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With machine learning techniques, wind turbine components can be detected and diagnosed in advance, so degeneration can be
prevented. Automatic and autonomous learning is used to predict, detect, and diagnose electrical and mechanical failures in wind
turbines. Based on the implementation of machine learning algorithms adapted to the different components and faults of wind
turbines, this study evaluates different methodologies for monitoring, supervision, and fault diagnosis.

1. Introduction

Due to global warming and the significant increase in
energy demand and consumption, the transition to obtain-
ing electricity from renewable sources is accelerating.
Researchers and engineers have developed new specific
techniques for maintaining wind power plants as wind
power production has grown by around 25% in recent
years. The reliability, safety, and profitability of wind tur-
bines can be improved with efficient methods of advanced
monitoring and fault diagnosis.

In maintenance of wind turbines [1], the main fault
methodologies are spectral analysis and fault trees, but with
all the additional technological advances that this entails,
connectivity, smart, and data generation, we are seeing a
transformation in maintenance towards artificial intelligence
(AI) and machine learning.

Increasingly, data are available to the industry at this
point, which affects critical decisions in crucial areas such
as scheduling [2], maintenance management [3], and quality
improvement [4].

Recent developments in hardware, cloud-based solu-
tions, and a new generation of algorithms have amplified
the impact of machine learning in these areas [5]. There
are many components in a wind turbine that work together,
and vibration is one of the primary causes of the system’s
failure.

Vibrations usually indicate mechanical or electrically
related faults, as well as gear or bearing defects.

It is the rolling elements of bearings that are prone to
greater wear, since their surface position changes continu-
ously with respect to their load, causing a behaviour corre-
sponding to speed of rotation.

Additionally, geometric imperfections or roughness
contribute to vibrations. Normal operating conditions do
cause not only vibrations but also faults like exterior and
interior raceways, component failures, cage failures, imbal-
ance, and misalignments.

Several studies have been conducted on vibrations in
structures as well as in rotating machines. The majority of
research, studies, and results in this field to date are based
upon traditional methods, that is, frequency spectral analy-
sis, as a means of detecting bearing failure due to mechanical
vibrations. From the studies performed on wind turbines [6],
it appears that conventional diagnostic techniques tradition-
ally have been used to detect faults in the generators and in
their structures. The studies and results that are provided by
AI [7], in this case machine learning, show that this type of
methodology has worked and continues to work perfectly,
but it has limitations and drawbacks.

The industry is implementing this new approach. In
case of an anomaly in the mechanical components of a
machine, it is possible to anticipate, detect, and classify it
autonomously in line with this series of maintenance
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methodologies. Regarding [8], machine learning can lead
to a reduction of response time and an almost complete
elimination of error possibilities.

Additionally, according to [9], data management and
analysis facilitate feedback learning and enable offshore
implementations to be flexible. The AI methodology pro-
tects you from any type of failure that you desire to monitor
by analysing and preventing it. In order for these methods to
be implemented on a real system without causing costly
errors, they must be adequately validated. It is therefore con-
venient to validate fault diagnosis techniques by using proto-
types or test benches. In order to develop new techniques,
conduct studies, etc., these prototypes are used in order to
understand how these systems work.

One or more wind turbines going down can result in a
considerable loss of money for two reasons: first, for the cost
of replacement, and second, for the energy that cannot be
produced while the wind turbine is stopped, which may hap-
pen in peak energy production seasons. In wind farms,
where repair and maintenance costs are very high, especially
in offshore locations, fault detection and diagnosing tech-
niques are a necessity, since it is essential to stop the
machine as soon as possible. Additionally, to lower costs
associated with downtime and defective products, it is
becoming increasingly important to manage maintenance
activities efficiently.

By comparison to existing systems, we have a prototype
that can detect, supervise, and anticipate failures through the
application of algorithms designed to anticipate and prevent
potential problems using a machine learning methodology.
In this paper, we propose a feature-learning method for
detecting different bearing failures autonomously using
vibration analysis.

In this article, we present the application of an intelligent
algorithm applied to a prototype of a wind turbine for the
supervision and diagnosis of faults. A review of the literature
is given in the next section. Subsequently, the data capture
procedure and data set are discussed. The results of the clas-
sifiers used are then evaluated and compared. Finally, some
relevant conclusions of the study are presented.

2. Working Methodology

There are different methodologies for diagnosing and
monitoring failures in wind turbines due to vibrations in
bearings, obtaining multiple characteristics of a bearing as
a result; therefore, the characteristics extracted by the gen-
eral methods of a bearing do not necessarily correlate with
the extracted fault characteristics of another bearing, follow-
ing the same or different methodology. This study illustrates
how the use of machine learning techniques can allow for
greater accuracy and prediction of possible breakages or
anomalies by using the characteristics extracted from vibra-
tion measurements.

