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This paper examines the application of the Wiener process as a degradation model. Its appropriateness as a degradation
model is discussed and demonstrated with the aid of Monte Carlo simulations. In particular and for monotonically
degrading systems, this paper demonstrates that the irreversible accumulation of damage can be modelled by the Wiener
maximum process. First passage times of the Wiener and its maximum process are also revealed to coincide. Practical
advantages of assessing system reliability from degradation data are highlighted by applying the Wiener process model to a
real gallium arsenide (GaAs) laser data for telecommunication systems. The real data application results demonstrate that
degradation analysis allows for conclusions about system reliability to be reached earlier without compromising estimation
accuracy—a major practical advantage.

1. Introduction

Assessing reliability of technical systems from failure time
information is increasingly becoming a challenge. New tech-
nologies on the design for reliability continue to be developed.
This has resulted in highly reliable systems that operate for
long with few or no failures, even under accelerated conditions
(Ye and Xie [1]). For such technical systems, collecting suffi-
cient failure time information for reliability assessment is a
costly exercise. Depending on the application, an alternative
approach is to use gathered information on the state of the sys-
tem and its performance while in operation, called degradation
data. Through the use of suitable models and data analysis
methods, registered degradation data can be converted to sys-
tem reliability information which can be utilised for reliability
assessment (Guo and Liao [2]).

The rationale is based on the observation that ageing
failures are linked to an underlying degradation process
(Lehmann [3]; McLinn [4]). For most manufactured systems,
the physical conditions degrade as the system ages, such as
automobile tyre wear. For some systems however, degradation
occurs in system performance such as the light intensity of a

light-emitting diode (ELD) dropping with usage. The physical
or system performance degradation has the interpretation of
damage to the system. It accumulates with time or mission
and ultimately causes failure when the accumulated damage
reaches a failure threshold defined by industrial standards.
The system failure time distribution FTðtÞ = PðT ≤ tÞ and its
parameters are derived from the analysis of degradation data
and the deterioration mechanism. Based on the derived FTðtÞ,
reliability metrics of interest such as mean time to failure
(MTTF) and 100pth percentiles are determined.

Degradation models fall into two broad categories,
namely, general path models and stochastic process models
(Meeker et al. [5]). General path models have a well-
developed theory. They are essentially mixed-effects regres-
sion models and can therefore incorporate covariates and ran-
dom effects in a flexible way (Coble and Hines [6]). Their
limitation is the inability to capture the time-varying behav-
iour of systems and the uncertainty ingrained in the evolution
of system degradation over time. On the other hand, system
degradation is naturally governed by a random mechanism
that is best described by a stochastic process (Limon et al.
[7]; Gorjian et al. [8]). In view of their random nature,
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stochastic process models allow for a natural explanation of
the unexplained randomness of the degradation over time
resulting from unobserved environmental factors. This study
assumes a stochastic process model for system degradation
paths. Its main objective is to investigate the application of
the Wiener process in degradation modeling. With the help
of Monte Carlo simulations, applications where the Wiener
process is a suitable degradation model are demonstrated.

1.1. Overview. The remainder of the paper is organised as
follows. In Section 2, the basis of Wiener process as a degra-
dation model and parameter estimation is reviewed. Known
results are also demonstrated using Monte Carlo simula-
tions. The application of Wiener maximum process for
monotone degradation is the subject of Section 3. In Section
4, a real data application involving GaAs laser degradation
data for telecommunication systems is presented. The study
ends with concluding remarks in Section 5.

2. The Wiener Process as a Degradation Model

The Wiener process fWðtÞ, t ∈ℝ+g is (Kahle and Lehmann
[9]; Wang [10]) the basic model for random accumulation of
degradation over time. Its basis is that degradation incre-
ment in an immeasurably small time interval is the sum of
a large number of small, independent random stress effects
(additive superposition).

