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Continuous power consumption from standard fuel resources is responsible for producing large-scale environmental greenhouse
gases. Production of biodiesel fuels from the vegetable oils can be considered an alternative source. Effect of greenhouse gases can
also be diminished. The production of biodiesel is done by a chemical process namely transesterification and usually maximized
by using the Response Surface Methodology (RSM) tool. This paper presents a new approach to optimize the production of
biodiesel by introducing a new variant of recently published metaheuristic Harris Hawk Optimization (HHO). The developed
variant is based on the replacement of random numbers of normal distribution at the initialization phase by the random
numbers generated from the Laplacian distribution. The proposed variant is named as the Laplacian Harris Hawk
Optimization (LHHO) algorithm. The contribution of this paper is in twofold: firstly the performance of the proposed
algorithm is verified over a well-known set of benchmark functions, and then, we applied the LHHO to maximize biodiesel
production. Comparison of LHHO is carried out with five other recent metaheuristic algorithms. An optimization routine is
formulated in the form of a single-objective function with a temperature, methanol to oil ratio, and catalyst concentration as
the optimization variables. These parameters are optimized to maximize the production of biodiesel. The results obtained using
the proposed LHHO show significant improvement as compared to other algorithms.

1. Introduction

Global warming is a critical issue nowadays with a recog-
nized negative impact on the environment [1, 2]. The
issue persists with the growing pollution emitted by indus-
tries utilizing fossil fuels. Depletion of fossil fuels and
increasing cost of fuels are other issues related to human
being as well. To overcome these problems, research is
ongoing to search for alternative environmentally friendly
fuels or those with less emissions and suitable for internal
combustion engines of automobiles. A separate benefit of
renewable energy sources is that, besides being sustainable,
such sources offer the benefit of not contributing to green-

house gas (GHG) emissions. Therefore, such energy
sources are often referred to as clean energy forms. Clean
Air Act Standards (CAAS) [3, 4] and Renewable Fuel
Standard (RFS) [5] mandate the two aspects that play a
major role in developing renewable fuels from alternative
resources. These nonconventional resources have an
advantage of unlimited availability and environmental
acceptability. In present years, the production of large
amount of biodiesel fuel is highly prioritized. In compari-
son to other fuels, biodiesel is advantageous to the envi-
ronment because it does not produce any pollution.

The method of transesterification is a chemical reaction
used for biodiesel production [6, 7]. The chemical process
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is shown in Figure 1. A simple flowchart of transesterifica-
tion process in industries is represented in Figure 2. In this
process, an organic group of esters is substituted from an
organic group of alcohol. Transesterification is a three-step
process in which triglycerides are first converted into diglyc-
erides. Then, as a second step, diglycerides are converted
into monoglycerides. In the final step, monoglycerides are
converted into glycerol [8]. To convert one mole of triglycer-
ide into diglycerides, three moles of alcohol are needed.
However, to drive the process in a forward direction, a
higher number of alcohols are needed [9]. By using analo-
gous alkaline catalysts, the transesterification process is cat-
alyzed because in less reaction time, high amount of alkyl
ester is produced in this process.

Operating conditions like the reaction temperature, oil/
methanol ratio, and quantity of catalyst along with tempera-
ture heat remedy used in nature domestic rock, etc. affect the
catalyst performance majorly [10]. There are numerous sur-
veys of the alcoholysis of triglycerides using analogous cata-
lysts [11–15]. At temperature of 40 to 65°C, analogous
catalysts can easily achieve high conversions in less than an
hour of reaction. When used safely for the development of
biodiesel, for numerous industrial applications, heteroge-
neous catalysts can be very effective [16, 17]. When a unique
ester is rereacted with liquor in the transesterification pro-
cess, that is known as alcoholysis as shown in Figure 1. Many
parameters are incorporated having impact on transesterifi-
cation such as temperature, vegetable oil, and type of cata-
lyst. Fungal lipases are used as enzymes which are water
soluble and catalyze hydrolysis of long-chain triglycerides.
They are used to enhance the production of biodiesel
because these enzymes increase the speed of reaction time.
Mostly four forms of catalysts are included in the biodiesel
synthesis. These are free lipases, immobilized lipases, whole
cell, and solid enzymatic preparation/fermented solids
(SEP) [18, 19]. There are four important parameters by
using fungal lipases in biodiesel productions which are as
follows:

