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The failure of electric feeders is a common problem in the summer season in Pakistan. In this article, one of the troubling aspects
of the electric power system of Pakistan (Multan city) has been studied. The time lapses between the breakdown of electric feeders
of the city have been modeled by suggesting an inverse Rayleigh-exponential distribution. The parameters of the distribution are
estimated in both the frequentist and Bayesian paradigms. Since the Bayes estimators under informative priors are not attained in
the closed form, this paper provides a comparative analysis of the Bayes estimators under Lindley and Tierney–Kadane
approximation methods. The simulation study and the real-life data set assessed the validity of the model and the superiority
of the Bayes estimators over the maximum likelihood estimators.

1. Introduction

The world we live in relies on the robust and proper func-
tioning of the systems which is normally at risk because of
the vulnerabilities and susceptibilities in the systems.
Regarding risk analysis in a system, it is a reality that a sys-
tem must one day fail regardless of how evidently flawless
and impeccable the functioning might be and regardless of
how intensive the development might be. This is the reason
that the failure of machinery, structures, and systems is reg-
ular phenomena with which we have to deal every day.

In the engineered systems, such as the electrical power
grid, telecommunications, and different assembly lines, the
failure rate is one of the parametric indices utilized for the
evaluation of the system’s efficiency [1]. It is characterized as
the inability of the system to perform its assigned capacity sat-
isfactorily without interference over a time frame. An analysis
of a system failure helps to emphasize the root cause of the
failure and the impact it has on the entire operational process.

The reliability of a system and equipment is expressed by
its successful working under the provided circumstances for
a specific time. As the failure of machines and electronic sys-

tems, etc. is a common phenomenon, one of the main prob-
lems is to detect how frequently a system fails at a specific
time. To model risk, failure, and uncertainty in different
situations, probability theory and survival analysis have been
playing a significant role over the years. To define the
reliability of a system, many failure-time statistical distribu-
tions are widely used. A new modified Weibull [2], Beta
Sarhan-Zaindin modified Weibull distribution [3], Odd
Lindley-half logistic distribution [4], etc. are some of them.

The inverse Rayleigh (IR) distribution as proposed by [5]
has great importance in ecology, biomedicine, survival, and
reliability analysis. Especially in engineering, to model the
lifetime of a system, the IR distribution is widely used. The
weighted inverse Rayleigh distribution is used to discuss
two real-life examples, one of which was about the excee-
dances of flood peaks of the Wheaton River in Canada and
the other was about the remission time of bladder cancer
[6]. The exponentiated inverse Rayleigh distribution is used
for the model validity, and two data sets were taken [7]. The
type II Topp-Leone inverse Rayleigh distribution is used to
assess the flexibility of the distribution for the data set about
the failure time of aircraft windshield [8]. The half-logistic
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inverse Rayleigh distribution is used for modeling the data
set about the taxes revenue in Egypt [9].

Bayesian statistics has emerged as a relatively new and
unique branch of statistics in recent years. In the Bayesian
paradigm, along with the current information modeled as
the probability distribution, the prior information of the
parameters of the probability model is also taken into
account. Bayesian strategies are regularly prescribed as the best
possible approach to make formal utilization of subjective data,
for example, professional opinion and individual judgments
[10]. This is the reason that many scholars, e.g., [11–13], have
made use of Bayesian statistics to model risk, failure, and reli-
ability assessment in different situations and systems.

Energy crises in Pakistan are increasing day by day. The
failure rate in Pakistan’s power distribution system cannot
be determined with certainty or complete knowledge. Mostly
failure of the grid power system depends upon climate vari-
ables like rain, wind, and temperature. However, the failure
rate in such systems may also depend on numerous other
factors, such as lack of maintenance, old and faulty systems,
and government policies.

The advancements led by many statisticians and Bayesian
statisticians have ushered us to study one of the problems
related to the energy crisis in Pakistan in the Bayesian frame-
work using a new probability model. We have proposed
the inverse Rayleigh-exponential (IRE) distribution using
the Transformed-Transformer technique proposed by
[14], to model the time lapse between the breakdowns of
electric feeders.