Denote by Bn the sum Bn = R1 + R2 +⋯ + Rn where Ri is
independent random variables with finite means EðRiÞ = μi
and finite variances VarðRiÞ = σ2

i . Assume none of the Ri
dominates the rest. Then from the central limit theorem,
the standardisation of Bn denoted by

Zn =
Bn − E Bnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Bnð Þp , ð1Þ

converges under the Lindeberg condition (Beichelt [11]) to a
normal distribution. That is,

lim
n⟶∞

P Zn ≤ xð Þ =Φ xð Þ = 1ffiffiffiffiffiffi
2π

p
ðx
−∞

exp −
u2

2

� �
du, ð2Þ

where ΦðxÞ is the standard normal distribution function.
Thus, the degradation increments ΔWðtÞ =Wðt + ΔtÞ −W
ðtÞ over the interval ðt, t + ΔtÞ are normally distributed.
Accordingly, theWiener process fWðtÞ, t ∈ℝ+g has the follow-
ing properties:

(1) For all 0 ≤ s < t, the degradation increment Wðs, tÞ
=WðtÞ −WðsÞ is normally distributed with mean
0 and variance σ2ðt − sÞ where σ2 is a variance
parameter

(2) For any set of disjoint time intervals, increments
are independent random variables distributed as
described in property 1

(3) For any constant a and t1 < t2, Wðt2Þ −Wðt1Þ= d

Wðt2 + aÞ −Wðt1 + aÞ. That is, WðtÞ has stationary
increments

(4) Wð0Þ = 0 almost surely

System degradation generally has a nonzero mean. An
obvious improvement of the Wiener process model is to
include a drift measure ν reflecting the rate of degradation.
This yields a one dimensional Wiener process with drift

W tð Þ = νt + σB tð Þ, ð3Þ

where σ is the diffusion parameter, and BðtÞ is standard Brow-
nian motion on ð0,∞� capturing the stochastic evolution of
the degradation process. Thus, E½WðtÞ� = νt and Var½WðtÞ�
= σ2t. Consequently, WðtÞ ~Nðνt, σ2tÞ. Unless indicated
otherwise, technical systems having the same design are
assumed to have common drift and variance parameters.

2.1. Wiener Process Model for Nonmonotone Degradation.
An assumption that is often valid in applications is that
physical or performance degradation is a continuous pro-
cess. Accordingly, sample paths of the stochastic process
describing system degradation is ought to be restricted to
continuous functions.

Simulated sample paths of aWiener process for ν = 3:5 and
σ taking values 2:5, 2, 1:5, and 1 are presented in Figure 1. Pro-
cess trajectories in Figure 1 are continuous functions. It is there-
fore not surprising that the Wiener process is the basic model
for a degradation process. Describing system degradation by
theWiener process implies that physical or performance degra-
dation can increase or decrease with time. While this might not
be meaningful inmany degradation applications, it is applicable
to degradation processes whose levels vary bidirectionally over
time when observed closely. Examples include

(1) The gain of a transistor or the extent of propagation
delay (Lu [12])

(2) Cracks healing and CD4 blood cell counts fluctuat-
ing (Singpurwalla [13])

(3) Resistance of the structure alternating with time in
the framework of structural reliability (Dong and
Cui [14])

For monotone degradation processes such as wear-out,
the application of the Wiener process is only as an approxi-
mation, which is especially good if σ2 ≪ ν. In this case, the
trajectories are approximately monotone (see bottom-right
panel of Figure 1) since the tooths in the evolving paths of
the Wiener process are appreciably smoothed out. Alterna-
tively, all factors contributing to nonmonotone behaviour
in a Wiener process model may be attributed to pure noise
and modelled accordingly.

2.2. Lifetime Estimation and Failure-Time Distribution.
Assuming a Wiener process model, system lifetime Ts is
the time fWðtÞ, t ∈ℝ+g crosses the critical degradation level
s for the first time. That is, Ts is the first passage time of the
Wiener process to s. It is given by

Ts = inf t ∈ℝ+ : W tð Þ ≥ sf g: ð4Þ
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It is well known (Chhikara and Folks [15]) that Ts is dis-
tributed as inverse Gaussian with probability density func-
tion (pdf)

f Ts
tð Þ = s

σ
ffiffiffiffiffiffiffiffiffi
2πt3

p exp −
1
2σ2

s − νtð Þ2
t

( )
, t > 0, ν > 0: ð5Þ

A useful reparameterisation of the density in Equation
(5) in terms of the development of statistical properties anal-
ogous to those of the normal distribution (Tweedie [16]) is
obtained by setting

μ = s
ν
; λ = s2

σ2
: ð6Þ

This yields the reparameterised inverse Gaussian distri-
bution Ts ~ IGðμ, λÞ with pdf and cumulative distribution
function (cdf) given as

f Ts
t, μ, λð Þ =

ffiffiffiffiffiffiffiffiffi
λ

2πt3

r
exp −

λ

2μ2
t − μð Þ2
t

( )
, t > 0, ð7Þ

FTs
tð Þ =Φ

ffiffiffi
λ

t

r
t
μ
− 1

� �( )
+ exp 2λ

μ

� �
Φ −

ffiffiffi
λ

t

r
t
μ
+ 1

� �( )
, ð8Þ

respectively, where μ ∈ℝ+ is the mean, and λ ∈ℝ+ is the
shape parameter. The inverse Gaussian distribution is

right-skewed and bounded at zero. Figure 2 illustrates the
probability density function for the inverse Gaussian with
μ = 3:5 and λ taking values 16, 45, and 100.