2.1. Machine Learning. For the detection of faults in wind
turbines, machine learning focuses primarily on two tasks,
the first being the detection of anomalies and the second
being the classification of faults. With this technique, it is

possible to detect failures promptly or anticipate them,
allowing for corrective measures to be taken in a very short
time, significantly improving the reliability and security of
the system (Table 1).

In the world of machine learning, there are two types
of methods: supervised and unsupervised. The most com-
mon machine learning use case, by far, is supervised
machine learning [10]. With supervised learning, the
output of your algorithm is already known, while with
unsupervised learning, it is not. To get in, on the way
out, you only need to figure out the process. In most
cases, algorithms are “taught” from training data sets.
Unsupervised learning, on the other hand, is a more com-
plex process, because it relies only on input data and
binary logic that all computer systems use.

To apply any type of learning, the data must first be
classified [11].

Different classification algorithms can be applied to this
problem, where they take the functionality of an object and
identify it by a limited number of categories or classes from
input information received from that object.

As a result, a classifier works in two phases:

(i) To achieve optimal performance, it must be trained,
which means receiving a large amount of sample
data and its correct classification, so as to adjust its
parameters

(ii) When the algorithm has already been trained, it
provides output based on the input data it receives

2.2. Support Vector Machine. An SVM is a machine learning
algorithm based on statistical learning theory. This method
works well for classification and regression, such as in fault
diagnosis, when we use small samples. It is shown that a
linear classifier can separate two simple classes. These two
types of samples are represented by triangles and squares
in Figure 1. Two classes can be separated by a hyperplane
H. In these two classes, the planes H1 and H2 (shown in
dashed lines) are parallel to H and pass through samples that
are closest to H. Margins are calculated by taking the dis-
tance between H1 and H2. In the SVM, linear boundaries
are placed between two distinct classes H1 and H2. The mar-
gin is maximized so the generalization error is the smallest.
Support vectors are often used to measure margins, and they
include the closest points to the margin.

A quadratic function is minimized under linear inequal-
ity constraints by reducing it to convex optimization [12].
Assume we have a training set of samples [(xi, (yi)], where
i = 1 to N and N represents the total number of samples.
In order to find the separation plane with the least generali-
zation error out of each linear separation plane, we need to
determine how to divide the input samples into two classes.
It is possible to divide the samples into two classes: triangu-
lar and square. A triangle class has a yi = −1 label. A square
class has a yi = +1 label. For nonseparable data, slack
variables are not considered (nor P 0). Using the following
optimization problem, you can obtain the hyperplane for f
ðxÞ = 0 from the given data:
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Using the sequential minimum optimization (SMO)
algorithm, the dual problem that results from SVM deriva-
tion can be efficiently solved. SMO breaks down the general
QP problem into QP subproblems.

2.3. K-Nearest Neighbor (KNN). Learning algorithms based
on these principles can help users determine how several
instances within a data set experience similar characteristics
[13]. Learning occurs at the same time that test data is tested,

so that rather than creating a model from learning with
training data, the model is created automatically. Lazy learn-
ing is another name for this algorithm type.

Its operation is very simple, for a given training group of
classified instances T = ½ðx1, y1Þ, ðx2, y2Þ,⋯, ðxN , yNÞ�, where
xi is the vector of characteristics of the unlabeled instance
and yi is the label y1 = c1, c2,⋯, cK , i = 1, 2,⋯,N . Using a
given distance metric, the KNN algorithm finds the k closest
instances to a training sample ðx, yÞ. Nk represents the area
where these k instances are located. As a result, it is possible
to calculate the test sample label x from the decision rules:

y = arg maxcj 〠
xiεNk xð Þ

I yi = cj
� �

, i = 1, 2,⋯,N , j = 1, 2,⋯, K ,

ð3Þ

where I is the indicator function.
According to Figure 2, by analysing what an unclassified

instance’s closest neighbors are, we can extract its tag.
Three basic concepts make up the KNN algorithm: how

many instances were measured, the classification decision
rule, and how many measured instances there were.

3. System Description

In this section is described the industrial environment
within which the system will operate and list each com-
ponent it comprises. It also describes the distribution of
the sensors. The document also discusses the features of
a data acquisition card, which measures signals and
their connections.

Table 1: Advantages and disadvantages of KNN and SVM algorithms.