Electric feeders are a set of electric conductors that
originate at a primary distribution center and supply power
to one or more secondary distribution centers, branch distri-
bution centers, or a combination of these. Occurrences of
faults in the electricity distribution system can be categorized
as momentary or stable. Momentary faults, which can be
adjusted when the system is deenergized and then reenergized
within 5 to 15 minutes, are called trips. On the other hand, the
stable fault which sustains until proper repairing is done by
human interference is called breakdown.

In this study, the basic aim is to model the time lapses
between the breakdown of electric feeders in a power distri-
bution system and then to find out the estimates. The anal-
ysis of the grid system operation (GSO) data has been
carried out which were taken from randomly selected
11 kV outgoing urban feeders of 2 grid stations, which were
also conveniently selected from nine grid stations of the city
of Multan (famous for its hot weather), Pakistan. The data
consist of the time lapses between these breakdowns. All
the relevant data have been collected in June, July, and
August 2018. In Pakistan, the power crisis upsurges to its
peak in the summer season, and the situation becomes even
worse as the numbers of trips and breakdowns increase
because of hard weather.

The parameters of the proposed distribution are esti-
mated using the maximum likelihood estimation technique
in classical statistics. The Bayes estimators are estimated
using five different loss functions, square error loss func-
tion (SELF), weighted loss function (WLF), quadratic loss
function (QLF), precautionary loss function (PLF), and

modified II loss function (MIILF). The posterior distribu-
tion of the parameters of the IRE distribution under
informative prior (IR and exponential distributions) is
not in the closed form. Two approximation techniques
are utilized for the Bayes estimators and their associated
risks. The MLEs and Bayes estimators are compared based
on minimum values of risks. The rest of the study is orga-
nized as follows;

In Section 2, the IRE distribution is derived. In Section
3, the MLEs of the parameters of IRE distribution are
estimated, and asymptotic confidence intervals are derived.
In Section 4, The Lindley and Tierney–Kadane (T-K)
approximation methods are utilized for the estimation of
Bayes estimators using informative priors. Sections 5 and
6 deal with the simulation study and real-life data set of
time lapses between the breakdowns of the electric feeders
for illustrative purposes. Finally, the study is concluded in
Section 7.

2. The Inverse Rayleigh-Exponential
(IRE) Distribution

[14] proposed the Transformed-Transformer technique and
suggested various functional forms of the transformer of rv
X depending on the support of another continuous rv T .
Keeping in mind the importance of the IR distribution in
the different phenomena of engineering, we have derived
its generalization, the IRE distribution, using the same tech-
nique as suggested by [14]. This IRE distribution is used for
modeling the data of the time lapses between the respective
breakdowns of electric feeders

In this study, the rv T follows the IR distribution, and
then it is transformed into generalized IRE distribution
using a function W½FðxÞ� = FðxÞ/1 − FðxÞ. Here, W½FðxÞ�
is the functional form of the CDF of rv X which follows
the exponential distribution. The PDF and CDF of IRE dis-
tribution are as follows:

g xð Þ = 2θλeλx

eλx − 1
� �3 exp −θ

eλx − 1
� �2

 !
, x, θ, λ > 0,

G xð Þ = exp −θ
eλx − 1
� �2

 !
, x, θ, λ > 0,

ð1Þ

where λ is the inverse scale parameter of exponential distri-
bution, and θ is the scale parameter of IR distribution. The
flexibility of the IRE distribution is observed by changing
the values of parameters. Figure 1 shows the PDF and CDF
plots of the distribution, and it is evident that the distribu-
tion is unimodal and positively skewed.

2.1. Reliability Analysis. In engineering, reliability is an
aspect that deals with the failure of an object or component
in a particular duration of time. Let an rv T represent the
time until an event of interest occurs. Then, the reliability
function is the probability of the non occurrence of the event

2 Modelling and Simulation in Engineering



0.08

0.06

0.04

0.02

0.00

0

λ = 0.06

PD
F

10 20 30 40

θ = 1
θ = 2.5
θ = 3.5
θ = 4.5
θ = 5.5
θ = 6.5

x

(a)

0.6

0.4

0.2

0.0

0

θ = 2.5

PD
F

10 20 30 40

λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5
λ = 0.6

x

(b)

0.04

0.03

0.02

0.01

0.00

0

λ = 0.009

PD
F

10 20 30 40

θ = 0.05
θ = 0.07
θ = 0.09
θ = 0.1
θ = 0.3
θ = 0.5

x

(c)