The result that Ts is inverse Gaussian is demonstrated
using Monte Carlo simulations. In particular, 103 sample
paths were simulated and s is set to 250 to ensure all systems
are tested to failure as illustrated in Figure 3.
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Figure 1: Simulated Wiener process sample paths.
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System degradation is simulated at discrete times. Inter-
polation was done using splines method to ensure that the
resulting Ts values are continuous, and thus unique and
more representative.

Figure 4 shows histograms of the resulting Ts values for
different path parameter combinations. Additionally and
based on the parameterisation in Equation (6), the theoreti-
cal inverse Gaussian pdf is also represented in green. It fol-
lows from Figure 4 that the histograms closely resemble
the theoretical inverse Gaussian pdf. Hence, this illustrates
that first passage times of a Wiener process with drift are
indeed distributed as inverse Gaussian.

2.2.1. Maximum Likelihood Estimation of Path Model
Parameters. Path model parameters are estimated based on
registered degradation data or derived first passage times.
The former applies to highly reliable systems where failure
does not interrupt observation of the degradation process,
that is, s⟶∞. Denote by Wiðt jÞ the ith system degrada-
tion measure at inspection time t j, i = 1,⋯, n; j = 1,⋯,mi.

Then, the degradation increment for the ith system is ΔWij

=Wiðt jÞ −Wiðt j−1Þ. From Equation (3),

ΔWij = νiΔt j + σiΔB tj
À Á

, ð9Þ

where Δt j = t j − t j−1 and ΔBðt jÞ = Bðt jÞ − Bðt j−1Þ with ΔWij

~NðνiΔt j, σ2i Δt jÞ:

Consequently, Δwij are the degradation increments for
system i with pdf f ðΔwij ; vi, σ2i Þ. Since the Wiener process
has normally distributed increments, the likelihood function
for system i is

li νi, σ2i
��Δwij

À Á
=
Ymi

j=1
f i Δwij

��νi, σ2iÀ Á
=
Ymi

j=1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i Δt j
q exp −

1
2σ2i

Δwij − νiΔt j
À Á2

Δt j

" #
:

ð10Þ

The corresponding log-likelihood for the ith system is
given by

L i = ln li νi, σ2i Δwij

��À Á
= −

mi

2 ln 2πð Þ −mi ln σi −
1
2〠

mi

j=1
ln Δt j

−
1
2σ2i

〠
mi

j=1

Δwij − νiΔt j
À Á2

Δt j
:

ð11Þ

Taking partial derivatives of the log-likelihood function
in Equation (11) with respect to νi and σi gives
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Figure 3: Simulated sample paths and threshold choice.
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∂L i

∂νi
= 〠

mi

j=1

Δt j Δwij − νiΔt j
À Á

σ2i Δt j
= 0, ð12Þ

∂L i

∂σi
= −

mi

σi
+ 1
σ3i

〠
mi

j=1

Δwij − νiΔt j
À Á2

Δt j
= 0: ð13Þ

The maximum likelihood estimators (MLE) bνi and bσi
are obtained by simultaneously solving Equations (12) and
(13). They are

bνi = 〠
mi

j=1

Δwij

Δt j
, ð14Þ

bσi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mi

〠
mi

j=1

Δwij − νiΔt j
À Á2

Δt j

vuut : ð15Þ

Wiener process degradation increments Δwij are inde-
pendent. Hence, the log-likelihood function of their full set
is