(1) Feedstocks

(2) Types of alcohol and alcohol to oil motor ratio

(3) Glycerol effect

(4) Water content

There is lot to be done to maximize biodiesel production
while determining significant conditional parameters for
chemical reaction; for that, we are using an optimization
technique. Over the years, optimization methods have been
used for many problems in the planning, operation, and
control of power systems. In this work, a modified version
of the Harris Hawk Optimization (HHO) algorithm, namely,
Laplacian Harris Hawk Optimization (LHHO), is utilized to
find out the optimized values of decision parameters for
maximization of biodiesel production. The Harris Hawk
Optimization is proposed by Heidari et al. recently and pro-
vides better efficiency. There are two phases of this algo-
rithm, namely, exploration and exploitation phase.

This study presents a comparison between HHO and
other well-known optimization methods. The major reasons
for choosing HHO were its fast convergence rate and the
optimality of the 94 outcomes.

With this outset, the paper has contributions in twofold:
the first is to propose an efficient variant based on Laplacian
probability distribution-based random numbers that are
implemented in the initialization phase and verify the perfor-
mance of the proposed algorithm over conventional 23 mini-
mization problems. The second is to utilize the proposed
variant to maximize the production of biodiesel. The
research objectives proposed for this work are as follows:

(i) To develop a variant of the recently published algo-
rithm HHO on the basis of replacement of the ran-
dom numbers of the initialization phase to
Laplacian numbers

(ii) To evaluate the impact of this modification with the
application of the proposed variant on conventional
benchmark functions and their evaluations on cer-
tain defined procedure of standard optimization

(iii) To apply a variant on the biodiesel maximization
problem and evaluate the performance of the vari-
ant in previously reported approaches

1.1. Literature Study. Energy is in high demand from when
the industrialization is started. This is because of the devel-
opment of various machines which always need energy
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Figure 1: Chemical reaction of transesterification.
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Figure 2: General flowchart of the transesterification process.
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[20]. Biogenic resources are very useful in a spark ignition
and compression ignition engine; in the case of spark igni-
tion, ethanol is useful [21], and for compression ignition of
the engine, vegetable oils are very useful [22]. The biodiesel
term is first ever used in the first report of Belgian patent
422877 [23, 24]. The currently development to produce
esters (biodiesel) basically depends on the use of catalytic
reaction which is termed as hydrodeoxygenation from bio-
genic resources [25, 26]. There are many catalysts, and their
responses to chemistry are reviewed in [27, 28]. There are
many catalysts such as enzymatic catalysts [7, 29, 30], whole
cell catalyst [19], ionic liquids [31], and dolomite [16]. The
main objective in [16] is to maximize the biodiesel produc-
tion by using several parameters in the transesterification
of ethanol with soybean oil. Several parameters included
are catalyst concentration, vegetable oil molar ratio, and
temperature. These all three parameters affect the transester-
ification process.

Experimental results are available in literature. Hence,
for analytical studies, we have taken these results, where a
heterogeneous catalyst dolomite is used for the transesterifi-
cation process [16, 32]. For biodiesel production, this cata-
lyst is ecologically suitable and it has low cost and high
basicity.

More recently, a tsunami of applications of metaheuristic
algorithms in real-world problems are observed. Some of
good examples of these approaches are in every domain such
as computer science in evolutionary data clustering [33],
protein structure prediction [34, 35], and Model Order
Reduction (MOR) [36]. An approach based on grey wolf
optimizer and support vector machine has been reported
in prediction of ambient air quality [37]. These applications
are powerful witnesses of the applicability of the contempo-
rary metaheuristics for solving difficult problems.

1.2. Research Gap and Motivation. As the fuel utility in an
optimal manner is the key issue these days, being an alterna-
tive to the fossil fuel, production of biodiesel is the require-
ment of the present scenario. Though the chemical
reaction known as transesterification is used to produce bio-
diesel, there are limitations to determine optimal decision
parameters to maximize biodiesel as it requires manual
experiments each time for biodiesel production. So, there is
lot to be done to maximize biodiesel production while deter-
mining significant conditional parameters for chemical reac-
tion. To address this gap, a different optimization approach
using the modified version of the Harris Hawk Optimization
(HHO) algorithm, namely, Laplacian Harris Hawk Optimi-
zation (LHHO), is utilized in this paper to find out the opti-
mized values of decision parameters for maximization of
biodiesel production.

