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Most of the real contaminant problems are defined domains that are geometrically complex and can have different boundary
conditions in different areas. Therefore, it is usually difficult to find a solution analytically, so we use the approximate method
to generate an approximate function. One answer to this problem is the finite element approach (FEM). This study presents a
partial differential equation (PDE) simulation system that uses numerical techniques for the distribution of pollutant
concentrations in groundwater in space and time. The movement of the liquid is described by the incompressible steady-state
Navier-Strokes equation, while the transport of pollutants is described by the diffusion-convention equation. The variation
formulation that forms the basis of FEM and MATLAB is discussed along with the selection of the abstract approximation
space and the welfare of the weak formulation. The motivation for this study comes from a specific and considered water body
with the discharge of factory effluents on the ground that ends up reducing the quality of groundwater. First, the fluid flow
equation is solved to obtain velocity and pressure profiles. Steady-state concentration profiles were obtained for various values
of diffusion coefficient (D), baseline, and input concentrations. The results showed that decreasing the diffusion coefficient D
increased the number of pollutants for convective transport and decreased the number of pollutants that diffused from the
entrance. Although groundwater is not completely safe, it is concluded that experimental studies are necessary decision-making
basis for water resource protection, especially in water pollution emergencies.

1. Introduction

In this paper, a model based on a stationary incompressible
2-dimensional Navier-Stokes equation for fluid flow and a
2-dimensional convection-diffusion equation for polluting
water transport (one type of pollutant) is then formulated
and the numerical model solved for different boundary
conditions and, finally, simulations to predict the movement
and concentration of the pollutant in regions occupied via of
porous media at different positions and times. The driving
motivation for this work comes from a specific and consid-
ered industrial problem in the transport and dispersion
processes of polluted particles that end up reducing the qual-
ity of groundwater [1]. In the literature, water is a basic

need of life, used domestically in industry, recreation, and
irrigation purposes. Groundwater is found in underground
aquifers and provides approximately 97% of the world’s con-
sumable water [2]. In Uganda, many communities, especially
the rural poor, depend on streams and swamps for supply of
water [3]. In recent years, the emphasis for policymakers and
researchers has shifted from water accessibility to water qual-
ity problems. Environmental pollution problems require
prompt action to prevent the reduction of water quality. The
issue of water quality is an important factor in sustainable
human development [4]. Groundwater is polluted due to
anthropogenic activities on the land, which include the use
of agrochemicals and poor disposal of domestic and industrial
waste. Increasing trends in the use of fertilizers and pesticides
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in agricultural production systems and disposal of industrial
waste are the reasons for contamination of groundwater [4].
A study on risk factors contributing to microbiological
contamination of near subsurface water in Kampala indicated
that water from shallow protected springs was polluted [5].
Pollution level increased in the rainy season due to storm
water runoff and infiltrated into the groundwater [6]. The
impact of pollution on shallow groundwater in Bwaise III
Parish, Kampala [7], showed contamination of groundwater;
in addition, the pollution levels of water resources in Pece
Wetland, Gulu Municipality, indicated that domestic water
sources were contaminated [8]. Modelling fluid flow problems
falls in the branch of applied mathematics called computa-
tional fluid dynamics (CFD), which uses tools from numerical
analysis, fluid dynamics, and computer science. Discretization
techniques which include boundary element, finite difference,
finite volume, and finite element methods have been globally
utilized in solving solute transport and distribution of fluids
[9]. Problems solved by these discretization techniques include
multiphase and single-phase fluid flows in porous medium
[10–12], flow in a thermal labyrinth [13], pollute transport
in the atmosphere [14, 15], pollute transport in rivers [16,
17], and pollute the groundwater [2]. FEM is a numerical anal-
ysis technique which employs the concept of piecewise
“approximation” to approximate partial solutions of differen-
tial equations. It is a powerful discretization tool which can
accurately discretize a domain of any size or shape. The
Navier-Stokes equations are fundamental models in fluid
dynamics [18] that describe motions of fluids in ℝn, n = 2 or
3. These equations solve velocity vector ðuiðx, tÞÞ1 ≤ i ≤ n ∈
ℝn and pressure p ∈ℝ for any position x ∈ℝn and time t
≥ 0, [19]. Many groundwater problems have been modelled
by Darcy’s law [1, 12, 20–22], among others. Henry Darcy
discovered that water flow through a porous medium was
governed by equation (1).

Q =
KA
μ

∇ p − ρgzð Þ
∇l

, ð1Þ

where Q is the total discharge through the medium, K is
the permeability of the medium, A is the cross-sectional area
of the flow,∇ðp − ρgzÞ is the pressure gradient, μ is the viscos-
ity, and ∇l is the length over which pressure drop occurs [21].

In this study, fluid flow is modelled by the Navier-Stokes
equations instead of the usual Darcy’s law because, under
certain assumptions, Darcy’s law is derived from the Navier-
Stokes equations, [23]. The momentum balance (equation
(2)) can be written as

ρ
Dv

Dt
= ∇:τ + ρF + T , ð2Þ

where by: Dv/Dt = ð∂v/∂tÞ + v:∇v is the material time
derivative of a given particle, τ is the stress tensor, F is the
external body force per unit mass, and T is the drag force/unit
volume exerted on the fluid. The momentum balance (equa-
tion (1)) for the flow of water in the saturated zone reduces
to the well-known Darcy’s law under certain conditions [23].

Moreover, Darcy’s law is reliable for values of Reynolds’
number < 1. At very low Reynolds’ number, the circulation
generated can be neglected, but as Reynolds’ number
increases, it becomes important and a noticeable contribution
to the resistance to flow. The fact is that the circulation zone
becomes smaller at even higher Reynolds’ number. Pollutants
generally dissolve and are carried by infiltrating rain water into
unsaturated soil above the water table. Pollutants then enter
the saturated zone and migrate in the direction of groundwa-
ter flow (Figure 1).

2. Materials and Methods

Human health is harmed by suspended particles in water.
Particle transportation and distribution of matter suspended
in water is associated with fluid motion and turbulence. CFD
is the most appropriate modelling approach for studying
particle spatial distribution in a particular domain [9]. These
methods enable complex and abstract mathematical models
or theories to be easily visualized through the use of simula-
tions. In the formulation of groundwater models, errors can
arise from conceptual problems due to excluding relevant or
including irrelevant physical process in the model or using
an inapplicable model for the groundwater solute transport
problem and numerical errors like truncation and round-
off errors and using wrong input data [1]. The CFD model
is determined by the nature of the physical process to be
simulated, the objective of the study, and the available
resources [24]. Equation parameters can easily be adjusted
to observe how these changes will affect the model [25].
Because the mathematical model is the result of coupling
multiple physical fields, which restricts the choice of func-
tion spaces when using the finite element method, an ade-
quate choice of function spaces for pressure and velocity is
required [26]. Mesh generation depends on the complexity
of the geometry of the domain and can either be structured,
block-structured, or unstructured. For example, in a one-
dimensional case, if the computational domain is divided
into N equal subintervals, we generate a structured mesh,
in the case of a complex domain, that requires a fully
unstructured mesh. A good and reliable numerical model
should be able to simulate a transport phenomenon accu-
rately and suppress the instability arising out of discretiza-
tion in the computational domain [27]. Groundwater flow
and solute transport are described by second-order partial
differential equations that can be parabolic, elliptic, or
hyperbolic. This classification is essential because the choice
of a numerical method should be best suited to the nature of
the PDE. For instance, a diffusion-convection process dom-
inated by the convective term approximates a hyperbolic
type of equation, while a diffusion-convection process dom-
inated by the diffuse term approximates a parabolic type of
equation. FEM is a universal discretization tool for partial
differential equations. Its advantage is that it can easily be
defined on a complicated geometry and can improve the
quality of the numerical solution by fine-tuning the model
grid. The mesh need not be uniform; it can be made finer
in areas of the domain where greater accuracy is needed.
Its downside, however, is that the programming of FEM is
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more complicated and needs standard software packages.
The finite difference method (FDM) is simpler and easier
to program, but it is only applicable to a regular domain
[28]. The extract from Konikow and Reilly [28] is an illustra-
tion of the finite difference and finite element methods in
discretizing a domain of a field. The rectangular grid of the
FDM fails to cover the entire domain of the field, while the
triangular grid of the FEM can easily be constructed as
shown in Figure 2.