L ν, σ2
��Δwij

À Á
= 〠

n

i=1
L νi, σ2i

��Δwij

À Á
, ð16Þ

and MLE for model parameters ν and σ are

bνMLE = 〠
n

i=1
〠
mi

j=1

Δwij

Δt j
, ð17Þ

bσMLE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

min
〠
n

i=1
〠
mi

j=1

Δwij − νiΔt j
À Á2

Δt j

vuut : ð18Þ

For most applications however, s is finite as determined
by industrial standards. System lifetimes are the Ts values
for the n sampled systems. Denote by τ1,⋯, τn these first
passage times. Their density is given in Equation (5) for
the underlying Wiener degradation process. The likelihood
function is thus

l ν, σ2
��τ1,⋯, τn

À Á
=
Yn
i=1

s

σ
ffiffiffiffiffiffiffiffiffiffi
2πτ3i

p exp −
1
2σ2

s − νtð Þ2
τi

" #
,

ð19Þ

with log-likelihood function

L = nlns − nlnσ −
n
2 ln 2πð Þ − 3

2〠
n

i=1
ln τi −

1
2σ2 〠

n

i=1

s − ντið Þ2
τi

:

ð20Þ
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Figure 4: Histograms of first passage times and theoretical distributions.

5Modelling and Simulation in Engineering



Maximising the log-likelihood function in Equation (20)
in respect of process parameters ν and σ yields

∂L
∂ν

= 1
σ2

〠
n

i=1
s − ντið Þ = 0, ð21Þ

∂L
∂σ

= −
n
σ
+ 1
σ3

〠
n

i=1

s − ντið Þ2
τi

= 0: ð22Þ

MLE for ν and σ is obtained by simultaneously solving
Equations (21) and (22). They are

bνMLE =
s

1/nð Þ∑n
i=1τi

; bσMLE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1

s − bντið Þ
τi

s
: ð23Þ

Values of bνMLE and bσMLE are obtained from Equation
(23) based on the first passage times from the 103 simulated
degradation paths. The results, together with true path
parameter values, are presented in Table 1.

They show that parameter estimates of the first passage
time distribution in Equation (5) recover path parameters
used in the simulation. This is equally true for parameter
estimates of the transformed IGðμ, λÞ distribution in Equa-
tion (7), and the results of which are presented in Table 2.

Thus, Monte Carlo simulations prove the correctness of
the well-known result that first passage times of a Wiener
process with drift obey inverse Gaussian law.

2.2.2. Interval Estimation of Model Parameters. Maximum
likelihood estimators are point estimates obtained from
sample data. Accordingly, values of bν and bσ are subject to
sampling fluctuations and may or may not be close to the
quantities being estimated. It is therefore important to quan-
tify uncertainty associated with parameter estimates. Confi-

dence intervals are very useful in quantifying uncertainty
in point estimates due to sampling error arising from limited
sample sizes. Exact confidence intervals can be constructed,

if for example, the sampling distribution of bθ = ðbν , bσÞ is
known. Otherwise, and for large samples, approximate con-
fidence intervals are used. MLE is asymptotically normal.
Hence, confidence intervals for θðiÞ, i = 1, 2 are constructed
by the asymptotic normal approximation. Also called Wald
confidence intervals, normal approximation confidence
intervals are based on the Wald statistic:

Zbθ ið Þ
=
bθ ið Þ − θ ið Þbsebθ ið Þ

~N 0, 1ð Þ: ð24Þ

The standard error of bθðiÞ is determined by the second
derivative of the log-likelihood function with respect to θðiÞ
which quantifies the curvature of the log-likelihood function.
That is

bsebθ ið Þ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L ′′ bθ ið Þ ; τ

� �h i−1r
, ð25Þ

and is evaluated at θðiÞ = bθðiÞ where τ is a vector of first passage

times. The quantity−L ′′ðbθðiÞ ; τÞ is the observed information.
When constructing normal approximation confidence inter-

vals however, −L ′′ðbθðiÞ ; τÞ is often replaced by the expected
or Fisher information

I θ ið Þ
� �

= −E L ′′ θ ið Þ ; τ
� �h i

: ð26Þ

The resulting 100ð1 − αÞ% confidence interval for θðiÞ is
given by

bθ ið Þ ± z 1−α/2ð Þ · bsebθ ið Þ
: ð27Þ

Alternatively, the statistic

Z
log bθ ið Þ

� � =
log bθ ið Þ

� �
− log θ ið Þ

� �
bse

log bθ ið Þ

� � ~N 0, 1ð Þ, ð28Þ

is used instead. Observe that log ðbθðiÞÞ is unrestricted in sign.
Hence, Z

log ðbθ ðiÞÞ
is in general closer to a Nð0, 1Þ distribution

than is Zbθ ðiÞ
. Thus, and after transforming by exponentiation,

the confidence interval for θðiÞ is

bθ ið Þ

exp z 1−α/2ð Þ × bsebθ ið Þ
/bθ ið Þ

� � , bθ ið Þ × exp z 1−α/2ð Þ × bsebθ ið Þ
/bθ ið Þ

� �0BB@
1CCA:

ð29Þ

Table 1: True and parameter estimates for IGðν, σÞ.