The remaining paper is organized as follows: Section 2
represents the problem formulation for biodiesel produc-
tion. Section 3 depicts this problem as an optimization
problem. Section 4 exhibits the conceptual description of
the original as well as proposed method of optimization.
Section 5 shows the results and analysis of over 23 bench-
mark functions and biodiesel problem. Section 6 repre-
sents conclusions.

2. Problem Formulation

As per [32], the optimization problem of biodiesel is
designed as a nonlinear optimization problem. In this prob-
lem, there are three decision variables which are the reaction
temperature, the concentration of catalyst, and the metha-
nol/oil molar ratio as described in Table 1. In this table,
independent variables are depicted in the first column which
are used in the optimization process, and the second column
demonstrates their lower bounds. The third and fourth col-
umns depict the average bound and upper bound. A
second-order polynomial regression equation is produced
by three independent variables, and one response variable
is modelled as a function of independent variables to yield
methyl ester as the biodiesel fuel. The equation can be
defined as [32]

Xme = bo +〠
t=1

btxt +〠
t=1

bttx
2
t + 〠

t≠u=1
btuxt , ð1Þ

where Xme shows the yield of methyl ester, bo is the con-
stant, bt is the linear coefficients, btt is the quadratic coeffi-
cients, and btu is the iterative coefficients.

There are three main parameters with amajor effect on the
efficiency of biodiesel production. These parameters are,
namely, temperature (xa), methanol to oil ratio (xb), and con-
centration of catalyst (xc). The regression equation to form
methyl ester from three independent variables is defined as

Xme %ð Þ = 37:45 + 0:42xa + 4:37xb − 0:16x22 + 24:26xc
− 1:53xc2 + 0:001xaxb − 0:24xaxc − 0:44x2x3:

ð2Þ

3. Optimization of Biodiesel Production

A proposed nature-inspired algorithm named as the Lapla-
cian Harris Hawk Optimization (LHHO) is used in the opti-
mization of biodiesel production instead of the well-known
transesterification process. Three independent variables are
optimized by this algorithm such that the biodiesel produc-
tion is maximized. The objective function which is used in
this algorithm is shown as

max f xaxbxcð Þ = 37:45 + 0:42xa + 4:37xb − 0:16x22 + 24:26xc
− 1:53x2c + 0:001xaxb − 0:24xaxc − 0:44x2x3,

ð3Þ

Table 1: For biodiesel production range and level coding of design
variable.

Independent variables
Lower
bound

Average
bound

Upper
bound

Temperature (xa) 55 60 65

Methanol/oil molar ratio (xb) 6 : 1 10.5 : 1 15 : 1

Concentration of catalyst (xc) 0.6 1.3 2.0
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and the constraints are

55 ≤ xa ≤ 65, ð4Þ

6 ≤ xb ≤ 15, ð5Þ

0:6 ≤ xc ≤ 2:0: ð6Þ

4. Method of Optimization: Harris Hawk
Optimization (HHO)

The HHO algorithm is proposed by Heidari et al. [38] which
is a nature-inspired algorithm. Harris hawks’ cooperative
behaviour, surprise pounce, and pursuing technique served
as inspiration for this algorithm. Two phases are demon-
strated in this algorithm in Figure 3, which are exploration
and exploitation phases. Some recent applications of HHO
and its variant in estimating solar panel parameters can be
seen in References.

4.1. Exploration Phase. This section explains the explora-
tion mechanism. Generally, Harris hawks have far-sighted
eyes, by that, they detect and spoor the prey. But nor-
mally, it is very tough to see prey easily. For that, hawks
hold back, observe, and monitor after that attack on the
prey. Here, in this algorithm, candidate solutions are Har-
ris hawks, and the optimal solution is considered in each

step near to the optimum position. The mathematical rep-
resentation of the exploration phase is shown as

Z t + 1ð Þ =

Zrand pð Þ − r1,
Zrand pð Þ − 2r2Z pð Þj j, h ≥ 0:5,

Z pð Þ − Z pð Þð Þ,
r3 lb + r4 ub − lbð Þð Þ, h < 0:5,

ð7Þ

where p is the upcoming iteration, Zðt + 1Þ is the posi-
tion of hawks, and Zrabbit is the position of the rabbit. The
present position of hawks is Zp, and r1, r2, r3, r4, and h
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are the random numbers in the range of 0 to 1. The aver-
age position of hawks is described as

Zm pð Þ = 1
S
〠
p=1

Zi pð Þ, ð8Þ

where ZiðpÞ is the location of each hawk in iteration p and
the total number of hawks is denoted by S.