When using the FDM technique, the domain is divided
into uniform subareas and the PDE’s are then replaced by
approximating functions which are written in terms of finite
subspaces. The time derivative is also approximated by a
finite difference expression obtained using a Taylor series
expansion [23]. When formulating the finite element
method, the variational direct energy balance or weighted
residual approaches can be used. The weighted residual
and variational approaches are the most commonly used
approaches for groundwater models [1]. When using the
variational approach under FEM, the appropriate PDE
together with its boundary conditions and initial conditions
are replaced with a corresponding variational problem. In
this approach, the unknown function uh is approximated
throughout the solution domain as in Equation (3)

uh x, yð Þ = 〠
n−1

i=1
ciϕj x, yð Þ, ð3Þ

where ϕj are suitable bases or shape functions, coeffi-
cients ci are unknowns, and n is the number of nodes.

A finite element Newton method for the solution of
steady-state Navier-Stokes equations for 2-dimensional
incompressible flows was discussed [29]. In this work, a
weak variational formulation of the problem formulation
and an unequal order interpolation for pressure and velocity
were adopted. A Newton method was used for the nonlinear
system of coupled equations written in an incremental form
and the Jacobian linear system was solved using a direct
algorithm. They explained that the Newton iterative method
was a suitable technique because of its efficiency since only a

few iterations were sufficient for convergence to a very accu-
rate steady solution provided the initial guess was not
chosen too far from the solution. They also explained the
use of the incremental form of the Newton iteration, which
fully exploited the quadratic nature of the nonlinearity of
the Navier-Stokes system and thereafter obtained an algo-
rithm which was optimal both in the imposition of the
boundary conditions and with respect to the cancellation
of numerical errors. For solutions at high Reynolds’ num-
bers, the Newton method may fail when the Stokes flow is
too far from the nonlinear solution. They then resorted to
a continuation stepwise manner by computing different
intermediate solutions for smaller values of the Reynolds’
numbers. The Laplace transformation technique has been
commonly used to obtain the solution of the diffusion-
convection equation because of its simplicity compared to
other methods [30]. Other analytical solutions to the
convection-dispersion solute transport equation are dis-
cussed [31]. A groundwater contamination, diffusion, and
spreading model can be solved by Fourier transforms [2].
A similar model could have been done without assuming
that all covering parameters are constant because this is
highly unlikely in reality. For example, soil conductivity,
which measures how fast a fluid can be transported through
the soil, is a highly variable quantity. Other models of pollu-
tion in river type aquatic systems can be found [4]. To pre-
vent groundwater contamination in both shallow and deep
aquifers [32], cut-off walls are often used. Discacciati and
Quarteroni [12] utilized a model that couples the Navier-
Stokes and Darcy equations and modelled the filtration of
incompressible fluids through a porous medium [33]. In this
work, the motion of incompressible fluids was described by
the Navier-Stokes equations while the filtration process
was described by Darcy’s equation. A computational domain
divided into two parts was considered, one for the fluid and
the other for the porous media, and went ahead to discuss
the coupling conditions (Beavers-Joseph-Saffman) including
their mathematical justification via a homogenization the-
ory. Interface conditions were also introduced because of
the multidomain structure of the model. In this regard, a
much better model for pollute transport in a groundwater

Recharge area

Waste disposal site

Water table
Water supply wells
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Figure 1: Schematic diagram illustrating groundwater contamination from a waste site (source: Environment Canada, researchgate.net,
accessed November 4, 2021).
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contaminant problem would require the coupling of the
Navier-Stokes equations with a groundwater flow equation
in the porous media together with a diffusion-convection
equation for pollute transport in the two regions.

2.1. A PDEModel for Groundwater Flow. To achieve the objec-
tives of groundwater flow and pollute transport problem, a
groundwater flow equation based on an incompressible steady
2-dimensional Navier-Stokes equation and a 2-dimensional
convection-diffusion equation describing pollute transport is
constructed. The Navier-Stokes equations are derived on the
basis of the conservation principles of mass (continuity) and
linear momentum (Newton’s second law of motion). The first
law of thermodynamics (energy) is not considered because of
the assumption that heat transfer in groundwater is negligible.
Finally, the boundary conditions both Dirichlet and Neumann
are stated, together with reasonable assumptions. The density
of water is assumed constant, that is, it is not affected by
variations in concentration. The pollute transport equation is
derived based on a Fickian model which assumes that the
waste is transported mainly due to the concentration gradient
and that the dispersive flux occurs in a direction from higher
concentrations towards lower concentrations [34]. In this
work, the PDE model for pollute transport in groundwater
was formulated by first deriving an equation for groundwater
flow using Navier-Stokes equations.

2.2. Derivation of the Navier-Stokes Equation. The flow of
water is described using steady incompressible Navier-Stokes
equations. These equations are derived on the basis of the
conservation principles of mass (continuity) and linear
momentum. Let Ω ∈ℝ2 describe the domain covered by the
flowing water. A fluid particle X (Figure 3) is considered to
be moving through x ∈ℝ2 at time t.

The Lagrangian or material coordinate is X. It is the
observed trajectory of a specific fluid particle as the fluid
flows while x is a Eulerian coordinate because the fluid par-
ticle is observed through a fixed region of interest [35].

Also, let ωo ⊂Ω be a subset of t = 0. Define the function
ϕ : ℝ2 ⟶ℝ2 such that det ð∇xϕðXÞÞ > 0 for all X ∈Ω the
change of the particle’s position is described by equation (4).

ωt = ϕ X, tð Þ: X ∈ ω0f g = ϕ ω0, tf g: ð4Þ

Define u = uðx, tÞ to be a vector field on Ω at time t,
ρðx, tÞ the mass density, ρRðX, tÞ the mass density of the

reference frame �f ðx, tÞ the force density, tðx, t, nÞ the
surface force density also known as traction or contact
forces, and n the outward vector to Ωt . By the conservation
of mass property, the total mass remains constant as shown
in equation (5).ð

ω0

ρR Xð Þdx =
ð
ωt

ρ x, tð Þdx = constant for all t > 0: ð5Þ

Since the total mass remains constant, the rate of change
of mass in ωt is given by

d
dt

ð
ωt

ρ x, tð Þdx = 0: ð6Þ

To simplify the term on the left-hand side of equation
(6), Reynolds’ transport (Theorem 1) leading to equation
(7) was used.

