F + 2P S + 1, ð4Þ
where W and H represent the height and width of the

input to the convolutional layer F the kernel/filter size, P pad-
ding, and S strides. In our case, W and H were 110 and 220,
respectively, which is the dimension of input pics after crop-
ping the region of interest. The padding value P was set to
0, stride S was 1, and filter F was 3. Hence width Wout and
Height Hout of the output layer were 108 and 218, respec-

tively, which can be calculated from Equations (3) and (4).
The number of filters used in this layer was 64. Equation (5)
has been used to find the total number of trainable parame-
ters for the convolutional layer, where n and m represent
the height and width of the filter used in the convolutional
layer and l represent the depth of input dimension which is
3 for the first layer as the image contains 3 channels. K repre-
sents the number of filters used which is 64. So, the total
number of trainable parameters for the convolution layer cal-
culated using Equation (5) [28] was 1792.

Relu was used as an activation function for this layer.
The Relu function shown in Equation (6) is not only compu-
tationally cheaper than the tan h and Sigmoid functions but
also unaffected by the gradient vanishing effects in Sigmoid
and tan h due to activation nonlinearities [29].

Nparameters = n ∗m ∗ l + 1ð Þk, ð5Þ

Relu xð Þ =max 0, xð Þ: ð6Þ
The convolutional layer was followed by a max-pooling

layer with a 2 × 2 dimension. This layer reduces the output

Input images
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Figure 7: Network architecture.
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Figure 6: Cropping region of Interest.
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of the convolutional layer by half so the resultant dimension
was 54 × 109. The max-pooling layer reduces the computa-
tional complexity by reducing the number of training
parameters while retaining spatial information. This layer
is followed by another 2D convolutional layer with a 3 × 3
filter size with a total number of 32 filters. This layer has
18464 trainable parameters. The input dimension of this
layer is 52 × 107 × 32. This layer was followed by the second
max-pooling layer of 2 × 2 reducing the output to 26 × 53
× 32. This layer is followed by two other convolutional
layers. Both of these convolutional layers are followed by
max-pooling layers of size 2 × 2. Both of these convolutional
layers have 9248 trainable parameters.

The last max-pooling layer was followed by a flattened
layer which converts the two-dimensional feature map into
a one-dimensional vector. The flattened layer is followed
by a fully connected layer with 128 neurons. The number
of parameters in this layer is 225408. This was followed by
the final fully connected layer with a single neuron having
129 trainable parameters. As this layer acts as the controller
and predicts the steering values which lie between -1 and+1,
therefore, two activation functions, i.e., linear function and
hyperbolic tangent tan h Equation (7) [30] were chosen.
The linear function’s output ranges from (−, +), while tan
h has a range over ð−1,+1Þ:

tanh xð Þ = 2
1 + 2e−2x − 1: ð7Þ

Mean squared error 8 and mean absolute error (MAE) 9
[31] were used with Adam optimizer to train the architec-
ture separately with different combinations of the activation
layer. MAE is not affected by outliers, while MSE penalizes
large errors significantly more than small ones.

MSE = 1
n
〠
n−1

0
y − �yð Þ2:

MAE = 1
n
〠
n−1

0
y − �yj j:

ð8Þ

4. Results and Discussion

The proposed model was implemented in Keras. The Kaggle
kernel was used which provides the Nvidia P100 GPU with
16GB memory. The input data contained 86491 images each
of size 220 × 220 × 3 with taking up 7.8GB of space. After
cropping out the ROI, the resolution was reduced to 110 ×
220 × 3 taking up 3.5GB of hard disk space.

4.1. Training with and without Cropping ROI. Cropping ROI
not only decreased the space requirements of the input data
but also decreased the number of trainable parameters
required for training. Furthermore, the mean squared error
was also decreased as ROI cropping removed noise from the
input data which was caused by the building and sky. The
number of trainable parameters for the model with ROI
cropped images is 264289 while the model without ROI
cropped images was 534625 which is double the number of
parameters of the ROI cropped model. Also from Table 1, it
is evident that both validation and testing MSE for ROI
cropped images is better than the one without ROI cropped.
The validation loss of training for both datasets can be seen
in Figure 8. The training was stopped using Keras early stop-
ping call backs as we can see that after the 10 epochs that the
validation loss for model trained on data without ROI cropped
increases which suggests that the model is overfitting. On the
other hand, the validation loss for the model with ROI
cropped images goes on decreasing which suggests the model
learns better on this data.

4.2. Training with Different Loss and Activation Functions.
The given architecture was selected after extensive trial and
error methods Once the architecture was selected, we experi-
mented with different loss and different activation functions
for the final fully connected layer which outputs the steering
values. The results obtained after the combination of differ-
ent activation and loss functions can be seen in Table 2. As
evident from the table, that architecture with linear activa-
tion and MSE loss function gives the best results. In the next
section, we compare it to other pretrained models. The val-
idation means squared error for training under different
combinations of activation and loss function can be seen in
Figure 9. The model with the lowest validation MSE was
saved using Keras checkpoints.