4.2. Exploration to Exploitation Transition. On the basis of
prey’s escaping energy working, the exploratory phase can
be converted to the exploitative phase and that can switch
between varieties of exploitative behaviour. The energy of
prey decreases significantly during the fleeing behaviour.
To demonstrate this, the energy of prey is calculated as
follows:

∈ = 2∈O 1 − p
T

� �
, ð9Þ

where ∈ indicates the prey’s escaping energy, while the
preliminary condition of energy is shown by ∈O and the
maximum number of iterations are denoted as T .

4.3. Exploitation Phase. This section described the surprise
methods to attack on the prey in actual situations. In the
exploration phase, prey tries to run away from the perilous
location. Hence, this part shows the various chasing tech-
niques of prey in an actual scenario. There are four methods
of the exploitation phase as follows:

(1) Soft besiege

(2) Hard besiege

(3) Soft besiege with progressive rapid dives

(4) Hard besiege with progressive rapid dives

4.4. Laplacian Harris Hawk Optimization (LHHO). In this
section, we propose a new variant of HHO that is known
as the Laplacian Harris Hawk Optimizer (LHHO). In
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Table 2: Results of conventional benchmark functions (F1-11).

ALO [40] GWO [41] HHO [38] SCA [42] WOA [43] LHHO

F1

Min 2:10E − 09 1:00E − 61 1:05E − 110 2:26E − 18 6:80E − 89 1:07E − 115
Max 2:08E − 08 6:84E − 56 1:53E − 98 2:24E − 11 1:47E − 76 1:65E − 92
Mean 8:28E − 09 4:46E − 57 7:03E − 100 1:10E − 12 5:22E − 78 5:89E − 94
SD 4:46E − 09 1:50E − 56 2:90E − 99 4:10E − 12 2:67E − 77 3:01E − 93

F2

Min 1:86E − 05 4:18E − 35 4:92E − 61 8:20E − 13 1:97E − 59 3:92E − 60
Max 7:10E + 00 1:80E − 31 1:30E − 48 1:45E − 08 3:98E − 52 2:22E − 49
Mean 7:40E − 01 1:32E − 32 5:71E − 50 1:76E − 09 1:69E − 53 9:01E − 51
SD 1:54E + 00 3:48E − 32 2:47E − 49 3:29E − 09 7:24E − 53 4:06E − 50

F3

Min 4:75E − 05 3:79E − 31 4:14E − 104 5:65E − 10 8:08E − 01 5:67E − 101
Max 4:28E − 01 1:75E − 23 4:17E − 82 2:75E − 02 1:42E + 03 1:31E − 84
Mean 5:81E − 02 9:15E − 25 1:39E − 83 1:74E − 03 2:51E + 02 4:71E − 86
SD 1:02E − 01 3:28E − 24 7:62E − 83 6:31E − 03 3:44E + 02 2:38E − 85

F4

Min 1:32E − 04 8:58E − 21 4:71E − 58 1:03E − 06 1:01E − 04 5:96E − 58
Max 6:77E − 02 2:47E − 17 6:59E − 48 1:79E − 03 5:83E + 01 7:65E − 47
Mean 7:06E − 03 2:64E − 18 2:89E − 49 3:15E − 04 5:14E + 00 2:61E − 48
SD 1:58E − 02 4:97E − 18 1:24E − 48 4:21E − 04 1:24E + 01 1:40E − 47

F5

Min 1:66E − 03 5:94E + 00 1:20E − 05 6:62E + 00 6:38E + 00 4:10E − 05
Max 2:67E + 03 7:21E + 00 1:65E − 02 8:73E + 00 8:08E + 00 2:24E − 02
Mean 2:07E + 02 6:64E + 00 2:96E − 03 7:56E + 00 7:11E + 00 3:67E − 03
SD 5:67E + 02 4:81E − 01 4:50E − 03 4:91E − 01 4:84E − 01 5:57E − 03

F6

Min 2:34E − 09 1:22E − 06 8:04E − 08 1:83E − 01 1:69E − 04 3:30E − 08
Max 5:94E − 08 7:50E − 02 2:96E − 04 9:21E − 01 1:01E − 01 1:95E − 04
Mean 9:90E − 09 2:50E − 03 6:13E − 05 4:86E − 01 5:28E − 03 3:27E − 05
SD 1:06E − 08 1:37E − 02 8:99E − 05 1:98E − 01 1:86E − 02 4:97E − 05