0.1

0.8

0.6

0.4

0.2

0.0

0

λ = 0.08

CD
F

10 20 30 40

θ = 1.5
θ = 2.5
θ = 3.5
θ = 4.5
θ = 5.5
θ = 6.5

x

(d)

Figure 1: Continued.
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in time t. Then, reliability function of the IRE distribution is
as follows:

R tð Þ = 1 −G tð Þ = 1 − exp −θ
eλt − 1
� �2

 !
, t, θ, λ > 0: ð2Þ

The electrical items are usually at high risk of failure over
time. At a specific time, the instantaneous rate of failure is
called hazard rate denoted as hðtÞ. For the IRE distribution,

h tð Þ = g tð Þ
S tð Þ = 2θλeλt

eλt − 1
� �3 exp −θ

eλt − 1
� �2

 !
1

1 − exp −θ/ eλt − 1
� �2� � , t, θ, λ > 0:

ð3Þ

The commutative hazard function ðHðtÞÞ computes the
expected failure time for a specific period. For the IRE
distribution,

H tð Þ = − log S tð Þ = − log 1 − exp −θ
eλt − 1
� �2

 !" #
: ð4Þ

Figure 2 shows the reliability, hazard, and cumulative
hazard function of the IRE distribution for different values
of the parameters.

3. Maximum Likelihood Estimators

Let X1, X2, X3,⋯, Xn be the random sample follows the
IRE distribution. The likelihood and log-likelihood func-

tion of the distribution for the parameters Δ = ðθ, λÞ′ are
as follows:

L Δð Þ = L θ, λ xjð Þ = 2λθð Þneλ∑xQ
eλxi − 1
� �3 exp −θ〠

n

i=1

1
eλxi − 1
� �2

 !
,

ð5Þ

ℓ Δð Þ = l θ, λ xjð Þ = n log 2λθð Þ + λ〠x

− 3〠
n

i=1
log eλxi − 1
� �

− θ〠
n

i=1

1
eλxi − 1
� �2 : ð6Þ

The score functions of IRE distribution are not in the
closed form; hence, maximum likelihood estimators

(MLEs) bθ and bλ of the parameters of IRE distribution
are obtained using the Newton Raphson iterative proce-
dure, R package maxLik [15] is used for this purpose.

The asymptotic distributions of the bλ and bθ are as
follows:

ffiffiffi
n

p bλ� �
⟶
d

N λ, I−1λλ
� � ffiffiffi

n
p bθ� �

⟶
d

N θ, I−1θθ
� �

, ð7Þ

where I−1λλ and I−1θθ are the diagonal elements of the
inverse of the Fisher information matrix (FIM), which is
defined as
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Figure 1: PDF and CDF plots of IRE distribution for different values of parameters.
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FIM = I =
Iλλ Iλθ

Iθλ Iθθ

" #
= −E

∂2ℓ Δð Þ
∂λ2

∂2ℓ Δð Þ
∂λ∂θ

∂2ℓ Δð Þ
∂λ∂θ

∂2ℓ Δð Þ
∂θ2

26664
37775,

∂2ℓ Δð Þ
∂λ2

= −
n

λ2
− 3〠 x2eλx

eλx − 1
� �1 + 3〠 x2e2λx

eλx − 1
� �2

+ 2 θ〠 x2eλx

eλx − 1
� �3 − 6θ〠 x2e2λx

eλx − 1
� �4 ,

∂2ℓ Δð Þ
∂θ2

= −
n

θ2
, ∂

2ℓ Δð Þ
∂λ∂θ

= 2〠 xeλx

eλx − 1
� �3 : ð8Þ

The asymptotic behavior remains valid if information
matrix I is replaced by the observed information matrix.
So, the approximate 100ð1 − αÞ% two-sided confidence
interval for the parameters λ and θ of IRE distribution
is, respectively, given as
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Figure 2: The reliability, hazard, and cumulative hazard function plots of IRE distribution for different values of parameters.

5Modelling and Simulation in Engineering



bλ ± Zα/2

ffiffiffiffiffiffiffi
I−1λλ

q
and bθ ± Zα/2

ffiffiffiffiffiffi
I−1θθ

q
, ð9Þ

where Zα is the α − th percentile of the standard nor-
mal distribution.