Theorem 1. For an arbitrary single-valued scalar function
ρ = ρðx, tÞ with continuous derivates and an arbitrary control
region ωt with boundary ∂ωt , outward-pointing unit-normal
n, and u the local velocity of the fluid across ∂ωt , the following
integral relation holds:

d
dt

ð
ωt

ρ x, tð Þdx =
ð
ωt

∂ρ x, tð Þ
∂t

dx +
ð
∂wt

ρ x, tð Þ u:nð Þds, ð7Þ

where ds is an element of length on ∂ωt:

Source: Reinstra and Hirschberg [36] and Powers [37].
In simple terms, the rate of change of a quantity, ρ =

ρðx, tÞ, in ωt is a result of the rate at which the quantity
is being produced in ωt plus the net amount that crosses
the boundary ∂ωt Reynolds’ transport theorem is used to
translate the integral conservation laws into differential
conservation laws. This helps in formulation of the basic
conservation laws of fluid dynamics. To simplify calcula-
tions, the boundary integral on the right-hand side of equa-
tion (7) is transformed to the domain integral using Gauss
divergence (Theorem 2).

Theorem 2. Lets ωt a 2-dimensional domain with boundary
∂ωt ds an element of length (arc length) on ∂ωt and associ-
ated unit outward normal vector n with u a vector field on

Well field
Aquifer boundary

(a)

Inactive cell
Active cell

(b)

Element

(c)

Figure 2: Hypothetical application of finite difference (b) and finite element (c) grids to an irregularly bounded aquifer (a) (adopted and
modified from Konikow and Reilly [28]).
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ωt then
Ð
ωt
∇:udx =

Ð
∂wt

u:n ds, source: [36]. Gauss’ divergence
theorem 1.1 shows the relationship between a domain and
surface integral. Applying the Gauss divergence theorem, the
right-hand side of equation (7) can be written asð

∂wt

ρ x, tð Þ u:nð Þds =
ð
ωt

∇: ρ x, tð Þuð Þdx: ð8Þ

Substituting equations (8) into (7) yields equation (9) as

d
dt

ð
ωt

ρ x, tð Þdx =
ð
ωt

∂ρ x, tð Þ
∂t

dx +
ð
ωt

∇: ρ x, tð Þuð Þdx,

=
ð
ωt

∂ρ x, tð Þ
∂t

+∇: ρ x, tð Þuð Þ
� �

dx:
ð9Þ

Applying equation (6) to equation (9),

⇒
ð
ωt

∂ρ x, tð Þ
∂t

+∇: ρ x, tð Þuð Þ
� �

dx = 0: ð10Þ

Since the integral over ωt is arbitrary, equation (10) can be
written as

∂ρ x, tð Þ
∂t

+∇: ρ x, tð Þuð Þ = 0 ð11Þ

Equation (11) is known as the continuity equation.
Applying the incompressibility condition ρðx, tÞ = ρ =
constant to equation (11), the continuity equation now
becomes ∇:u = 0. The conservation of momentum equation
was derived from Newton’s second law of motion. From
�f =ma = ðd/dtÞðÐ

ωt
ρðx, tÞdxÞu = ðd/dtÞÐ

ωt
ρðx, tÞudx, where

�f is the force action on the particle, m is the mass, a is the
acceleration, and u is the velocity of the particle. The total
force �f acting on the subdomain ωt is the sum of the field
force f ðx, tÞ and the surface force tðx, t, nÞ.

By Newton’s second law of motion, ðd/dtÞÐ
ωt
ρudx =Ð

ωt
ρf ðx, tÞdx + Ð ∂wt

tðx, t, nÞ:n ds, where ds is an element of

length on ∂ωt . Considering the action of the body or field
forces f ðx, tÞ and the normal component of the surface
forces tðx, t, nÞ = σðx, tÞ:n, where σðx, tÞ ∈ℝ2×2 is the fluid
stress tensor, the formula is written as

d
dt

ð
ωt

ρ udx =
ð
ωt

ρf x, tð Þdx +
ð
∂wt

σ x, tð Þ:n ds: ð12Þ

Considering the ith component of the vectors uðx, tÞ,
�f ðx, tÞ, and σi,∗ðx, tÞ, where σi,∗ðx, tÞ denotes the ith row
of the matrix σðx, tÞ, equation (12) is rewritten as

d
dt

ð
ωt

ρ uidx =
ð
ωt

ρ f idx +
ð
∂wt

σi,∗:n ds, for i = 1, 2: ð13Þ

Using the divergence theorem, the boundary integral
on the right-hand side of equation (13) is written as

ð
∂wt

σi,∗:n ds =
ð
∂wt

∇:σi,∗ dx: ð14Þ

Moreover, by Theorem 1, the term on the left-hand
side of equation (13) can be written as

d
dt

ð
ωt

ρ uidx =
ð
wt

∂ ρuið Þ
∂t

+∇: ρuiuð Þ
� �

dx,

=
ð
ωt

∂ ρuið Þ
∂t

+ ui:∇: ρuð Þ+∇ui:ρu
� �

dx:
ð15Þ

And by the incompressibility condition, the following
is obtained:

d
dt

ð
ωt

ρ uidx =
ð
wt

∂ ρuið Þ
∂t

+ u:∇ ρuið Þ
� �

dx, ð16Þ

substituting equations (14) and (16) into equation (13),

ð
wt

∂ ρuið Þ
∂t

+ u:∇ ρuið Þ
� �

dx =
ð
ωt

ρf i dx +
ð
∂wt

∇:σi,∗:dx,

⟹

ð
wt

∂ ρuið Þ
∂t

+ u:∇ ρuið Þ − ρf i−∇:σi,∗

� �
dx = 0:

ð17Þ

Since the integral over ωt is arbitrary, equation (17)
becomes

∂ ρuið Þ
∂t

+ u:∇ ρuið Þ − ρf i−∇:σi,∗ = 0, ð18Þ

𝛺

𝛺t𝛷(X, t)

x=X+t𝛷𝜔0
𝜔t

X

Figure 3: Mapping from the Langrangian coordinate to Eulerian coordinate.
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where

∇:σ =

∂σ11
∂x

+
∂σ12
∂y

∂σ21
∂x

+
∂σ22
∂y

0BBB@
1CCCA,

∇u =

∂u1
∂x

+
∂u1
∂y

∂u2
∂x

+
∂u2
∂y

0BBB@
1CCCA:

 

Introducing constitutive relations into equation (18),
σ = −pI + τ and p ∈ℝ, I ∈ℝ2×2; τ ∈ℝ2×2 = λð∇:uÞI + 2μD,
where λ is the volume viscosity, μ is coefficient of shear
viscosity, and we set the deformation tensor D in

D =
1
2

∇u + ∇uð ÞT
� �

, ð19Þ

is the small strain tensor [38]. Substituting for p, D and σ
for ∇:σ in equation (18),

∇:σ = ∇: −pIð +λ ∇:uð ÞI + μ ∇u + ∇uð ÞT
� �

= −∇p + λ + μð Þ∇ ∇:uð Þ + μ∇:∇u,
ð20Þ

where ∇:∇u = ∇2u = Δu is the Laplacian of u. Applying
the incompressibility condition to equation (20),

⟹ λ + μð Þ∇ ∇:uð Þ = 0: ð21Þ

Therefore, equation (21) is obtained as

∇:σ = −∇p + μ∇u: ð22Þ

Substituting equation (22) into equation (18),

⟹
∂ ρuð Þ
∂t

+ u:∇ ρuð Þ − ρf+∇p − μΔu = 0: ð23Þ

Assuming the mass density ρ to be constant, equation
(23) can be written as

∂ uð Þ
∂t

+ u:∇ð Þu = f −
1
ρ
∇p + vΔu, ð24Þ

where v = μ/ρ is the kinetic viscosity.
To make an analysis of the physical problem when the

equation parameters of equation (24) change, scaling of
the Navier-Stokes equation (24) was carried out. Normali-
zation of these scales resulted in the formulation of dimen-
sionless groups such as Reynolds’, Froude’s, Euler’s,
Weber’s, Prandtl’s, and Mach’s numbers which represent
the relative importance of various parts of the Navier-
Stokes equations and are also key in determining the flow
regimes. Scaling also helped to reduce the number of vari-
ables. For instance, the combined effect of both viscosity

and density can be determined by one dimensionless
variable called Reynolds’ number.