F7

Min 5:83E − 03 7:66E − 05 1:12E − 05 5:02E − 04 7:79E − 05 9:22E − 06
Max 9:28E − 02 2:25E − 03 7:98E − 04 9:61E − 03 1:73E − 02 7:50E − 04
Mean 2:70E − 02 7:88E − 04 1:71E − 04 3:51E − 03 3:04E − 03 1:55E − 04
SD 1:72E − 02 5:95E − 04 1:80E − 04 2:75E − 03 3:98E − 03 1:45E − 04

F8

Min −3:68E + 03 -3.45E+03 −4:19E + 03 −2:67E + 03 −4:19E + 03 −4:19E + 03
Max −1:93E + 03 −2:07E + 03 −2:59E + 03 −1:91E + 03 −2:10E + 03 −3:48E + 03
Mean −2:38E + 03 −2:69E + 03 −4:06E + 03 −2:19E + 03 −3:22E + 03 −4:17E + 03
SD 4:38E + 02 3:18E + 02 4:00E + 02 1:67E + 02 6:80E + 02 1:30E + 02

F9

Min 1:19E + 01 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00
Max 4:97E + 01 5:40E + 00 0:00E + 00 1:87E + 01 1:92E + 01 0:00E + 00
Mean 2:56E + 01 9:98E − 01 0:00E + 00 9:39E − 01 6:41E − 01 0:00E + 00
SD 9:56E + 00 1:91E + 00 0:00E + 00 3:62E + 00 3:51E + 00 0:00E + 00

F10

Min 2:58E − 05 4:44E − 15 8:88E − 16 2:74E − 10 8:88E − 16 8:88E − 16
Max 2:58E + 00 1:15E − 14 8:88E − 16 3:35E − 01 7:99E − 15 8:88E − 16
Mean 4:58E − 01 7:64E − 15 8:88E − 16 2:06E − 02 3:49E − 15 8:88E − 16
SD 8:15E − 01 1:71E − 15 0:00E + 00 7:77E − 02 2:63E − 15 0:00E + 00
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LHHO, variant random numbers are replaced by Laplacian
numbers. In recent approaches, the reported Laplacian
random number generator is applied by that output of the
function which is a matrix with a mean value of 0 and stan-
dard deviation of 1.

By using normal distribution and Laplace distribution,
random numbers are generated for 1000 iterations as shown
in Figure 4. It can be seen from this figure that the Laplacian
distributed random numbers explore more region of the
search space as compared to normally distributed random
numbers guaranteeing that these random numbers are more
likely to determine new candidate solutions not explored yet.
So, this procedure assures an enhanced diversity of search
space and is less prone to be stagnant at local optima and
will in general move towards the global optima. So, the
improved random numbers using the Laplace distribution
as utilized in [39] can be defined as shown in

R SdA,n
� �

= cumsum 2 × Lap t1ð Þ − 1ð Þ,½
cumsum 2 × Lap t2ð Þ − 1ð Þ,⋯,
cumsum 2 × Lap tmaxð Þ − 1ð Þ:

ð10Þ

The probability density function (PDF) is defined as the
conventional Laplace probability distribution (LPD), and
LPD is denoted by LapðS, TÞ.

f x ; S, Tð Þ = 1
2T exp − x − Sj j

T
,  −∞ < x <∞: ð11Þ

The Laplace distribution function is given as

F xð Þ =
1
2 exp − x − Sj j

T
, x ≤ S,

1 − 1
2 exp − x − Sj j

T
, x ≥ S,

ð12Þ

where S ∈ ð−∞,∞Þ shows the location and T determines the
scale parameters. In between the range of ½0, S�, function f is
increasing, and between the range of ½S,∞�, it is decreasing
with mode x = S.

5. Result and Analysis

In this section, the maximization process is solved by six dif-
ferent recently published algorithms that are Ant Lion Opti-
mizer (ALO) [40], grey wolf optimizer (GWO) [41], Harris
Hawk Optimization (HHO) [38], sine cosine algorithm
(SCA) [42], whale optimization algorithm (WOA) [43],

and Laplacian Harris Hawk Optimization (LHHO). For
application of any metaheuristic algorithm on a real prob-
lem, it requires performance analysis of the algorithm on
some known conventional mathematical functions. This
process is known as benchmarking of the algorithm. The
process is inevitable due to the fact that real problems do
not contain any relevant information about minima. On
the other hand, standard conventional benchmark functions
possess the characteristics that are prior known to the
designer. This information can be in the form of location
of global minima, number of local minima, and shape. To
deal with this, uncertainty exists in real applications; it is
necessary to check the proposed variant on known func-
tions; in other words, prior benchmarking is extremely
important and required. With this outset, in the next section,
the results of benchmarking of LHHO are presented.