4. Bayesian Estimation Using Informative Prior

Bayesian statistics is a technique that updates the belief of a
person in the evidence of new data. The parameter is sum-
marized by an entire distribution, known as a prior distribu-
tion which is based on past studies or the opinions of
experts. A formal rule to combine the prior distribution with
the sample information (likelihood function) is provided by
the Bayes theorem. This gives the posterior distribution that
contains all the updated and probabilistic information about
the parameters.

The informative prior which gives specific and definite
information about the parameters may lead to efficient Bayes

estimates accompanied by low posterior risk. In this study,
the informative prior distribution of λ is taken to be the IR
distribution and for the parameter θ, and the exponential
distribution is taken as the prior. The joint prior distribution
of λ and θ after assuming the independence of prior distri-
butions is defined as

π λ, θð Þ = π λð Þπ θð Þ∝ 1
λ3

exp −aθ −
b

λ2

� �
, ð10Þ

where a and b are the hyperparameters of exponential distri-
bution and IR distribution, respectively.

Using the Bayes theorem, the joint posterior distribution
of the parameters of IRE distribution is obtained by combin-
ing the likelihood function and the prior distributions given
in equations (5) and (10), which is,

The loss function is another specification in Bayesian
analysis. It is the deviation of the observed event from the
true event, and the expectation of the loss function is the
posterior risk. The minimizer of posterior risk is known as
the Bayes estimator. In this study, we considered five differ-
ent types of loss functions that are SELF, WLF, QLF, PLF,
and MIILF.

The marginal posterior distributions of θ and λ,
obtained by integrating the equation (11) for nuisance
parameters, are not in a closed-form expression. The Bayes
estimators and associated risk, for the functional form of
parameters UðΔÞ, take the form:

The expression (13) is not tractable to evaluate. Hence,
two approximation techniques by Lindley and Tierney and
Kadane (T-K) are utilized for the evaluation of Bayes esti-
mators and associated posterior risks.

4.1. Bayes Estimators and Posterior Risk Using Lindley’s
Method. [16] proposed a simple technique, which evaluates
the ratio of two integrals and produces a single numerical
result. In Bayesian statistics, this method is widely used;
see among others, [17–21], etc., and the references cited
therein.

The expression given in equation (12) can be
expressed as

EΔ∣x U Δð Þ½ � = ~U Δð Þ = ∬U Δð Þ exp Q Δð Þð Þ dθ dλ
∬exp Q Δð Þð Þdθ dλ

: ð14Þ

Here, QðΔÞ = ln LðΔÞ + ln πðΔÞ = ℓðΔÞ + ρ and ρ = log ½π
ðλ, θÞ�.

π θ, λ ∣ xð Þ =
2nλnθneλΣx/Q eλxi − 1

� �3� �
exp −θΣ 1/ eλxi − 1

� �2� �h i
1/λ3
� �

exp −aθ − b/λ2
	 


∬ 2nλnθneλΣx/Q eλxi − 1
� �3� �

exp −θΣ 1/ eλxi − 1
� �2� �h i

1/λ3
� �

exp −aθ − b/λ2
	 


dθ dλ
: ð11Þ

EΔ xj U Δð Þ½ � = ~U Δð Þ = ∬U Δð ÞL Δð Þπ θ, λð Þ dθ dλ
∬L Δð Þπ θ, λð Þ dθ dλ

, ð12Þ

=
∬U Δð Þ 2nλnθneλΣx/Q eλxi − 1

� �3� �
exp −θΣ 1/ eλxi − 1

� �2� �h i
1/λ3
� �

exp −aθ − b/λ2
	 


dθdλ

∬ 2nλnθneλΣx/Q eλxi − 1
� �3� �

exp −θΣ 1/ eλxi − 1
� �2� �h i

1/λ3
� �

exp −aθ − b/λ2
	 


dθ dλ
: ð13Þ
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Table 2: The MLEs and Bayes estimators of λ with posterior risks under different loss functions.