4.3. Proposed Model Comparison with PilotNet. The computa-
tional cost of a neural network depends on the number of
parameters it has. Multilayer perceptrons consist of fully con-
nected layers in which every neuron in one layer is connected
to every neuron in the succeeding layer. However, this is not
the case with CNNs where each neuron is only connected to
its neighbor neurons from the previous layers. Moreover, the
same set of weights is shared by every neuron.

Hence, the computational complexity of a convolutional
layer depends upon the number of computations done by
the filter elements. Therefore, to have a quantitative compari-
son of computational complexity between PilotNet Figure 10
and the proposed network, the total number of trainable
parameters were compared. Moreover, the total number of
parameters depends upon the number of convolutional layers,

Table 1: Results of training with and without ROI cropped.

Data Validation MSE Testing MSE Trainable parameters

With ROI cropped 5:3 × 10−4 5:1 × 10−4 264289

Without ROI cropped 5:5 × 10−4 5:7 × 10−4 534625
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Table 2: Testing and validation loss under different loss and activation functions.

Loss and activation function Testing MSE Validation MSE

MSE loss and linear activation 5:1 × 10−4 5:4 × 10−4

MSE loss and tanh activation 6:4 × 10−4 6:6 × 10−4

MAE loss and linear activation 8:7 × 10−4 8:6 × 10−4

MAE loss and tanh activation 6:6 × 10−4 5:9 × 10−4
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Figure 8: Validation loss for models trained with and without ROI cropping.
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size of filters, number of max-pooling layers, and number of
neurons in fully connected layers. Table 3 represents a com-
parison between the proposed network and PilotNet in terms
of testing mean squared error, a total number of parameters,
and inference time taken by the model on a single image.
Comparing the total number of parameters, we can see that
the proposed architecture has 4 times fewer parameters than
PilotNet. Also, the proposed model takes 0.036 sec per image
while PilotNet takes 0.042 sec per image. But there is a slight
trade-off of MSE as PilotNet achieves 0.00004 less mean
squared error on testing data.

4.4. Checking Model Performance on Different Weather
Conditions. To check the robustness of our model, a dataset
has been collected by driving the vehicle through the same
route under all different 14 weather conditions. Each dataset
consists of 1000 images. The results RMSE (root mean
squared error) for different weather conditions can be seen
in Table 4. From the table, it is notable that the RMS value
for those sunsets is slightly better than the weather condition
with noon.

5. Conclusions and Future Work

End-to-end learning for AV develops a relationship between
input road images and output steering angles to control a
vehicle. Most of the available solutions for end-to-end learn-
ing are based on deep learning models which have a huge
number of parameters, hence making them computationally
expensive. Moreover, the underlying hardware needed to
deploy such a solution also cost more. Thus, in this paper,
we have proposed a lightweight CNN architecture for end-
to-end AV. CARLA simulator was used to acquire the train-
ing data. The data was preprocessed, and the region of inter-
est was cropped. The proposed model was chosen after
trying different combinations of loss functions and activa-
tion functions. Finally, the proposed model was compared
with PilotNet, which is a state-of-the-art model for end-to-
end AV. The model achieved relative mean squared error
to PilotNet while being four computationally less expensive.
The proposed model was 4 times lighter in terms of param-
eter as compared to the state-of-the-art model PilotNet. The
inference time taken by the proposed model is also less as
compared to PilotNet. In future work, we would implement
the same model on real images. Moreover, we will also add
another target variable which is acceleration/throttle. The
model will also be given directional commands as input so
it can take decision at intersections.

Data Availability

Data will be made available when requested.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Table 3: Test mean squared error and parameters comparison
between proposed architecture and PilotNet.

Model
Testing
MSE

Parameters
Inference time

(sec)

PilotNet 4:7 × 10−4 1:0575291 × 107 0.042

Proposed
architecture

5:1 × 10−4 2:64289 × 105 0.036

Table 4: Test root mean squared of proposed model on various
weather conditions.

Weather Testing MSE

ClearNoon 7:3 × 10−4

CloudyNoon 5:9 × 10−4

WetNoon 4:7 × 10−4

WetNoon 6:5 × 10−4

MidRainyNoon 8:3 × 10−4

HardRainNoon 4:2 × 10−4

SoftRainNoon 4:4 × 10−4

ClearSunset 5:7 × 10−4

CloudySunset 3:6 × 10−4

WetSunset 3:69 × 10−4

WetCloudySunset 4:7 × 10−4

MidRainSunset 6:5 × 10−4

HardRainSunset 3:3 × 10−4

SoftRainSunset 4:7 × 10−4

110 × 220
Input image

2D Conv 53 × 108
× 24

filter size 5 × 5

2D Conv 25 × 52
× 36

filter size 5 × 5

2D Conv 11 × 24
× 48

filter size 5 × 5

2D Conv 9 × 22 ×
64

filter size 3 × 3

2D Conv 7 × 20 ×
64

filter size 3 × 3
Flatten
layer

FC
layer
1152

neurons

FC
layer
100

neurons

FC layer
50

neurons

FC layer
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neurons

Steering
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Figure 10: Modified PilotNet architecture.
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