2.3. Nondimensionalization of Navier-Stokes Equations. Let

~u = u
U
,~t =

t
T
, ~x =

x
L
, T =

L
U
, ð25Þ

where U , L, and T are characteristics speed, length, and
time, respectively. From expressions in (25), we obtain

∂ uð Þ
∂t

=
∂ U~uð Þ
∂ T~t
� � =

U
T
∂~u
∂~t

=
U
T
fut : ð26Þ

In equation (26), the convective term ðu:∇Þu becomes

u:∇ð Þu = U~u:∇ð ÞU~u = U2~u:∇~u
� �

=U2~u:
∂~u

∂ ~xLð Þ
=U2 ~u

L
:
∂~u
∂x

=
U2

L
~u:∇~Þ~u:ð

ð27Þ

The pressure term becomes

1
ρ
∇p =

1
ρ

∂p
∂x

=
1
ρ

∂p
∂ ~xLð Þ =

1
ρL

∂p
∂~x

=
1
ρL

∂p
∂~x

=
1
ρL

∇~p: ð28Þ

The viscous term vΔu in (29) becomes

vΔu = v
∂2u
∂x2

= v
∂2 U~uð Þ
∂ ~xLð Þ2 =

v

L2
∂2 U~uð Þ
∂~x2

=
vU

L2
∂2 ~uð Þ
∂~x2

=
vU

L2
~Δ~u,

ð29Þ

∇:u = ∇: ~uUð Þ = U∇:u,~ ð30Þ

⟹∇:u = U
∂
∂x

:~u =U
∂

∂ ~xLð Þ :~u =
U
L

∂
∂~x

:~u, ð31Þ

⟹∇:u =
U
L
∇~:~u = 0: ð32Þ

Substituting equations (26)–(30) into equation (24), we
obtain

⟹
U
T
eut + U2

T
~u:∇~Þ~u = f−

1
ρL

∇~p +
vU

L2
~Δ~u:

�
ð33Þ

Also let ~p = ð1/ρU2ÞP, then

∇~p = ∇~ρU2~p = ρU2∇~p: ð34Þ

Introducing a nondimensional source term

~f =
L

U2 f , ð35Þ

and substituting equations (34) and (35) into equation
(33) and further substituting T = L/U and multiplying L/
U2, we obtain
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~ut + ~u:∇~Þ~u = ~f−∇~~p +
1

Re ~Δ~u
:

�
ð36Þ

where Re = LU/v = ρLU/μ is the Reynolds number. It
is a dimensionless ratio of inertial to viscous forces used to
determine the flow regime. Dropping the tilde notation
and assuming steady state, equations (36) and (28) form

−αΔu + u:∇ð Þu+∇p = p: ð37Þ

And ∇:u = 0, where α = 1/Re, equation (36) represents
the dimensionless steady incompressible Navier-Stokes
equations.

Pollute transport is due to the combined effect of diffu-
sion and advection in a fluid. The PDE describing it as
derived from the principle of conservation of mass using
Fick’s law [30]. Underground water flows through the pores
(space between soil particles) in the soil. Some soils are more
compact than others. The ease with which water flows
through the soil depends on the soil porosity denoted by ϵ
∈ ð0, 1Þ such that

ϵ = Total volume of voids in the soil
Total volume of soil

: ð38Þ

2.4. Diffusion-Convection Equation. Consider a porous
domain Ω ∈ℝ2 and ωt ⊂Ωt with Cðx, tÞ denoting the
density or concentration of the pollute in mass per unit area,
Qðx, tÞ denotes the flux, that is, mass per unit length per unit
time crossing the boundary qðx, tÞ the rate at which the pol-
lutant is increasing or reducing in ωt due to the source term.
The total mass of pollute in ωt is

Ð
ωt
ϵCdx and the amount

of pollute that crosses the boundary ∂ωt is
Ð
ωt
Q:n ds:, where

ds is an element of length on ∂ωt and n is a unit outer
normal vector to ds. The pollutant crosses the boundary ∂
ωt in three ways:

(1) Advection: this is due to the bulk flow of water
molecules where pollute particles are carried along
the streamlines. It is given by Qα = Cv (concentration
X velocity)

(2) Molecular diffusion: this is caused by the random
motion and collusions of pollutant particles. This
occurs even when the fluid mass is at rest

(3) Mechanical dispersion: this is due to the velocity
variations caused by the different flow paths that
the groundwater takes

The total increase or decrease of the pollutant in ωt due
to the source terms is given by

Ð
ωt
qdx: By the mass balance

principle, the rate of change of the total mass of the pollutant
in ωt equals the net rate of pollutant mass that flows through
the boundary ∂ωt plus the net rate of increase or decrease of
pollutant mass in ωt ; this is summarized as

local change = advection + diffusion + source: ð39Þ

Thus,

d
dt

ð
ωt

ϵCdx = −
ð
ωt

Q:n ds +
ð
ωt

qdx: ð40Þ

By the divergence theorem, the first term on the right-
hand side of equation (40) can be written

−
ð
ωt

Q:n ds = −
ð
ωt

∇:Qdx, ð41Þ

so that equation (41) becomes

d
dt

ð
ωt

ϵCdx = −
ð
ωt

∇:Qdx +
ð
ωt

qdx: ð42Þ

Applying the Reynolds transport theorem, Gauss diver-
gence theorem, and the incompressibility condition, the
derivative term on the left-hand side of equation (42) is
written as

d
dt

ð
ωt

ϵCð Þdx =
ð
ωt

∂
∂t

ϵCdx +
ð
ωt

∇: ϵCvð Þdx, ð43Þ

which further simplifies toð
ωt

∂
∂t

ϵC + ϵv:∇C+∇:Q − q
� �

dx = 0: ð44Þ

Since ωt is arbitrary, equation (44) implies

ϵ
∂
∂t

ϵC + ϵv:∇C+∇:Q − q = 0: ð45Þ

The contribution to flux from the effect of diffusion
(molecular) and solubility (mechanical dispersion) accord-
ing to Fick’s law:

Qd = −D x, tð Þ∇ ϵCð Þ, ð46Þ

where Dðx, tÞ is the diffusion coefficient. The equation
means that the flux is proportional to the negative gradi-
ent of concentration and the pollution will diffuse from a
region of high to low concentration. The total flux is the
sum of advective, molecular, and mechanical dispersions
[34]. Therefore,