Sample size
MLEs

Bayes estimators
Lindley approximation T-K approximation

SELF WLF QLF PLF MIILF SELF WLF QLF PLF MIILFbλ ~λS
~λw

~λQ
~λP

~λM2
~λS

~λw
~λQ

~λP
~λM2

50
4.1561 3.8308 3.8437 3.8554 3.8236 3.8165 3.0096 3.0096 3.0079 3.9858 3.9626

0.0149 0.0560 0.0129 0.0030 0.0144 0.0037 0.0472 0.0736 0.0031 0.04757 0.0554

100
4.2354 4.0632 4.0634 4.0638 4.0633 4.0633 3.9006 3.9016 3.8964 3.8843 3.8682

0.0067 0.0001 0.0002 0.0001 0.0001 0.0001 0.0287 0.0009 0.0072 0.0329 0.0397

200
4.3412 4.2503 4.2484 4.2467 4.2513 4.2523 3.9339 3.9244 3.9323 3.9261 3.9182

0.0031 0.0086 0.0019 0.0004 0.0020 0.0005 0.0142 0.0004 0.0028 0.0159 0.0186

300
4.3994 4.3368 4.3350 4.3333 4.3377 4.3387 3.9806 3.9818 3.9775 3.9735 3.9666

0.0019 0.0082 0.0018 0.0003 0.0019 0.0004 0.0136 0.0013 0.0047 0.0140 0.0147

500
4.4638 4.4249 4.4235 4.4221 4.4256 4.4263 4.0027 4.0034 4.0010 4.9987 4.9949

0.0011 0.0064 0.0014 0.0003 0.0014 0.0003 0.0077 0.0007 0.0027 0.0078 0.0081

700
4.4942 4.4666 4.4655 4.4644 4.4671 4.4677 4.022 4.0229 4.0213 4.0197 4.017

0.0007 0.0051 0.0011 0.0002 0.0011 0.0002 0.0053 0.0006 0.0019 0.0053 0.0055

1000
4.5467 4.5271 4.5263 4.5255 4.5275 4.5279 1.0263 4.0265 4.0257 4.0244 4.0226

0.0005 0.0039 0.0008 0.0002 0.0008 0.0002 0.0037 0.0002 0.0009 0.0037 0.0037

1500
4.5872 4.5739 4.5733 4.5727 4.5742 4.5745 4.0687 4.0687 4.0685 4.0676 4.066

0.0003 0.0028 0.0006 0.0001 0.0006 0.0001 0.0023 0.0002 0.0004 0.0022 0.0021

Table 3: Summary statistics of the data set about the time between break down of electric feeders.

Sample size Minimum 1st quartile Median Mean 3rd quartile Maximum

20 4.00 5.75 11.00 12.40 17.50 26.00
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Figure 3: (a) Empirical and cumulative distribution of the data. (b) Goodness of fit curve of the IRE distribution to the data.
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Then, the Lindley approximations take the form:

~U Δð Þ ≈U bΔ� �
+ 1
2 u11σ11 + u12σ12 + u21σ21 + u22σ22½ �

+U1ρ1 +U2ρ2 +
1
2 L30σ11U1 +

1
2 L21 2σ12U1 + σ11U2ð Þ

+ 1
2 L12 σ22U1 + 2σ12U2ð Þ + 1

2 L03σ22U2,

ð15Þ

U1 = u1σ11 + u2σ12, ð16Þ

U2 = u1σ21 + u2σ22, ð17Þ

ui =
∂U Δð Þ
∂Δi

, uij =
∂2 U Δð Þ
∂Δi∂Δj

: ð18Þ

σij is the ij -th element of the inverse of the Fisher infor-
mation matrix. For the IRE distribution,

ρ = −aθ −
b

λ2
− 3 log λ,

ρ1 =
∂ρ
∂θ

= −a, ρ2 =
∂ρ
∂λ

= 2b
λ3

−
3
λ
,

L30 =
∂3ℓ Δð Þ
∂3θ

= 2n
θ3

, L21 =
∂3ℓ Δð Þ
∂2θ∂λ

= 0,

L12 =
∂3ℓ Δð Þ
∂θ∂2λ

= 2〠x2i e
λxi eλxi − 1
� �−3

− 6〠x2i e
2λxi eλxi − 1
� �−4

,

L03 =
∂3ℓ Δð Þ
∂3λ

= 2n
λ3

− 3〠x3i e
λxi eλxi − 1
� �−1

+ 9〠x3i e
2λxi eλxi − 1
� �−2

− 6〠x3i e
3λxi eλxi − 1
� �−3

+ 2θ〠x3i e
λxi eλxi − 1
� �−3

− 18θ〠x3i e
2λxi eλxi − 1
� �−4

+ 24θ〠x3i e
3λxi eλxi − 1
� �−5

:

ð19Þ

The Bayes estimators of θ under SELF, WLF, QLF, PLF,
and MIILF, using expression (15), are

0
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Figure 4: Goodness of fit curve of the IRE distribution with
competitive distributions.

eθS = bθ + σ11ρ1 + σ21ρ2 +
1
2 L30σ11

2 + 3
2 L21σ12σ11 +

1
2 L12 σ22σ11 + 2σ122

� �
+ 1
2 L03σ22σ21,

eθW =
bθ−1 + bθ−3

σ11 − bθ−2 σ11ρ1 + σ21ρ2ð Þ − 1
2
bθ−2 L30σ11

2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122
� �

+ L03σ22σ12
	 
24 35−1

,

eθQ =
bθ−1 + bθ−3

σ11 − bθ−2
σ11ρ1 + σ21ρ2ð Þ − 1/2bθ−2

L30σ11
2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ12

2� �
+ L03σ22σ12

	 

bθ−2 + 3bθ−4

σ11 − 2bθ−3 σ11ρ1 + σ21ρ2ð Þ − bθ−3 L30σ112 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122ð Þ + L03σ22σ12½ �
,

eθP = bθ2 + σ11 + 2bθ σ11ρ1 + σ21ρ2ð Þ + bθ L30σ11
2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122

� �
+ L03σ22σ21

	 
h i1/2
,

eθMII =
bθ2 + σ11 + 2bθ σ11ρ1 + σ21ρ2ð Þ + bθ L30σ11

2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122
� �

+ L03σ22σ21
	 


bθ + σ11ρ1 + σ21ρ2 + 1/2L30σ11
2 + 3/2L21σ12σ11 + 1/2L12 σ22σ11 + 2σ122ð Þ + 1/2L03σ22σ21

: ð20Þ
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The associated posterior risks are obtained to be the
following:

Similarly, the Bayes estimators and associated posterior
risk of parameter λ are evaluated.

4.2. Bayes Estimators and Posterior Risk Using T–K
Approximation. For the evaluation of the ratio of two inte-
grals, an approximate method is T-K approximation [22].
Although the Lindley approximation method is also used
for this purpose, it required a third derivative of the log-
likelihood function, which is sometimes tedious to evaluate.

In the Bayesian analysis, the T-K technique is frequently
used, and some are [23–26].

For the IRE distribution, it is supposed that

L Δð Þ = 1
n
ρ Δð Þ + ℓ Δð Þ½ �,

L∗ Δð Þ = 1
n
U Δð Þ +L Δð Þ:

ð22Þ

The expression for the Bayes estimators and associated
posterior risk provided in equation (14) can be expressed as

EΔ∣x U Δð Þ½ � = ~U Δð Þ = ∬exp L∗ Δð Þð Þdθ dλ
∬exp L Δð Þð Þdθ dλ

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Σ∗ð Þ
det Σð Þ

s
exp nL∗ bΔL∗

� �
− nL bΔL

� �h i
,

ð23Þ

where bΔL∗ and bΔLmaximize theL∗ðΔÞ andLðΔÞ, and
Σ∗ and Σ are the inverse of the Fisher information matrix of
L∗ðΔÞ and LðΔÞ at bΔL∗ and bΔL , respectively.

All the Bayes estimators and associated posterior risks of
the parameters θ and λ under SELF, WLF, QLF, PLF, and
MIILF are evaluated using the expression (23).

5. Simulation Study

In this section, the Monte Carlo simulation scheme is used to
study the behavior of MLEs and the Bayes estimators of the
parameters of IRE distribution. For this purpose, random
samples of sizes 50, 100, 200, 300, 500, 700, 1000, and1500
are drawn from the IRE distribution using a random number
generator X = ð1/λÞ log ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−θ/log U
p

+ 1�, where U is a uni-
form random variate over the interval (0, 1). From these sam-
ples, MLEs of the parameters of IRE distribution are estimated
using the Newton Raphson iterative procedure. The R package
maxLik is used for this purpose. The Bayes estimates and the
associated posterior risks under Lindley and T-K approxima-
tion methods using informative priors (exponential and
inverse Rayleigh priors) are evaluated. The values of the
parameters are taken to be θ = 1:5 and λ = 4:5. The elicited
values of the hyperparameters are a = 5:5 and b = 2:08 . The
computation is executed making programming routines in
R-language. The simulation size is set to be 1000. The best
estimators are assessed based on minimum values of risk.

