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Rayleigh-Taylor instability (RTI) is analyzed theoretically by Taylor, and 2-dimensional experimental results are obtained by
Lewis in 1950. Over the 72 years, several experiments and theories are developed with the shock-driven Ritchmyer-Meshkov
instability (RMI) and the shear-driven Kelvin-Helmholtz instability (KHI). Here, we emphasize the single-mode Rayleigh-
Taylor instability (RTI) mixing simulation with a surface area in 3 dimensions. The simulation uses concentration equations
and nonzero transport. We observed chaotic interface behavior even for this single-mode simulation, in the sense that the
interface appears to have an area proportional to Δx−1, with respect to its mesh (non)convergence (i.e., rate of divergence)
properties.

1. Introduction

Many important industrial problems involve flows with
multiple constitutive components. Due to inherent nonline-
arities and the complexity of dealing with unknown moving
interfaces, multiphase flows are challenging. There are many
ways to model moving interfaces. The two main approaches
to simulating multiphase and multicomponent flows are
interface tracking and interface capturing. In interface track-
ing methods (front-tracking [1], immersed interface [2],
immersed boundary [3, 4]), Prometheus with PPM(the
piecewise-parabolic method) [5], and CLAWPACK [6]),
Lagrangian particles are used to track the interfaces. In inter-
face capturing methods such as level-set [7, 8] and phase-
field methods [9], the interface is implicitly captured by a
contour of a particular scalar function. Another types of
methods are Clawpack and Prometheus Method (PPM).
Reference will be inserted. The numerical method we will
take is Front-tracking method (FTM), which is originally
developed by Glimm et al. [1] and Immersed boundary
method (IBM), which is originally developed by Peskin [4].
The IBM was started to be applied to two-phase fluid flows
[10–12], and the FTM was started to be applied to two-
phase fluid flows. The motion of the fluid with the interface
tracking method is influenced by the force generated by the

interface, and the interface moves at the local fluid velocity.
The strength of this method is accurate and robust with
time-dependent geometry of the interface. See Figure 1 for
2-dimensional incompressible and immiscible two fluid
mixing cases. Here, ρ is the variable density, and μ is the var-
iable viscosity. Xðs, tÞ is the interface of two fluid mixing in 2
dimensions.

We extend the problems to a 3-dimensional space with
compressible two fluid mixing cases. This problem is one
of Rayleigh-Taylor instabilities (RTI) [13] with the density
differences. RTI is applied to resolve supersonic ramjet [14]
and scramjet or inertial confinement fusion (ICF) problems
[15]. We consider the Navier-Stokes equations with trans-
port for a mixture of two compressible species:

∂ρ
∂t

+∇ · ρv = 0, ð1Þ

∂ρv
∂t

+∇ · ρvv + pδij
À Á

= ∇ · d, ð2Þ

∂E
∂t

+∇ · E + pð Þv = ∇ · κ∇T+∇ · d · v, ð3Þ
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∂ρψ
∂t

+∇ · ρψv = ∇ · ρμ∇ψ: ð4Þ

The following are the dependent variables: ρ is the total
mass density, v is the velocity, p is the pressure, E is the total
energy, ψ is the species mass fraction, κ is the coefficient of
heat conductivity, and μ is the molecular mass diffusion.

Equation (1) is the continuum equation, equation (2) is
the momentum equation, equation (3) is the energy equa-
tion [16], and equation (4) is the mass fraction equation.
In equation (4), we added and developed the volume frac-
tion formulas to preserve the mass in the interface because
it is not conservative in the interface, grid cell crossings
and it is conservative without interface. After we add and
develop the volume fraction formulas, it almost becomes
conservative in the interface and grid cell crossing [17].

The equation of state (EOS) is defined for each of the
species as a gamma law gas, and according to [18], the mix-
ture EOS is a gamma law gas also. d is the viscous stress d
= 2ν½S − ð1/3ÞtrðSÞI�, and Sij is the strain rate tensor:

Sij =
1
2

∂vi
∂xj

+
∂vj
∂xi

 !
: ð5Þ

In the reference book of Williams [19], there is a more
detailed approximation theory of multifluid viscosity. We
implement Neumann boundary conditions with reflecting
boundary state at the walls for the x-velocity component.
We consider compressible flows coupling the concentration
equation actively into the flow dynamics. The mixing prob-
lems which we study are driven by acceleration-driven
forces. The classical Rayleigh-Taylor instability with mixing
regime is defined by steady acceleration of a density discon-
tinuities. The Atwood number A = ðρ2 − ρ1Þ/ðρ2 + ρ1Þ, with
A > 0, is an important parameter to measure the effective
buoyancy and thus the acceleration of the flow. See the over-
view in [20]. In this single-mode Rayleigh-Taylor 3D simu-
lation, we update the numerical tool FronTier which is
based on a front tracking algorithm with a high-quality
treatment of a fluid interface with volume fraction formulas.
This code is validated [21]. In detail, we developed a local
grid-based method, one of the front tracking methods with
the volume fraction formulas. A front grid (a codimension
1 grid) specifies a fluid discontinuity location. Through a
regular rectangular grid, the front moves freely. In the inter-

face and grid cells, the volume fraction formula is very effective
for conserving the mass fractions. At the front, Riemann solu-
tions, which are constructed in a normal direction, provide the
physics-based dynamics to move the front at each time step.