Algorithm Advantages Limitations

KNN

Easy to implement
Good overfitting

Robustness to noisy data
Can be used for both classification and regression

Great computation
Slow sorting speed

Needs a lot of storage space
The selection of k influences the classification

SVM

High sorting accuracy
Fast sorting speed

Can handle high-dimensional features
Robust to overfitting and noise

Low efficiency for big data
Binary classifier

No physical meaning

class A sample
class B sample

Support Vector

Hyperplane

Margin
2

ǁWǁ

X2

X2

H2

H1

Optimal
Hyperplane
W.X+b=0

Figure 1: Optimal hyperplane for binary classification by SVM.

K=3

CLASS A
CLASS B

Figure 2: KNN diagram with different samples.
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3.1. Prototype. As shown in Figure 3, small wind turbine pro-
totypes are very useful and provide valuable data for diag-
nosing failures in its components. For instance, it provides
information for watching for deterioration and wear in its
parts and also determining the effects that it has [14].
Designed towards this end, the system allows for parts to
be exchanged without any difficulty, without the need to
wait for deterioration to take place, which enables testing
diagnostic techniques without waiting for deterioration.

3.2. Distribution on the Prototype. We measure the vibration
of the generator, gearbox, and bearings. In the case of a gen-
erator, it is recommended that the vibration sensors be
located in the input bearing of the machine, in order to study
the vibrations at the fast shaft coupling. Considering the
multiplier, according to the techniques used for state moni-
toring and the design of the machine, each stage should have
its own sensor, which will allow the analysis of signal prop-
agation between each device, as well as how each part failure
affects vibrations within the machine.

Another interesting feature of the prototype is its slow
axis bearing, which is ideal for measuring. Furthermore,
this element can be changed for another exactly the same
with deteriorated bearings and thus be studied under the
conditions of use in order to study the characteristics of
the signal in normal operation and the degeneration of
the component itself.

The following distribution of 10 accelerometers (Figure 4)
was thus decided, based on the above considerations.

3.3. Data Acquisition Card. Vibrations are measured by
accelerometers. They come with 2-pin MIL-C-5015 NI
connectors ideal for general purpose accelerometers. The
acquisition card PCI-4472B [15] was used, optimized for
vibration measurements, which provides high-precision
frequency-domain measurements through its eight-channel
dynamic signal acquisition (DSA). For accelerometers and
microphones, IEPE-based signal conditioning is integrated
into input channels. Input signals from DC to 45 kHz are
simultaneously digitally digitized across the eight input

Figure 3: Component distribution in the prototype.

Figure 4: Position of the accelerometers in all the systems.
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channels. For very low-frequency AC vibration measure-
ments, the PCI-4472B features a cut-off frequency of just
0.5Hz. Software available from NI is designed for sound
and vibration measurement and analysis. It provides
audio measurements, octave analysis, frequency analysis,
transition analysis, and order tracking. As explored previ-
ously, the acquisition system relies on two PCI-4472B
modules because the prototype has a total of 8 inputs
and ten accelerometers.

3.4. Connection with the Data Acquisition System. National
Instruments recently developed a PCI-type card specifically
designed for measuring vibration by means of accelerome-
ters. This card can be mounted similarly to any other
PCI device. This card contains 8 inputs for accelerometers
and is called the NI PCI-4472B. The connections are
shown in Figure 5.

In Figure 5, you can see that 3 accelerometers are
mounted on the lower card, while the remaining 7 are

Figure 5: Connection of accelerometers to the data acquisition system.

Figure 6: System vibration detection.
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mounted on the upper card. There are three accelerometers
in the multiplier, one in the bearing and two in the first stage
(E1H and E1V), for which the acquisition must be
performed much more slowly than for the rest.

4. Results

We make a comparison between the traditional approaches
and those of artificial intelligence in this section. Tradition-
ally, vibratory motions are measured using spectral analysis.
Figure 6 illustrates the results of applying a classical spectral
analysis. The simulation was performed successfully. In
Figure 6, you can see the output of the 10 accelerometers
around the wind turbine prototype. This prototype can
rotate at 5 different speeds, between zero and 1500 rpm. In
this situation, a moderate speed of 300 rpm has been used.
An average of 5000 samples was obtained for each sensor
analysed, and a sampling frequency of 1 kHz was utilized
for the graphic representation.

Technological advancement is transforming classical
vibration analysis methodologies into more automated and
precise methodologies. Wind turbine failures can be tracked,
prevented, and diagnosed with automatic learning systems.
A correct automatic prediction relies largely on training

the algorithm so that it has feedback and is able to work
autonomously through data analysis and classification after
the algorithm has received feedback. This section outlines
the basic aspects of teaching and training the algorithm to
ensure it has reliable results. We have trained this algorithm
about eight times in total, and we consider that sufficient
feedback for prediction. During training, the 2 states of anal-
ysis were simulated, breakage (Figure 7) and an imbalance.