~Rθ Sð Þ = bθ2 + σ11 + 2bθ σ11ρ1 + σ21ρ2ð Þ + bθ L30σ11
2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ12

2� �
+ L03σ22σ21

	 
h i
− bθ + σ11ρ1 + σ21ρ2 +

1
2 L30σ11

2 + 3
2 L21σ12σ11 +

1
2 L12 σ22σ11 + 2σ122

� �
+ 1
2 L03σ22σ21

� �2
,

~Rθ Wð Þ = bθ + σ11ρ1 + σ21ρ2 +
1
2 L30σ11

2 + 3
2 L21σ12σ11 +

1
2 L12 σ22σ11 + 2σ122

� �
+ 1
2 L03σ22σ21

� �
− bθ−1 + bθ−3

σ11 − bθ−2
σ11ρ1 + σ21ρ2ð Þ − 1

2
bθ−2 L30σ11

2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122
� �

+ L03σ22σ12
	 
� �−1

,

~Rθ Qð Þ = 1 −
bθ−1 + bθ−3

σ11 − bθ−2
σ11ρ1 + σ21ρ2ð Þ − 1/2bθ−2 L30σ11

2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122
� �

+ L03σ22σ12
	 
h i2

bθ−2 + 3bθ−4
σ11 − 2bθ−3

σ11ρ1 + σ21ρ2ð Þ − bθ−3
L30σ112 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122ð Þ + L03σ22σ12½ �

,

~Rθ Pð Þ = 2 bθ2 + σ11 + 2bθ σ11ρ1 + σ21ρ2ð Þ + bθ L30σ11
2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122

� �
+ L03σ22σ21

	 
h i1/2�
− bθ + σ11ρ1 + σ21ρ2 +

1
2 L30σ11

2 + 3
2 L21σ12σ11 +

1
2 L12 σ22σ11 + 2σ122

� �
+ 1
2 L03σ22σ21

� ��
,

~Rθ MIIð Þ = 1 −
bθ + σ11ρ1 + σ21ρ2 + 1/2L30σ112 + 3/2L21σ12σ11 + 1/2L12 σ22σ11 + 2σ122

� �
+ 1/2L03σ22σ21

h i2
bθ2 + σ11 + 2bθ σ11ρ1 + σ21ρ2ð Þ + bθ L30σ11

2 + 3L21σ12σ11 + L12 σ22σ11 + 2σ122ð Þ + L03σ22σ21½ �
:

ð21Þ
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The results of the simulation study are reported in Tables 1
and 2. For each sample size, the minimum value of risk is
shown in bold font.

From Tables 1 and 2, it is observed that the performance
of the Bayes estimators under all the loss functions is better
than the MLEs for the parameters θ and λ due to minimum
values of risks. With increasing sample sizes, all the values of
risks decrease and move towards zero. The estimators
attained using the Lindley approximation method perform
better than those of the T-K approximation technique.
While comparing the loss functions, the estimators under
QLF proved to be efficient for both parameters.

6. Illustrative Real Life Example

This section illustrates the appropriateness of the IRE distribu-
tion using a real-life data set. The estimates of the parameters
are attained both in the classical and Bayesian paradigms and
are compared. As mentioned earlier, the problem of electric
feeders’ breakdown and tripping worsens in the summer sea-
son in Pakistan. Therefore, we tried to estimate the average
time a feeder endures a breakdown after it has suffered a
breakdown already and has been repaired, using the IRE dis-
tribution. In other words, how long will an average feeder take
for another breakdown when it has been repaired after one
breakdown in the extremely hot months of summer? For this
purpose, a data set of the time-lapses (in days) between one
breakdown to the next one is taken from Multan Electric
Power Company (MEPCO), Pakistan, for June, July, and
August 2018. From two grid stations, 132kV MESCO and
132kV Qasim Pur, twenty 11kV outgoing urban feeders are
selected randomly, and the average time between one break-
down to the next one of these feeders is recorded (duration
between two breakdowns). The summary statistics of the data
are provided in Table 3.