2. Multiscale Modeling of Single-Mode 3D
RT Instability

We simulate 3D single-mode Rayleigh-Taylor with nonzero
transport and obtain the surface area with averaged volume
fraction formulas. It was already observed [22] without aver-
aged volume fraction formulas; the interface for a related but
distinct 2D Richtmyer-Meshkov instability has a length pro-
portional to Δx−1, with respect to its mesh (non)convergence
(i.e., rate of divergence) properties.

The mechanism of the interfacial instabilities is the fol-
lowing. The amplitude of mode is 0.1, the phase of mode is
270 degrees, and the boundary type of perturbation in direc-
tion is periodic. We show in Figures 2–5 several time steps in
the evolving flow. Here, we used transport coefficients for
water (Navier-Stokes viscosity: 0.00085105 cm2/ms, Navier-
Stokes mass diffusion: 0.00016366 cm2/ms, and Navier-
Stokes thermal conductivity: 0.00112 cm2/ms).

In the interface surface area in Figure 6, we observed that
the surface area is divergent with time (expressed unphysical
units) in three mesh refinements. We convert the surface
area to mesh units following the formula

interfacesurfaceð Þ
mixingzonevolumeð Þ
= physical surface area/ΔX ∗ ΔY

hmax − hminð Þ ∗ domainX ∗ domainY/ΔX ∗ ΔY ∗ ΔZ

= physical surface areað Þ ∗ ΔZ
hmax − hminð Þ ∗ domainX ∗ domainY :

ð6Þ

𝛺

𝛤
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Figure 1: Front-tracking and Immersed boundary curve Γ on a
rectangular domain Ω.

Figure 2: Plot of the interface between the heavy (above) and light
(below) fluids at initial time for Rayleigh-Taylor fluid instability.
For this study, density ratio is 2 : 1, the Atwood number is 1/3, the
peak to peak amplitude of initial disturbance is 0.06, grid size is 20
× 20 × 200, and computational domain is 1 cm × 1 cm × 10 cm.
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Figure 3: Plot of early time for Rayleigh-Taylor fluid instability. Flow and grid parameters as in Figure 2.

Figure 4: Plot of middle time for Rayleigh-Taylor fluid instability. Flow and grid parameters as in Figure 2.
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Here, hmax is the maximum height, and hmin is the mini-
mum height in the mixing zone. We observe the chaotic inter-
face behavior in Figure 7. By (6), at late time, the mesh fraction
of surface area per mixing zone mesh block ranges from 24%
to 14%. We interpreted these members as indicating that the
flow is a mixture of chaotic patches and nonchaotic patches.

The flow morphology of a single-mode Rayleigh-Taylor
disturbance is far less chaotic than a comparison multimode
2D Richtmyer-Meshkov flow, but there is still vortex shed-
ding from the mushroom caps. The flow is more or less cha-
otic in these vortex shedding regions at late time. So, we
study the chaotic flow near the bottom of the mushroom
caps and the top of the spike tips in more detail [23].

The mesh level surface fraction is time independent. In
the later time, the mesh level surface fraction is about 20%
relative to the mixing zone itself. The divergent nature pro-
totypical error analysis of the interface without transport
physics is proposed as a formula form [23]:

Error = C1 × Δx × interface areað Þ = C1C2: ð7Þ

Ci are Oð1Þ constants independent of Δx. C1 is related to
numerical mass diffusion and might be taken as 3.0 for a
typical numerical algorithm [24]. In the single-mode 3D

Figure 5: Plot of late time for Rayleigh-Taylor fluid instability. Flow and grid parameters as in Figure 2.
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Figure 6: Plot of the interface surface area vs. time using physical
units. Results for three mesh levels are displayed for the identical
3D single-mode RT instability.
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problem and for grid levels considered here, C2 has a value
in the range 0.14 to 0.24.

To study the convergence and mesh refinement, we
define Re =VL/<ν > , ν is the kinematic viscosity, and <· >
is an ensemble average. V is the turbulent fluid velocity, V
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<δV2 >

p
. Here, δVz = Vz − <Vz > is the fluctuating part

of the velocity, and L is the mixing zone height (hmax − hmin).
In the simulation, we used a constant dynamic viscosity. We
also use the mesh Reynolds number Remesh =VΔx/<ν > and
the Schmidt number Sc = ν/μ as a new dimensionless param-
eter, where μ is the coefficient of molecular mass diffusion.
The Kolmogorov length scale λK = ðν3/εÞ1/4 or the viscous
inner scale, approximately 50λK , is a measure of the lengths
at which viscosity plays a role, and this is related to the level
of mesh refinement needed for a numerical simulation. For
comparison, Δx for the finest grid is comparable to λK and
well below the inner viscous scale, indicating that the calcula-
tion is in close to fully resolved simulation. We need to do
more mesh refinement to get fully resolved simulation. Here,
ε is the dissipation rate:

ε = ν

2 Sij
 2

2, ð8Þ

where Sij is (5). See Table 1 relating Re and λK to Remesh.

3. Conclusions

In this paper, we investigate the simulation of a single-mode
Rayleigh-Taylor instability with the volume fraction formu-
las in 3D. By the implementation of surface area function,
we can precisely observe the chaotic behavior of the interface
flow. The flow morphology is far less chaotic than a compar-
ison 2D multimode Richtmyer-Meshkov flow. There is still
vortex shedding from the mushroom caps, at which loca-
tions of the flow are more or less chaotic. So, we can study
the chaotic flow of the bottom of the mushroom caps and
the top of the spike tips in more detail. Here, we studied
the Kolmogorov length scale which is relative to the level
of mesh refinement for numerical simulation. Finally, in
the future work, we will apply Prandtl and Batchelor scales
which are need to resolve more fully for numerical
simulation.
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