IG ν, σð Þ
True values ML estimates

ν σ bνMLE bσMLE
3.5 2.5 3.5519 2.4360

3.5 2.0 3.5490 2.0548

3.5 1.5 3.5298 1.5949

3.5 1.0 3.5053 1.0361

Table 2: True and parameter estimates for transformed IGðμ, λÞ.

IG μ, λð Þ
True values ML estimates

μ λ bμMLE bλMLE
σ = 2:5 71.4286 10000 71.6029 10821
σ = 2:0 71.4286 15625 71.4422 15223
σ = 1:5 71.4286 27778 71.6861 25551
σ = 1:0 71.4286 62500 71.4637 58291
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Often in reliability, only a few system failures are observed.
In this case, large sample normal theory is inexact. Rather, like-
lihood ratio confidence bounds method is often preferred. It is
based on likelihood ratio equation:

−2 · ln l θð Þ
l bθ� �

0@ 1A ≥ χ2
α;k, ð30Þ

where lðθÞ is the likelihood function for the unknown param-

eter θ, lðbθÞ is the likelihood function evaluated at bθ, and χ2
α;k is

the chi-squared statistic with probability α and k degrees of

freedom, where k is the number of jointly estimated parame-
ters. A rearrangement of Equations (30) yields

l θð Þ = l bθ� �
· e−χ2

α;k/2, ð31Þ

where terms on the right hand side are known exactly. The
confidence limits for θðiÞ are the minimum and maximum cal-
culated θðiÞ values for which Equation (31) holds.

Contour plots are a useful way of simultaneously
estimating likelihood ratio confidence bounds on the
parameters. Equation (31) has no closed form solution,
hence, a numerical solution is required instead. A crude

μMLEˆ λMLE
ˆ

μMLEˆ λMLE
ˆ

Fr
eq

ue
nc

y

69 70 71 72 73 74
0

200

400

600

800

1000

1200

ν = 3.5 and σ = 2.5

Fr
eq

ue
nc

y

4000 6000 8000 10000 12000 14000 16000 18000
0

500

1000

1500

2000

2500
ν = 3.5 and σ = 2.5

Fr
eq

ue
nc

y

70.5 71.0 71.5 72.0
0

500

1000

1500

ν = 3.5 and σ = 1

Fr
eq

ue
nc

y

40000 60000 80000 100000
0

500

1000

1500

2000

ν = 3.5 and σ = 1

Figure 7: Sampling distributions of bμMLE and bλMLE for n = 100.

Table 3: Expressions of performance measures and their Monte Carlo SE where r is the number of replications.

Performance measure Definition Estimate Monte Carlo SE

Bias E bϕ� �
− ϕ ∑r

i=1bϕ i

r
− ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑r

i=1 bϕ i − ϕ
� �2

r r − 1ð Þ

vuut
EmpSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bϕ� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑r
i=1 bϕ i − ϕ
� �2

r − 1

vuut dEmpSEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r − 1ð Þp

MSE E bϕ − ϕ
� �h i2 ∑r

i=1 bϕ i − ϕ
� �2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑r

i=1 bϕ i − ϕ
� �2

− dMSE
h i2

r r − 1ð Þ

vuut
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approach is holding one parameter constant while iterat-
ing on the other until an acceptable solution is reached.
Figure 5 gives contour plots for first passage times in
Figure 4.

Confidence bounds for μ get narrower with decreasing
volatility. This is expected because low variability results in

smoother sample paths (Figure 3), hence, less variability in
first passage times (Figure 4). The bounds for λ however
get wider with decreasing volatility. This is a result of the
scaling in Equation (6) and can be seen in the peakedness
of the theoretical and empirical densities in Figures 2 and
4, respectively.

Table 4: Performance estimates for measures of interest based on the 104 replications and their Monte Carlo SE in parentheses.