The empirical and cumulative distribution functions of
the data set are shown in Figure 3(a), and it is shown in
Figure 3(b) that the IRE distribution adequately fits the data.

In Figure 4, it is depicted that the IRE model fits the data
appropriately and turns out to be more flexible than the
exponential distribution, Rayleigh distribution [27], inverse
Rayleigh (IR) distribution [5], exponentiated inverse Ray-
leigh (EIR) distribution [7], and alpha power exponentiated
inverse Rayleigh (APEIR) distribution [28].

For the data set of the time between the breakdowns of
electricity feeders, the MLEs and Bayes estimate with the
associated posterior risks of the parameters of IRE distribu-

tion are evaluated. The MLEs bθ and bλ are estimated using
the Newton Raphson iterative procedure. The Bayes esti-
mates and associated risks under Lindley and T-K methods
are evaluated using the theoretical results. The results are
shown in Table 4. The results of Table 4 depict the perfor-
mance of the Bayes estimators that prove to be better than
the MLEs for the given data set, as they have minimum
values of risks. The Bayes estimators obtained using the
Lindley approximation method are even better than the
T-K method. The estimators under QLF are found to be bet-
ter than other loss functions for both the parameters θ and λ.
The results for the data set are close to the findings of the
simulation study.

Table 5 shows the means and standard deviation (sd)
calculated by the data set, MLEs, and Bayes estimate using
Lindley and T-K methods provided in Table 4.

Hence, the average time that an electrical feeder takes to
endure after one break down to the other one in the summer
season of Pakistan is approximately 13 days. Again, it is obvi-
ous that the Bayesian estimators obtained using the Lindley
approximation method under QLF prove to be the most effi-
cient of all including classical and other Bayesian estimators.

7. Conclusion

In this study, the data about the time between the break-
downs of electricity feeders has been modeled using the
IRE distribution. For this purpose, the data set of electricity
feeders is taken from MEPCO, Pakistan. The parameters of
the distribution are estimated through classical and Bayesian

Table 4: The MLEs and Bayes estimates of θ and λ under different loss functions using electricity data set.

Parameters MLEs
Bayes estimators

Lindley approximation T-K approximation
SELF WLF QLF PLF MIILF SELF WLF QLF PLF MIILF

θ
0.5420 0.4713 0.4793 0.4856 0.4661 0.4661 1.0319 0.9335 0.8433 1.0799 1.1303

0.0390 0.0049 0.0079 0.0013 0.0104 0.9483 0.1016 0.0983 0.0967 0.0962 0.0871

λ
0.3217 0.3778 0.3906 0.3763 0.3545 0.3139 0.3568 0.3835 0.3304 0.3298 0.3048

0.1002 0.1648 0.2872 0.0095 0.3535 0.5358 0.0185 0.0266 0.1383 0.0540 0.1706

Table 5: Mean and standard deviation of data and IRE distribution using MLEs and Bayes estimates.

Data
IRE distribution

MLEs
Lindley approximation T-K approximation

SELF WLF QLF PLF MIILF SELF WLF QLF PLF MIILF

Mean time 12.40 14.55 11.98 11.54 12.98 11.32 11.77 15.54 15.03 14.99 14.01 13.95

s.d. 7.769 5.03 3.92 3.88 2.04 2.67 2.55 4.08 3.99 3.04 2.93 2.55
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estimation techniques. The MLEs are not in closed form; so,
the Newton Raphson iterative method is used in the classical
paradigm. To evaluate the Bayesian estimators, two approx-
imation estimation techniques are used. Both the classical
and Bayes estimators are compared based on minimum
values of risks. The results of the simulation study and
real-life data set show that the Bayes estimators are better
than the MLEs. While comparing both the approximation
techniques, Lindley’s method proves to be better than the
other one. Since the IRE distribution turns out to be a better
fit for the data, it is suggested to the worldwide practitioners,
engineers, and policymakers to use the proposed distribu-
tion and Bayesian estimation technique for the better predic-
tion of engineering and electricity data set.
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