A final comparison is conducted between the two states for
each of the two classification methods, first K-nearest neigh-
bor (KNN) (Figure 8) and second Support Vector Machines
(SVM) (Figure 9). We divided it into 4 phases to obtain it.
For the first step, the data were obtained via the acquisition
card PCI-4472B, for subsequent processing and filtering. For
the analysis to be stable, it is essential to transform the signal
into something nonrandom.When applyingmachine learning
algorithms to these types of signals, appropriate conditioning
and efficient processing are crucial to extracting patterns from
them. For this method to function correctly, another key
aspect is that the signal’s time variation makes it difficult to
process and to learn from. For the algorithm to function cor-
rectly, this first stage of signal conditioning and filtering is cru-
cial. In this first point, the signal processing should be such
that the algorithm reads invariant characteristics in time.

Figure 7: Broken bearing.
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The faults and conditions introduced are

(i) imbalance

(ii) bearing break failure

To determine the failure threshold or stipulated condi-
tion for each failure or condition, extraction of the charac-
teristics must be completed. Let us examine each of these
phases in more detail. In order to calculate the arithmetic
mean, each of the acquired samples has been summed
together (for each of the stated failure conditions) and
divided by the total number of samples studied. The data
set is then reduced in dimension by conducting a principal
component analysis. This method reduces the number of
variables so as to represent the old ones as accurately as pos-
sible with the smallest number of new variables. Our state is
then understood, as well as what it is doing, helping us to
make future decisions. The standard deviation of each of
the stipulated failure conditions is obtained by using the
results of the two previous phases. The data presented in it
demonstrate variation or dispersion. The standard deviation
of each state has been relatively low, which implies the
majority of points are close to the mean, meaning it should
work correctly.

Both classifiers use these three stages. In the following
phase, both methodologies of the two algorithms come into
play in order to classify the data. This occurs after data have
been correctly conditioned.

Following this entire process, the algorithm is given
several training rounds, thus enabling self-operation in
the future. The algorithm is ready to work after several
training sessions; it only requires new data. Special analy-
sis and classification of these new data help predict the
process being controlled.

Here is a breakdown of each state. First is the failure
due to an imbalance, both classifiers follow more or less
the same pattern, but in this case, in the SVM algorithm,
the results are a little out of date with respect to their
feedback, due to the limits used for this case. Finally,
the failure is found due to the breakage of the bearing
race; both algorithms no longer behave in the same way.
The data analysed for the KNN are more grouped than
the SVM; this is due to the different ways of classifying
and analysing the data, because they do not follow a
certain pattern.

In addition, both algorithms have excellent accuracy and
similarity to the real and predicted output for either of the
proposed failure conditions. It is observed that the results
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Figure 8: Real output vs. predicted output K-nearest neighbor algorithm.
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Figure 9: Real output vs. predicted output Support Vector Machine (SVM) algorithm.
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of the two classifiers are similar and do not differ much from
one another.

For example, let us focus on the imbalance variable. In
96% of cases, this variable is correctly classified, while in
4% cases, it is incorrectly classified. Specifically, over 90%
of true positives were detected, with less than 10% false pos-
itives. Support Vector Machines (SVM) yielded a 95% suc-
cess rate, while KNN reached 94%. As a result, both the
KNN and SVM learning algorithms are thought to have a
lot of similarities with our wind turbine prototype, allowing
us to accurately predict when the turbine will fail.

5. Conclusions

Machine learning is improving the accessibility and reliabil-
ity of wind turbine fault detection, monitoring, and diagno-
sis. Data acquisition and classification are vital to the success
and proper functioning of artificial intelligence. As a result
of the analysis of vibrations and the use of AI techniques,
this document examines several approaches to diagnosis
and prevention of failures in wind turbine bearings. From
a theoretical and a practical perspective, we have summa-
rized the fault diagnosis for bearings based on the KNN
and SVMmodels. Both of these models feature high process-
ing speeds, robustness, and very high precision, which are
advantages especially for this kind of study. Traditional
methods, such as spectral analysis, are being displaced by
their advantages as well as their ease of classification and
prediction. This methodology has been shown to be highly
successful in predicting stipulated failure conditions, allow-
ing it to be applied to other mechanical components of the
prototype, with the aim of preventing or anticipating possi-
ble wind turbine breakdowns. A prototype implementation
simulates typical wind turbine faults by replacing worn-out
parts with other defective or worn ones. New methods of
fault diagnosis and supervision can be evaluated, developed,
and validated with these study possibilities. It is therefore
very helpful to use prototypes of wind turbines in order to
test designed diagnostic algorithms, in the phase before their
installation in high-power wind turbines, to reduce costs and
time, and to make necessary verifications, adjustments, and
corrections, thus increasing their accuracy and reliability.

Data Availability

No data were used to support this study.
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