σ = 2:5
Measure Quantity n = 20 n = 100

Bias
μ 0:1866 0:0138ð Þ 0:1758 0:0062ð Þ
λ 1645:18 43:9242ð Þ 84:7259 17:2063ð Þ

EmpSE
μ 1:3767 0:0097ð Þ 0:6196 0:0044ð Þ
λ 4392:42 31:0607ð Þ 1720:63 12:3167ð Þ

σ = 1
Measure Value n = 20 n = 100

Bias
μ 0:0287 0:0054ð Þ 0:0273 0:0024ð Þ
λ 10808:6 267:105ð Þ 1989:22 93:6828ð Þ

EmpSE
μ 0:5437 0:0038ð Þ 0:2424 0:0017ð Þ
λ 26710:5 188:881ð Þ 9368:28 66:247ð Þ
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2.3. Sampling Distributions of First Passage Time Distribution
Parameters. First passage times in Figure 4 are based on
103 simulated sample paths. In practice however, a few
systems are tested for economic reasons. Hence, trajectories
for n = 20 (small sample) and n = 100 (large sample) are

simulated. Values of bμMLE and bλMLE are obtained from
the resulting first passage times. This procedure is repeated
104 times for each n, yielding respective sampling distribu-
tions in Figures 6 and 7.

Sampling distributions for bμMLE are fairly symmetrical

regardless of sample size. Those of bλMLE are right-skewed
for small samples and close to normal for large samples.
Therefore, approximate normal confidence intervals for λ
may be appropriate for large samples whereas for μ, any
sample size may apply.

The performance of bμMLE and bλMLE is also assessed for
different sample sizes and volatility parameters. In particu-
lar, bias and empirical standard error (EmpSE) were
reported together with their Monte Carlo standard errors

(Monte Carlo SE). Bias is the amount by which bϕ = ðbμMLE
, bλMLEÞ exceeds ϕ = ðμ, λÞ on average. Unbiasedness is a
key property in frequentist theory. However, small biases
maybe traded-off for other good properties. The EmpSE esti-
mates the long-run standard deviation of bϕðiÞ for 104 replica-

tions. It is a measure of the precision (efficiency) of the
estimator. Monte Carlo SE provides an estimate of the SE
of the estimated performance measure as a result of using
a finite number of replications (Morris et al. [17]). Another
important measure is mean squared error (MSE), measuring
the accuracy of bϕðiÞ used to estimate ϕðiÞ. It is a function of

bias of bϕðiÞ and its variability.
Expressions of these measures, together with their

Monte Carlo SE, are given in Table 3.
Performance estimates for these measures are reported

in Table 4 for small and large number of sample paths and
for different volatility parameters.

As expected, bias, EmpSE, and their Monte Carlo SEs
decrease as the sample size increases. Additionally, the esti-
mation of μ is better with smaller volatility. This is also
expected since first passage times have more variability for
large σ as can be seen from Figure 1. For λ however, the esti-
mation is worse with smaller volatility. This is intuitive since

a smaller σ leads to higher bλMLE values for fixed s as
explained by the inverse relation in Equation (6). Accord-

ingly, the higher scale of bλMLE values translates to higher
values of performance measures. Estimates of MSE can be
derived from those of bias and variability. Hence, they are
not reported here.
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3. Wiener Maximum Process Model for
Monotone Degradation

System degradation often proceeds in one direction only,
and hence monotone. This irreversible accumulation of
damage can be explained by the Wiener maximum process

W+ tð Þ = sup
0≤u≤t

W uð Þ, u ≥ 0f g, ð32Þ

which, by definition, is nondecreasing in its argument. It has
initial condition W+ð0Þ = 0 since Wð0Þ = 0. Recall that Ts is
the first time fWðtÞ, t ∈ℝ+g passes the failure threshold s.
Since fWðtÞ, t ∈ℝ+g has continuous sample paths, the
occurrence of the event fWðtÞ > sg at time t suggests that
the event fTs ≤ tg has already been realised. That is,

W tð Þ > sf g = Ts ≤ t andW tð Þ > sf g: ð33Þ

For the Wiener maximum process however, fsup0≤u≤t
WðuÞ ≥ sg occurs if fWðtÞ, t ∈ℝ+g crosses s at least once
in the closed interval ½0, t� given that Wð0Þ = 0. That is,

sup
0≤u≤t

W uð Þ ≥ s Wj 0ð Þ = 0
� �

, ð34Þ

if and only if Ts ≤ t. It follows therefore that

sup
0≤u≤t

W uð Þ ≥ sjW 0ð Þ = 0
� �

= Ts ≤ tf g: ð35Þ

Hence, fsup0≤u≤tWðuÞ, u ≥ 0g crosses s at exactly the
same time that the process fWðtÞ, t ∈ℝ+g crosses the same
threshold. That is, the first passage time of the Wiener max-
imum process to s given by

Ts =min u ∈ℝ+ : sup
0≤u≤t

W uð Þ = s
� �

, ð36Þ

coincides with that of fWðtÞ, t ∈ℝ+g to the same failure
threshold as shown in Figure 8.