Q =Qα +Qd = −D x, tð Þ∇ ϵCð Þ + Cv, ð47Þ

where vðxÞ is the convection velocity also known as
advection velocity, substituting equation (47) into equation
(45) and assuming the diffusivity Dðx, tÞ is constant, ϵð∂/
∂tÞC + ϵv:∇C = −∇:ð−D∇ðϵCÞ + CvÞ + q, and by the
incompressibility condition ∇:v = 0, we obtain

ϵ
∂
∂t

C + ϵv:∇C = ϵDΔC − v:∇C + q, ð48Þ
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which simplifies to

∂C
∂t

=DΔC − u:∇C + F, ð49Þ

where u = ððϵ + 1Þϵ + 1/ϵÞv is the average velocity vec-
tor of groundwater obtained from solving equation (37)
and F = q/ϵ is the source term. Combining equations
(37) and (49), the complete model equations which are a
set of highly nonlinear partial differential is as follows;

−αΔu + u∇u+∇p = f , inΩ,

∇:u = 0, inΩ,
∂C
∂t

−D∇C + u:∇C = F, inΩT ≔ 0, Tð Þ ×Ω:

ð50Þ

With initial condition Cðx, 0Þ = C0 and boundary con-
ditions prescribed by

u = gD on ∂ΩD − pn + α∇u:n = gN on ∂ΩΝ, ð51Þ

where ∂ΩD and ∂ΩΝ represent the domain boundary
prescribed by Dirichlet and Neumann conditions, respec-
tively, and ∂Ω = ∂ΩD ∪ ∂ΩΝ.

Also, it is expressed as

C = CD on ∂ΩD and
∂C
∂n

= CN on ∂ΩN , ð52Þ

where C0, CD, CN , gD, and gN are known data to be pre-
scribed later. Dirichletian boundary conditions are called
essential because they are imposed explicitly on the solution,
that is, on the test space, while Neumann boundary condi-
tions are called natural because they are implicitly defined
in the variationally weak formulations in which the model
is based on the following assumptions:

(a) It is known a priority regions where groundwater
flows

(b) Groundwater flows at a rate which depends on the
permeability of the soil

(c) No chemical reactions occur during the interaction
of pollutants with water

The existence of solutions to equation (50) is discussed
below.

2.5. Existence of Solutions to the Model Equations. The fol-
lowing definitions are used to describe the functional spaces.

Definition 3. The space of real valued functions that are
square integral on Ω with respect to the Lebesgue measure
dx is denoted by the relationship

L2 Ωð Þ≔ u : Ω⟶ℝ ∣
ð
Ω

u2 xð Þdx
� 	

<∞

 �

, ð53Þ

L2 Ωð Þ2 ≔ u : Ω⟶ℝ2 ∣ ui ϵ L2, i = 1, 2
� 

, ð54Þ

The space L2ðΩÞ2 is equipped with the norm

uk kL2 Ωð Þ2 =
ð
Ω

u xð Þj j2dx
� 	1/2

, ð55Þ

and scalar products in [39]

u, vð ÞL2 Ωð Þ2 =
ð
Ω

u xð Þ:v xð Þdx: ð56Þ

Definition 4. The Sobolev space H1ðΩÞ is denoted by the
expressions in [39]

H1 Ωð Þ≔ υ : Ω⟶ℝ ∣ υ ϵ L2 Ωð Þ,∇υ ϵ L2 Ωð Þ� �2n o
, ð57Þ

H1 Ωð Þ2 ≔ v : Ω⟶ℝ2 ∣ ui ϵH2, i = 1, 2
� 

: ð58Þ

This space is equipped with the scalar product in

u, vð ÞH1 Ωð Þ2 =
ð
Ω

uv+∇vð Þdx, ð59Þ

that induces the norm in [39]

uk kL2 Ωð Þ2 =
ð
Ω

uj j2 + ∇uj j2dx
� 	1/2

: ð60Þ

2.6. Functional Spaces. Let V0, ψ, andW0 be test spaces for
velocity, pressure, and pollute concentration, respectively,
as described below;

V0 ≔ u ϵH1 Ωð Þ2 ∣ u = 0 on ∂ΩD

� 
,

ψ≔ ψ ϵ L2 Ωð Þ� 
and,

W0 ≔ ω ϵH1 Ωð Þ ∣ ω = 0 on ∂ΩD

�  ð61Þ

The velocity solution space Vg and concentration solu-
tion space WC are also described as below:

Vg ≔ u ϵ H1 Ωð Þ2 ∣ u = gD on ∂ΩD

� 
, ð62Þ

WC ≔ ω ϵH1 Ωð Þ2 ∣ ω = CD on ∂ΩD

� 
: ð63Þ

2.7. Weak Formulations. The weak formulations of the
model equations are derived for this purpose from
Theorem 5.

Theorem 5. (Green’s formula) let Ω be an open bounded reg-
ular set of class C2: If v and u are functions of H1ðΩÞ2, then
they satisfy

Ð
Ω
Δuvdx = −

Ð
Ω
∇u : ∇vdx +

Ð
Ω
v∇u:n ds, where

n is the outward unit normal to ∂Ω and [39]
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∇u : ∇v =
∂u1
∂x

∂u1
∂x

� �
+

∂u1
∂y

∂u1
∂y

� �
+

∂u2
∂x

∂u2
∂x

� �
+

∂u2
∂y

∂u2
∂y

� �
= tr ∇u ∇vð ÞT
� �

:

ð64Þ

The weak form of the system equation (52) is as follows.
To find ðu, p, CÞ ϵ ðVg ×Ψ ×WCÞ such that equation

(65) is expressed as

ð
Ω

−αΔuð Þ + u:∇uÞvdx +
ð
Ω

v:∇pdx =
ð
Ω

f :vdx, for all v ϵ V0,ð
Ω

∇:uð Þψdx = 0, for allψ ϵ Ψ,ð
Ω

∂C
∂t

� 	
ωdx −

ð
Ω

DΔCð Þωdx +
ð
Ω

u:∇ð ÞCωdx =
ð
Ω

Fωdx, f or allωϵW0:

ð65Þ

By applying Green’s formula on the viscous and pressure
terms of the momentum balance equation, and on the diffu-
sive term of the convection-diffusion equation, the following
is obtained:ð

Ω

α∇u : ∇v + u:∇ð Þu:v − p∇:v½ �dx −
ð
∂ΩN

gN :vds

=
ð
Ω

f :vdx, for all v ϵV0,

ð
Ω

∂C
∂t

� 	
ω + D∇Cð :∇ω + u:∇ð ÞCω

� �
dx −

ð
∂ΩN

DωCNds

=
ð
Ω

Fωdx, for allω ϵW0:

ð66Þ

In defining the bilinear forms as in expressions

α u, vð Þ: V0 ×V0ð Þ⟶ℝ,

b v, pð Þ: V0 ×Ψð Þ⟶ℝ,

b u, ψð Þ: V0 ×Ψð Þ⟶ℝ,

c C, ωð Þ: W0 ×W0ð Þ⟶ℝ,

e u, C, ωð Þ: V0 ×W0 ×W0ð Þ⟶ℝ,

ð67Þ

by

α u, vð Þ =
ð
Ω

α∇u : ∇vdx, b u, ψð Þ =
ð
Ω

ψ∇:udx,

b v, pð Þ = −
ð
Ω

p∇:vdx, c C, ωð Þ =
ð
Ω

∇C : ∇ωdx,

e u, C, ωð Þ =
ð
Ω

u:∇ð ÞC:ωdx,

ð68Þ

and the trilinear form

d u, u, vð Þ: V0 ×V0 × V0ð Þ⟶ℝ, ð69Þ

by

d u, u, vð Þ =
ð
Ω

u:∇ð Þu:vdx: ð70Þ

Equation (66) is expressed as

α u, vð Þ + d u, u, vð Þ + b v, pð Þ = f , vð Þ + gN , vð Þ, for all vϵV0,
ð71Þ

b u, ψð Þ = 0, for allψ ∈Ψ, ð72Þ

C, ωð Þ + c C, ωð Þ + e u, C, ωð Þ = F, ωð Þ +D ω, CNð Þ, for allω ϵW0:

ð73Þ
The existence and uniqueness of solutions to problems

in equations (71) and (73) are briefly discussed.