5.1. Results on Conventional Benchmark Functions. It is
empirical to state that often modifications are suggested in
algorithms to support real applications. As per no free lunch
theorem, one cannot categorize any particular algorithm for
all real applications [44]. On the other hand, performance of
algorithms is sometimes problem specific.

To test the proposed variant, we choose the bench of 23
standard benchmark functions that are already defined in
HHO [38, 45]. The shapes of these functions are simulated
and given in Figures 5–7 for unimodal, multimodal, and
fixed dimension functions, respectively. The following are
key observations when analyzing the results of applying
LHHO:

(i) Comparing all algorithms, LHHO obtained 12 opti-
mal mean values and 14 optimal standard values
out of 23 standard functions. The comparison of
mean and standard deviation values is presented
in Tables 2 and 3, respectively, for all 23 benchmark
functions. From these tables, it is evident that the
proposed variant shows competitive performance
as compared to contemporary bioinspired
optimizers

(ii) The convergence curves of benchmark functions are
shown in Figure 8. From this figure, it can also be
judged that LHHO shows a superior convergence
property over other algorithms. Functions 3, 7, 8,
9, 10, 11, 12, 17, and 18 are chosen to showcase
the superiority of LHHO over the competitor
algorithms

(iii) To show the efficacy of the proposed modification, a
trajectory curve analysis is also simulated. The

Table 2: Continued.

ALO [40] GWO [41] HHO [38] SCA [42] WOA [43] LHHO

F11

Min 4:43E − 02 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00 0:00E + 00
Max 5:10E − 01 6:65E − 02 0:00E + 00 3:96E − 01 6:67E − 01 0:00E + 00
Mean 1:71E − 01 1:83E − 02 0:00E + 00 5:20E − 02 9:77E − 02 0:00E + 00
SD 1:01E − 01 2:02E − 02 0:00E + 00 8:84E − 02 1:65E − 01 0:00E + 00
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Table 3: Results of conventional benchmark functions (F12-23).

ALO [40] GWO [41] HHO [38] SCA [42] WOA [43] LHHO

F12

Min 2:01E − 09 2:94E − 07 2:55E − 08 4:93E − 02 1:83E − 04 1:29E − 07
Max 7:93E + 00 2:00E − 02 1:31E − 04 2:06E − 01 4:66E − 02 1:19E − 04
Mean 2:12E + 00 3:79E − 03 2:25E − 05 1:04E − 01 8:87E − 03 1:55E − 05
SD 2:09E + 00 7:74E − 03 3:30E − 05 3:87E − 02 1.18E-02 2:41E − 05

F13

Min 2:81E − 09 1:19E − 06 8:51E − 08 1:20E − 01 1:38E − 03 9:28E − 08
Max 2:10E − 02 2:04E − 01 4:56E − 04 5:05E − 01 1:85E − 01 7:18E − 04
Mean 5:40E − 03 1:94E − 02 8:24E − 05 3:02E − 01 4:28E − 02 1:16E − 04
SD 7:28E − 03 5:48E − 02 1:13E − 04 9:13E − 02 4:58E − 02 1:81E − 04

F14

Min 9:98E − 01 9:98E − 01 9:98E − 01 9:98E − 01 9:98E − 01 9:98E − 01
Max 6:90E + 00 1:27E + 01 5:93E + 00 2:98E + 00 1:08E + 01 5:93E + 00
Mean 2:62E + 00 5:46E + 00 1:23E + 00 1:86E + 00 2:83E + 00 1:59E + 00
SD 1:52E + 00 4:73E + 00 9:23E − 01 9:99E − 01 3:33E + 00 1:50E + 00

F15

Min 3:07E − 04 3:08E − 04 3:09E − 04 3:79E − 04 3:08E − 04 3:10E − 04
Max 2:04E − 02 2:04E − 02 1:92E − 03 1:57E − 03 2:24E − 03 1:57E − 03
Mean 2:71E − 03 2:42E − 03 5:03E − 04 9:92E − 04 6:62E − 04 5:30E − 04
SD 5:43E − 03 6:09E − 03 4:26E − 04 3:42E − 04 4:72E − 04 4:10E − 04