Figure 9 shows the distribution of first passage times of
both the Wiener and the Wiener maximum process based

on 103 simulated sample paths. The Wiener maximum
process is a more realistic model when it is important that
the degradation process is monotone, as is often the case
in practice. Figure 9 confirms the result that Wiener and
Wiener maximum process first passage times have the
same distribution. This is particularly the case when the
volatility parameter σ is much smaller compared to the
drift parameter ν. Hence, system failure times assuming

Table 5: Wiener degradation path parameter estimates and 95%
confidence intervals.

4000-hour laser degradation data

ν σ

0:00205387 0:0128735
Bootstrap 0:00181624,0:00229997ð Þ 0:01060790,0:0147418ð Þ
Jackknife 0:00177658,0:00233123ð Þ 0:01039790,0:01531860ð Þ

3000-hour laser degradation data

ν σ

0:00207200 0:01292070
Bootstrap 0:00182906,0:00232400ð Þ 0:01068170,0:01478000ð Þ
Jackknife 0:00178687,0:00235713ð Þ 0:01047070,0:01533910ð Þ

2000-hour laser degradation data

ν σ

0:00212343 0:01317980
Bootstrap 0:00186774,0:00239552ð Þ 0:01057440,0:01538360ð Þ
Jackknife 0:00181998,0:00242688ð Þ 0:01031880,0:01600420ð Þ

1000-hour laser degradation data

ν σ

0:00208889 0:0142229
Bootstrap 0:00177494,0:00240877ð Þ 0:0103320,0:01733370ð Þ
Jackknife 0:00171651,0:00246127ð Þ 0:00992490,0:01846310ð Þ
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Figure 11: Inverse Gaussian probability densities of the time to
failure for laser data available after the different test times.
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Figure 10: GaAs laser sample degradation paths.
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a Wiener maximum process are also distributed as inverse
Gaussian with density specified in Equation (5). Thus, the
popularity of the Wiener process stems from the fact that
it is applicable to both nonmonotone and monotone
degradation.

4. Real Data Application

Real data from a degradation test of a gallium arsenide (GaAs)
laser for telecommunications systems is considered in this sec-
tion. The laser uses a built-in feedback circuit to maintain a
constant light output. As it ages, the laser requires more cur-
rent to maintain the constant light output. The first time a
10% increase in current is needed to achieve the constant light
output, the laser is considered to have failed. That is, s = 10.
The data is from an accelerated degradation test involving 15
randomly sampled lasers. The lasers were tested for 4000
hours at an elevated temperature of 80∘C. The elevated tem-
perature was estimated by engineers to accelerate failure by a
factor of approximately 40. Table C.17 in Meeker and Escobar
[18] contains more information about the test. The data are
plotted in Figure 10.

By the end of the test at 4000 hours, three lasers had failed;
at 3374 hours, 3521 hours, and 3781 hours. The laser has a
desired lifetime of at least 200000 hours at the use-level
temperature of 20∘C. This amounts to a corresponding life-
time of 5000 hours at the elevated temperature of 80∘C.
Consequently, the estimation target is the laser’s unreliabil-
ity at 5000 hours, Fð5000Þ. GaAs laser sample degradation
paths in Figure 10 appear to be monotone. Hence, the Wie-
ner maximum process fsup0≤u≤tWðuÞ, u ≥ 0g is a reason-
able model. First passage times of fsup0≤u≤tWðuÞ, u ≥ 0g
to s however coincides with those of the Wiener process
with drift fWðtÞ, t ∈ℝ+g to the same failure threshold as
demonstrated in Figure 8. Hence, the simpler model is
assumed, and path model parameter estimates bθ = ðbνMLE,bσMLEÞ are obtained from Equation (23). The uncertainty

associated with bθðiÞ is quantified using bootstrap and jackknife
methods (Tibshirani and Efron [19]). The former entails ran-
domly drawing 103 samples of size 15 with replacement from

the 15 lasers and estimating bθ . The bootstrap normal approx-

imate 95% confidence interval for bθðiÞ is

Mean bθ ið Þ
� �

± 1:96 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bθ ið Þ

� �r
: ð37Þ

The jackknife sequentially leaves the ith laser out for

i = 1,⋯, 15 and estimates bθ from degradation data on 14

lasers. The approximate ð1 − αÞ% jackknife confidence inter-
val is given by

bθ ið Þ ± t1−α;n−1 × bse jack, ð38Þ

where t1−α;n−1 is the ð1 − αÞth percentile to the t distribution
having n − 1 degrees of freedom, and bse jack is the jackknife
standard error estimate given by

bse jack =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n − 1
n

〠
n

i=1

bθ ið Þ −Mean bθ ið Þ
� �� �2

s
: ð39Þ

Table 5 reports bνMLE and bσMLE from the degradation
analysis of the 4000-hour laser data and their approximate
95% confidence intervals. An important advantage of asses-
sing system reliability from degradation data is that conclu-
sions are reached earlier without compromising estimation
accuracy. Therefore, laser data available after only 3000
hours, 2000 hours, and 1000 hours are also analysed. Results
in Table 5 show that analysis of laser data available after the
different test times yielded comparable path parameter esti-
mates. These shorter tests allow for highly reliable systems to
be released early and corrective action on the unreliable ones
to be done sooner. Figure 11 shows first passage time densities,
i.e., IGðμ, λÞ derived from path parameter estimates in Table 5
using Equation (6). There does not appear to be major differ-
ences between IG densities, particularly for the 4000-hour,
3000-hour, and 1000-hour laser degradation data. This is not
a surprising result as has already been reported by Hove [20]
though a general path model was assumed instead.

Estimates of the desired probability of failing by 5000
hours, F̂ð5000Þ from the analysis of laser data available after
the different test times are presented in Table 6.

Lower percentiles, often useful when determining war-
ranty period for example, are also reported. These results
show that 3000-hour and 1000-hour analyses yielded more
comparable estimates to the 4000-hour analysis than the
2000-hour analysis. Path parameter estimates in Table 5
and IGðμ, λÞ densities in Figure 11 reflect this finding. This
is surprising since the 1000-hour analysis utilises less regis-
tered degradation data than the 2000-hour analysis.

Further analyses (not reported here) of laser data avail-
able after 1250 hours, 1500 hours, …, 3750 hours revealed
changes in F̂ð5000Þ values for the different test times. It fol-
lows from the results presented in Figure 12 that shorter
tests from 2750-hour data (in red) yield F̂ð5000Þ values that
are comparable to the 4000-hour data.

Table 6: Estimation of the probability of failing by 5000 hours and lower distribution percentiles.

F̂ 5000ð Þ t̂0:1 t̂0:05 t̂0:01

4000-hour laser degradation data 0:6334 4323 4184 3937
3000-hour laser degradation data 0:6698 4285 4148 3903
2000-hour laser degradation data 0:7605 4178 4043 3803
1000-hour laser degradation data 0:6885 4201 4054 3792
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5. Concluding Remarks

When assessing reliability for highly reliable systems, degrada-
tion tests are an attractive alternative to life tests that record
only failure times. This is especially so when few or no failures
are observed in life tests of practical length, and a close rela-
tionship exists between system failure and the level of degrada-
tion. In this paper, the use of Wiener process for reliability
assessment is reviewed. Monte Carlo simulations are used to
demonstrate known results and to quantify performance mea-
sures. In particular, the well-known result that first passage
times of a Wiener process with drift to a fixed barrier are dis-
tributed as inverse Gaussian is demonstrated. Additionally,
the performance of MLEs of inverse Gaussian parameters
was also assessed. The findings are as follows:

(1) Performance of bμMLE suffers some small upwards
bias. The small bias suggests that if the number of
replications in the simulation study is increased
unboundedly, then, the long run average of allbμMLE will not be far from their true values. Bias
values decrease with both increase in sample size

and decrease in volatility. For bλMLE however, bias
values appear to be large but this is a result of the
scale. They decrease with sample size but increase
with decreasing volatility

(2) Variability of bμMLE and bλMLE is significantly lower
for large sample sizes, as expected. The seemingly

large variability for bλMLE is again a matter of scale,
explaining why it increases with decreasing volatility

First passage times of the Wiener maximum process to a
fixed threshold are shown to coincide with those of theWiener
process with drift. This is in line with the presented theoretical
result and is important for explaining strictly monotone deg-
radation processes. In the main, real data application demon-

strated a considerable reduction in test duration without
compromising estimation quality.

Data Availability

The GaAs laser data used in this study are from Meeker WQ
and Escobar LA. Statistical methods for reliability data, John
Wiley and Sons, 1998 (Page 642), and have been cited.
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