F16

Min −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00
Max −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00
Mean −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00 −1:03E + 00
SD 1:48E − 13 1:58E − 08 5:07E − 10 3:62E − 05 3:16E − 10 7:51E − 10

F17

Min 3:98E − 01 3:98E − 01 3:98E − 01 3:98E − 01 3:98E − 01 3:98E − 01
Max 3:98E − 01 4:00E − 01 3:98E − 01 4:07E − 01 3:98E − 01 3:98E − 01
Mean 3:98E − 01 3:98E − 01 3:98E − 01 4:00E − 01 3:98E − 01 3:98E − 01
SD 9:70E − 14 3:19E − 04 1:55E − 05 2:34E − 03 3:74E − 05 2:02E − 05

F18

Min 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00
Max 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00
Mean 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00 3:00E + 00
SD 7:07E − 13 5:18E − 05 9:59E − 07 1:04E − 04 6:83E − 05 1:92E − 06

F19

Min −3:86E + 00 −3:86E + 00 −3:86E + 00 −3:86E + 00 −3:86E + 00 −3:86E + 00
Max −3:86E + 00 −3:85E + 00 −3:85E + 00 −3:85E + 00 −3:84E + 00 −3:86E + 00
Mean −3:86E + 00 −3:86E + 00 −3:86E + 00 −3:85E + 00 −3:86E + 00 −3:86E + 00
SD 6:67E − 12 2:34E − 03 2:94E − 03 2:66E − 03 5:95E − 03 2:11E − 03

F20

Min −3:32E + 00 −3:32E + 00 −3:26E + 00 −3:25E + 00 −3:32E + 00 −3:25E + 00
Max −3:20E + 00 −3:08E + 00 −2:67E + 00 −1:45E + 00 −3:00E + 00 −2:81E + 00
Mean −3:28E + 00 −3:27E + 00 −3:08E + 00 −2:85E + 00 −3:25E + 00 −3:07E + 00
SD 5:85E − 02 7:57E − 02 1:37E − 01 4:04E − 01 9:95E − 02 1:11E − 01

F21

Min −1:02E + 01 −1:02E + 01 −1:01E + 01 −6:38E + 00 −1:02E + 01 −5:06E + 00
Max −2:63E + 00 −5:06E + 00 −5:05E + 00 −3:51E − 01 −8:81E − 01 −5:04E + 00
Mean −5:78E + 00 −9:47E + 00 −5:39E + 00 −2:38E + 00 −7:30E + 00 −5:05E + 00
SD 2:87E + 00 1:75E + 00 1:27E + 00 1:95E + 00 3:23E + 00 3:48E − 03
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trajectory curve for the first variable of the biodiesel
problem is depicted in Figure 9. From the figure, it
can be concluded that the trajectory curve is more
stable for LHHO over the parent algorithm. That
is the indicator of a balanced exploration and
exploitation process. Hence, it can be concluded
that the proposed modification establishes a fair bal-
ance between exploration and exploitation pro-
cesses of HHO

5.2. Results of Biodiesel Process Optimization. In the second
stage of optimization, all algorithms are applied for solving
the maximization process of biodiesel production. For mak-
ing a fair comparison of all algorithms, authors run all the
algorithms autonomously for 30 times with the population

size of 40, and the maximum number of iterations is 500.
All algorithms are initialized in such a manner that three
independent variables xa, xb, and xc are corresponding with
the three-dimensional vector, respectively. Equations (4),
(5), and (6) show the lower bound and upper bound values
of all three parameters.

It is evident from Figure 9 that better convergence rate is
exhibited by LHHO. In Table 4, the values of min, max,
mean, and standard deviation parameters for the methyl
ester yield are presented. Mostly for the maximization pro-
cess of biodiesel, mean values of HHO, WOA, and LHHO
are the same, but standard deviation values of LHHO are
minimum which demonstrates that the maximum number
of data is clustered closely around the mean values for
LHHO. Other algorithms have higher standard values than

Table 3: Continued.

ALO [40] GWO [41] HHO [38] SCA [42] WOA [43] LHHO

F22

Min −1:04E + 01 −1:04E + 01 −1:04E + 01 −7:16E + 00 −1:04E + 01 −5:09E + 00
Max −1:84E + 00 −6:03E + 00 −5:05E + 00 −5:21E − 01 −2:76E + 00 −5:05E + 00
Mean −7:12E + 00 −1:03E + 01 −5:42E + 00 −3:21E + 00 −8:09E + 00 −5:08E + 00
SD 3:44E + 00 7:99E − 01 1:28E + 00 2:03E + 00 2:80E + 00 9:01E − 03

F23

Min −1:05E + 01 −1:05E + 01 −1:04E + 01 −6:59E + 00 −1:05E + 01 −5:13E + 00
Max −2:42E + 00 −5:17E + 00 −5:11E + 00 −9:42E − 01 −1:67E + 00 −5:11E + 00
Mean −7:29E + 00 −1:04E + 01 −5:30E + 00 −3:75E + 00 −5:71E + 00 −5:12E + 00
SD 3:62E + 00 9:79E − 01 9:69E − 01 1:52E + 00 3:34E + 00 4:24E − 03
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Figure 9: Trajectory of LHHO and HHO for biodiesel function.

Table 4: Statistical attributes of objective function values in the maximization process.

ALO [40] GWO [41] HHO [38] SCA [42] WOA [43] LHHO

Min 8:67E + 01 9:66E + 01 9:68E + 01 8:58E + 01 9:68E + 01 9:68E + 01
Max 9:19E + 01 9:68E + 01 9:68E + 01 8:58E + 01 9:68E + 01 9:68E + 01
Mean 8:95E + 01 9:67E + 01 9:68E + 01 8:58E + 01 9:68E + 01 9:68E + 01
SD 1:44E + 00 8:38E − 02 8:65E − 11 0:00E + 00 1:56E − 06 1:79E − 11
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LHHO, so their data are not close to mean values. From this
observation, it is clear that optimization properties of LHHO
are substantially enhanced with the proposed modification.

Statistical significance of this problem is conducted as
per [16, 32]; in accordance with the F-test, LHHO has 95%
of significance level. With the comparison of HHO and
WOA, the value of F is 100.00. With ALO, SCA, and
GWO, this F-value is 118.12, 127.21, and 100.24, respec-
tively, with the comparison of LHHO. The p value is
0:30142E − 10 which is significantly very low for LHHO. p
value shows the marginal significance, representing the level
of appearance probability, of a given event in a statistical
hypothesis test. Table 5 shows the values of all three vari-
ables and the optimum values of the methyl ester yield of
different optimization techniques.

6. Conclusion

Maximization of biodiesel production problem has been
addressed in this paper. The problem contains three inde-
pendent variables: temperature, catalyst, and methanol/oil
ratio that affect the production of biodiesel. To solve this
optimization problem, a new variant of HHO has been pro-
posed. First, the variant is tested over standard benchmark
problems. After the validation of the improved performance,
it is applied on biodiesel production. A fair comparison of
different contemporary optimizers has been carried out on
standard and biodiesel problems. The following conclusions
can be drawn from this work:

(i) A variant based on the Laplacian random number
initialization has been proposed and named as
LHHO. Random numbers with normal probability
had been replaced by Laplacian distribution proba-
bility in the initialization phase. To judge the impli-
cations of this modification, several standard
benchmark functions are solved

(ii) LHHO had been tested over conventional bench-
mark functions. Different statistical results along
with convergence property analysis have been pre-
sented. These analyses revealed that the proposed
variant outperforms the HHO and some of the con-
temporary optimizers

(iii) After benchmarking of the proposed LHHO, a real
application of LHHO in maximization of biodiesel

production has been reported. The regression algo-
rithm depicted relationship between the three vari-
ables: temperature (xa), methanol/vegetable oil
ratio (xb), and catalyst concentration (xc). This rela-
tionship has been successfully optimized by the
LHHO algorithm. The optimal output of biodiesel
obtained by this algorithm is 96.8199% at parameter
values of 65°C temperature, 12.4245 methanol to oil
ratio, and 1.0435% (w/v) catalyst concentration
which is higher than that of other algorithms. From
these results, it can be concluded that LHHO can be
a preferred choice of a biodiesel manufacturer for
obtaining higher profits

(iv) The statistical significance with the F-test showed
the predictability of the model, and the less p values
are advocate the feasibility of the proposed version
in comparison to other algorithms

Development of new variants for optimizing the process
of obtaining biodiesel from nonconventional sources lays in
the future scope of this work. As per the optimization capacity
of LHHO, it will be very interesting to judge the performance
of LHHO on many challenging problems of numerical and
stochastic optimization.
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that will be available on request.
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