2.8. Existence and Uniqueness of Solutions with the Weak
Formulation. The existence and uniqueness of solutions to
the weak formulation (equation (71)) is guaranteed by the
Lax-Milgram theorem [39]. Alternatively, from the weak
formulation (equation (71)), the divergence of free subspace
H1

0ðΩÞ2 when introduced can be given by

H ≔ v ϵ V0∣∇v = 0f g, ð74Þ

and the weak formulation (equation (71)) with the assump-
tion that ðgN , vÞ = 0 can be formulated as follows:

α u, vð Þ + d u, u, vð Þ = f , vð Þ, for all v ∈H: ð75Þ

Lemma 6. Let u be a solution to a problem in equation (75),
the there exists a unique p ∈Ψ such that ðu, pÞ is a solution of
problem (equation (71)) [40]. The existence of the solution u
in Eequation (75) can be established from the continuity
and coercivity arguments which guarantee well-posedness of
the problem [40]. For this purpose, the following lemmas
and theorems are stated.

Lemma 7. The trilinear form d is continuous.

Proof. The proof follows from the Cauchy-Schwarz inequal-
ity, Sobolev embedding theorem, and Holder’s inequality,
from which the following can be written as dðu, v,wÞ ≤ ck
ukHkvkHkWkH [41].

Lemma 8. The trilinear form d has the following properties:

(a) dðu, v, vÞ = 0, for u ∈ V0, v ∈H,

(b) dðu, v,wÞ = −dðu, v,wÞ, for all u ∈ V0, v,w ∈H: [41]

Theorem 9. There exists a weak solution u to the Navier-
Stokes problem (equation (36)) and a constant c > 0 such that

uk kH ≤
c
α

fk kL2: ð76Þ
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Proof. The proof which follows from the Galerkin method
involves choosing a finite dimension subspace V0κ of V0, κ
∈N and writing the solution uκ as a linear combination of
the functions that form a basis for V0κ since the sequence
ðuκÞ is bounded in V0 (result from the Galerkin equations),
applying the results of Lemma 8, Poincare’s inequality, and
the Bolzano Weierstrass theorem, there exists a weakly
convergent subsequence ðuκjÞ such that

uκ j ⟶ u inV0 as k⟶∞: ð77Þ

Using compactness and embedding argument, it can be
concluded that u ∈ V0 is a weak solution to Navier-Stokes
problem (equation (36)) [42].

The uniqueness of the solution u is discussed in
Theorem 10 below.

Theorem 10. There exists a constant c = cðΩÞ > 0, such that
the solution of the Navier-Stokes problem (equation (49)) is
unique, if α2 ≥ ckf kL2. Proof: [42]. Remarks on Theorem 10
imply that the uniqueness of the solution to the Navier-
Stokes Problem (equation (36)) is guaranteed for sufficiently
small data.

To establish the existence and uniqueness of solutions to
the weak formulation (Equation (73)), Galerkin’s method
which involves constructing solutions of certain finite
dimensional approximations to equation (73) and then pass-
ing to limits can be used [43] in which the procedure
involves constructing approximate solutions, deriving
energy estimates for the approximate solutions, and then
convergence of approximate solutions to a solution.

2.9. Numerical Formulations. A numerical model for the
groundwater pollute transport problem is derived by
discretizing the governing PDE’s by the finite element
method (FEM) and in time using the implicit Euler finite
difference method.

2.10. Approximation with Mixed Finite Element Method. The
ability to use a mesh of finite elements to accurately discre-
tize a domain of any size or shape and the possibility of
constructing higher order approximating polynomials for
greater accuracy makes the finite element method a pow-
erful tool in computational fluid dynamics. FEM is a
numerical technique for finding approximate the solutions
uðx, yÞ, pðx, yÞ and Cðx, yÞ by

u x, yð Þ = u0Φ0 x, yð Þ + u1Φ1 x, yð Þ + u2Φ2 x, yð Þ+⋯+ukΦk x, yð Þ,
p x, yð Þ = p0ϕ0 x, yð Þ + p1ϕ1 x, yð Þ + p2ϕ2 x, yð Þ+⋯+pkϕk x, yð Þ,
C x, yð Þ = C0ϕ0 x, yð Þ + C1ϕ1 x, yð Þ + C2ϕ2 x, yð Þ+⋯+Ckϕk x, yð Þ,

ð78Þ

where Φk and ϕk are shape functions. It also uses the
idea that integrals in the weak form (equation (65)) can be
broken up into a sum of integrals over an arbitrary collec-
tion of disjoint subdomains whose union is the original

domain. This implies that the problem can be treated
locally and then assembled to the global system.

Below is an algorithm for the implementation of the
FEM used in the present work.

The discrete weak formulation is now obtained below.
Assume Ω ⊂ℝ2 is polygonal so that it can be tessellated

with a set of triangles. We now define a triangulation.

Definition 11. Let Ω ⊂ℝ2 be polygonal. A triangular mesh
or a triangulation of �Ω is a set ℘h of (nondegenerate) N
simplices ðKiÞ1≤i≤N such that

�Ω = UN
i=1Ki, Ki ∈ ℘h, where

h =max
K∈℘h

hk,
ð79Þ

and hk is the maximum diameter of triangle K [39] since
the spaces H1ðΩÞ2, L2ðΩÞ, and H1ðΩÞ are infinite dimen-
sional; the approximation following finite dimensional
subspace is in

Vh
g ⊂H1 Ωð Þ2, ð80Þ

Ψh ⊂ L2 Ωð Þ, ð81Þ

Wh
c ⊂H1 Ωð Þ, ð82Þ

which depend on the discretization parameter h. The discrete
weak formulation for equation (83) is formulated as follows:

Find ðuh, phChÞ ∈ ðVh
g ×Ψh ×Wh

c Þ,
such that

ð
Ω

α∇uh : ∇vh + uh∇ð Þuhvh − ph½ �dx −
ð
∂ΩN

gNvhdx

=
ð
Ω

f :vhdx for all vh ∈ Vh
0,

ð83Þ

ð
Ω

∂Ch

∂t

� 	
ωh + DVChð ∇ωh + uh∇ð ÞChωh

� �
dx −

ð
∂ΩN

DωhCNds

=
ð
Ω

Fωhdx for allωh ∈W
h
0,

ð84Þ

ð
Ω

∇uhð Þψhdx = 0for allψh ∈Ψ
h, ð85Þ
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Defining bilinear forms

a uh, vhð Þ: Vh
0 ×Vh

0

� �
⟶ℝ,

b uh, phð Þ: Vh
0 ×Ψh

0

� �
⟶ℝ,

b uh, ψhð Þ: Vh
0 ×Ψh

0

� �
⟶ℝ,

c Ch, ωhð Þ: Wh
0 ×Wh

0

� �
⟶ℝ,

e uh, Ch, ωhð Þ: Vh
0 : W

h
0 ×Wh

0

� �
⟶ℝ:

ð86Þ

By the expressions in (87)

a uh, vhð Þ =
ð
Ω

α∇uh : ∇vhdx, c Ch, ωhð Þ =
ð
Ω

D∇Ch : ∇ωhdx

ð87Þ

b uh, phð Þ = −
ð
Ω

ph∇:vhdx, b uh, ψhð Þ =
ð
Ω

ψh∇ : ∇:uhdx,

ð88Þ

e uh, Ch, ωhð Þ =
ð
uh∇ð ÞCh:ωhdx ð89Þ

and the trilinear form

d uh, uh, vhð Þ: Vh
0 × Vh

0 × Vh
0

� �
⟶ℝ, ð90Þ

by

d uh, uh, vhð Þ =
ð
Ω

uh∇ð Þuh:vhdx, ð91Þ

equations (84) can then be expressed in

a uh, vhð Þ + d uh, uh, vhð Þ + b uh, phð Þ = f , vhð Þ + gN, vhð Þ, for all vh ∈Vh
0,

b uh, ψhð Þ = 0, for allψh ∈Ψ
h,

Ch, ωhð Þ + c Ch, ωhð Þ + e ub, Ch, ωhð Þ = F, ωhð Þ + gN , vhð Þ, for allωh ∈W
h
0:

ð92Þ

If fθjgnuj=1 is a set of vector-valued-basis functions, and

fqkg
np
k=1 and flmgncm=1 scaler basis functions that span the

finite dimensional space Vh
0 , ψh and Wh

0 , respectively,
such that

θj
� 

xið Þ =
1, if i = j,

0, if i ≠ j,

(

qkf g xið Þ =
1, if i = k,

0, if i ≠ k,

(

lmf g xið Þ =
1, if i =m,

0, if i ≠m,

(
ð93Þ

then, the discrete velocity ðuhðxÞÞ, pressure ðphðxÞÞ, and
concentration ðChðx, tÞÞ components are written as a linear
combination of their respective basis functions as follows:

uh xð Þ = 〠
nu

j=1
ujθ j xð Þ + 〠

nu+n∂

j=nu+1
ujθj xð Þ, ð94Þ

ph xð Þ = 〠
np

k=1
pkqk xð Þ, ð95Þ

Ch x, tð Þ = 〠
nc

m=1
cm tð Þlm xð Þ + 〠

nc+n∂

m=nc+1
cm tð Þlm xð Þ, ð96Þ

where nu, np, and nc are the number of unknowns for veloc-
ity, pressure, and concentration, respectively, n∂ is the
number of nodal points where velocity or concentration is
known on the boundary ∂Ω, and uj and pk are scalar coeffi-
cients for the velocity and pressure basis functions, respec-
tively, while CmðlÞ is the time-dependent coefficient for the
concentration basis function. Substituting the expansions in
equations (94) and (95) into equations (84), together with vh
= θi and ψh = qk, we obtain equation (97) as

α〠
nu

j=1
uj

ð
Ω

∇θi : ∇θjdx + 〠
nu

j=1
uj

ð
Ω

θi uh:∇ð Þθ jdx

− 〠
np

k=1
pk

ð
Ω

qk∇:θidx

=
ð
Ω

f :θidx −
ð
∂ΩN

gN :θids − α 〠
nu+n∂

j=nu+1
uj

ð
Ω

∇θi

(a) Obtain the weak formation
(b) Discretize the domain in space to obtain the discrete weak formulation
(c) Select shape functions (Galerkin’s method)
(d) Compute element stiffness, mass, convective, div-grad, and load matrices using a local to global transformation system for shape
functions
(e) Assemble the global system by adding all the contributions of the local system
(f) Implement boundary conditions
(g) Solve a global system of equations for the unknowns

Algorithm 1: For implementing FEM
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: ∇θjdx − 〠
nu+n∂

j=nu+1
uj

ð
Ω

θi: uh:∇ð Þθ jdx, ð97Þ

and

−〠
nu

j=1
uj

ð
Ω

qk∇:θjdx = 〠
nu+n∂

j=nu+1
uj

ð
Ω

qk∇:θ jdx: ð98Þ

Then, equations (97) and (98) can be rewritten in

αAu + B uð Þu + YTp = s, Yu = t, ð99Þ

or in block matrix form as in

αA + B uð Þ YT

Y 0

$ %
u

p

& ’
=

s

t

" #
, ð100Þ

where

A = ai,j
� �

, ai,j =
ð
Ω

∇θi : ∇θjdx, ð101Þ

Y = yk,j
h i

, yk,j = −
ð
Ω

qk∇θ jdx, ð102Þ

B uð Þ = b uð Þi,j
h i

, b uð Þi,j =
ð
Ω

θi uh:∇ð Þθjdx, ð103Þ

for i, j = 1,⋯nu and k = 1,⋯, np.
The right-hand vectors are expressed in

s = si½ �, si =
ð
Ω

f :θidx −
ð
∂ΩN

gN :θids

− α 〠
nu+n∂

j=nu+1
uj

ð
Ω

∇θi : ∇θjdx − 〠
nu+nθ

j=nu+1
uj

ð
Ω

θi: uh∇ð Þθjdx,

ð104Þ

t = tk½ �, tk = 〠
nu+n∂

j=nu+1
uj

ð
Ω

qk∇:θjdx: ð105Þ

2.11. Discretization of the Diffusion-Convection Equation.
The diffusion-convection equation is discretized in space
using finite elements and in time using an implicit finite dif-
ference scheme. In this scheme, a system of linear equations
is solved to calculate the values ðCj

k+1Þj∈ℤ as functions of the

previous values ðCj
kÞj∈ℤ at each time step. Substituting the

expansion in equation (96) into equation (84) together with
wh = lr , the following equation (96) is obtained:

〠
nc

m=1

∂C
∂t

� 	ð
Ω

lmlrdx + 〠
nc

m=1
cm

ð
Ω

D∇lm∇lrdx

+ 〠
nc

m=1
Cm

ð
Ω

lr uh∇ð Þlmdx

=
ð
∂ΩN

DCNlrds +
ð
Ω

lr Fdx − 〠
nc+nΩ

m=nc+1

∂Cm

∂t

ð
Ω

lmlrdx

− 〠
nc+nθ

m=nc+1
Cm

ð
Ω

D∇lm∇lm∇lrdx − 〠
nc+nθ

m=nc+1
Cm

ð
Ω

lr uh∇ð Þlmdx:

ð106Þ

Next, discretize in time by substituting for

∂Cm

∂t
=
Ck+1 − Ck

Δt
, ð107Þ

in equation (106), which gives

〠
nc

m=1
Ck+1

ð
Ω

lmlrdx + 〠
nc

m=1
DΔtCm

ð
Ω

∇lm∇lrdx

+ 〠
nc

m=1
ΔtCm

ð
Ω

lr uh∇ð Þlmdx

=
ð
∂ΩN

ΔtDCNlrdx −
ð
Ω

Δtlr Fdx

− 〠
nc+n∂

m=nc+1
Ck+1 − Ckð Þ

ð
Ω

lmlrdx

− 〠
nc+n∂

m=nc+1
DΔtCm

ð
Ω

∇lm∇lrdx

− 〠
nc+n∂

m=nc+1
ΔtCm

ð
Ω

lr uh∇ð Þlmdx + 〠
nc

m=1
Ck

ð
Ω

lmlrdx:

ð108Þ

Equation (108) can be rewritten as shown

EC + DΔtð ÞNC + Δtð ÞG uð ÞC = z, ð109Þ

or in a matrix form as

E + DΔtð ÞN + Δtð ÞG uð Þ½ � C½ � = z½ �, ð110Þ

where in

N = nr ,m
� �

, nr,m =
ð
Ω

∇lm∇lrdx,

G uð Þ = gr,m
� �

, gr,m =
ð
Ω

lr uh∇ð Þlmdx,

E = er,m½ �, er,mer,m =
ð
Ω

lmlrdx,

ð111Þ

for r,m = 1,⋯::, nc
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The right-hand vector in (112) is expressed as

z = zr½ �, zr =
ð
∂ΩN

Δt DCNð Þlrds +
ð
Ω

Δtð Þlr Fdx −

〠
nc+n∂

m=nc+1
Ck+1 − Ckð Þ

ð
Ω

lmlrdx − 〠
nc+n∂

m=nc+1
Δtð ÞCm

ð
Ω

Dð Þ∇lmdx

− 〠
nc+n∂

m=nc+1
Cm

ð
Ω

Δtlr uh∇ð Þlmdx + 〠
nc

m=1
CkÞ
ð
Ω

lmlrdx:

ð112Þ

The Navier-Stokes system of equation (100) is first
solved, and the obtained solution u is utilized to solve the sys-
tem of the diffusion-convection equation (110). A potential
source of instability of solutions to the diffusion-convection
equation is now discussed. Methods that are applied to solve
problems where no convection is present may totally fail
when applied to convection-dominated problems. [44]. For
instance, when the diffusivity coefficient D of the diffusion-
convection equation is very small, the diffusion-convection
equation becomes convective dominated and for such a case,
an artificial diffusive term is added through a process known
as upwinding to obtain stable solutions.

2.12. Streamline Upwind Petrov-Galerkin Method. Solutions
to the convection-diffusion equation in equation (66) may
develop spurious oscillations (if convection dominated)
unless the exact solution happens to be globally smooth
[45]. An in-depth analysis on the deficiencies of the classical
Galerkin approach in obtaining solutions of convection-
dominated transport problems is discussed in [46] The finite
element method requires the addition of and an extra term
that balances the diffusive terms to obtain stable numerical
solutions. A popular and efficient remedy is to augment the
Galerkin finite element method formulation of the diffusion-
convection equation in equation (83) by an extra term that
adds artificial diffusion. This extra term is evaluated over the
interior ofΩ and is a function of the residual in (113)

R Cð Þ = ∂C
∂t

−DΔC + u∇C − F, ð113Þ

of the PDE in

∂c
∂t

−DΔC + u:∇C = F inΩT ≔ 0, Tð Þ ×Ω: ð114Þ

This consistently stabilized method can take the form ofð
Ω

∂Ω
∂t

� 	
wh + D∇Ch∇wh + uh∇ð ÞChwhð Þ

� �
dx

−
ð
∂ΩN

DwhCNds + 〠
nel

e=1

ð
Ωe
R Ch/dtð Þ℘ whð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
stabilization term

=
ð
Ω

Fwhdx,

ð115Þ

where Ωe is the interior of Ω, nel the number of interior
points in Ω, and RðChÞ is the residual of the diffusion-
convection equation (114) and defined in

R Chð Þ = ∂Ch

∂t
−DΔCh + uh:∇Ch − F: ð116Þ

℘ðwhÞis an operator applied to the test function wh and

τ =
�D

uk k2 , ð117Þ

is the stabilization parameter and �D defined as the artificial
diffusion coefficient in equation (117). The choice of

℘ whð Þ = ∂wh

∂t
+ u:∇wh, ð118Þ

in equation (115), describes what is known as the streamline
upwind Petrov-Galerkin (SPUG) finite element method.

The word streamline implies that the stabilization
parameter is selected in such a way that the artificial diffu-
sion term added is in the direction of flow and not perpen-
dicular to it because convective transport occurs along the
streamlines, [40]. The idea of adding diffusion along the flow
lines helps to avoid what is called crosswind diffusion [46].
The development of a general theory for selecting �D
optimally is still an area of research. In equation (115), the
stabilization term contains a parameter τ whose value sig-
nificantly influences the quality of the numerical solution.
An optimal choice of τ for convection-dominated equations
is usually not known because most of the existing procedures
are based on somewhat heuristic procedures, [47]. Detailed
discussions on these stabilization schemes are provided
[24, 44, 46, 47–54].

2.13. Choice of the Finite Element Spaces Vh
0 , Ψh, and Wh

0 .
For stability, the velocity is approximated using piecewise
quadratic functions while the pressure is estimated using
piecewise linear functions [41]. Concentration is also
approximated using piecewise linear functions. The discrete
spaces are defined in

Vh
g ≔ v ∈ Vg ∩ C �Ω

� �
: v ∣ Ki ∈ P2 Kð Þ for allKi ∈ ℘h

� 
,

Wh
C ≔ w ∈WC ∩ C �Ω

� �
: wj jKi ∈ P1 Kð Þ for allKi ∈ ℘h

� 
,
ð119Þ

and in

Vh
0 ≔ v ∈ Vg ∩ C �Ω

� �2: v ∣ Ki ∈ P2 Kð Þ for allKi ∈ ℘h and v = 0 on ∂ΩD

n o
,

Ψh ≔ ψ ∈Ψ ∩ C �Ω
� �

: Ψj jKi ∈ P1 Kð Þ for allKi ∈ ℘h

� 
,

Wh
0 ≔ w ∈Wg ∩ C �Ω

� �
: w ∣ Ki ∈ P1 Kð Þ for allKi ∈ ℘h andw = 0 on ∂ΩD

� 
:

ð120Þ

Approximating polynomials are chosen in such a way
that the velocity is computed at the vertices of the triangle
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and the midpoints of the edges, while pressure and concen-
tration are computed at the triangle vertices only as shown
in Figures 4 and 5. The polynomials are built such that they
are described on one node and vanish with the others. The
quantity of nodes related to a triangular detail is identical
to the quantity of nearby ranges of freedom. Convergence
houses are ruled with the aid of using the steadiness con-
cerns expressed in the ellipticity requirement of the inf-sup
circumstances of Brezzi and Babuska that is a generalization
of the coercivity circumstance implied in the Lax-Milgram
theorem [41]. For the Navier-Stokes equations, one such
preference of a strong and convergent family of finite detail
spaces used for approximating velocity and pressure, which
can be inf-sup stable is the Taylor-Hood detail ðp2, p2Þ used
in this study work, [40, 41].

2.14. Solving the Discrete Algebraic System. The algebraic sys-
tem in equation (117) is nonlinear and hence requires an
iterative method with a linearized problem being solved at
each step. Starting with an appropriately chosen initial
guess ðu0, p0Þ (the solution of the Stokes flow), the next
guess ðu1, p1Þ is obtained by solving the resulting linear
system. The process is repeated until the difference between
the solutions obtained at iteration step N + 1 and N is greater
than a given value of tolerance. A summary of the above steps
can be seen in the algorithm (Figure 6).

Similarly, using an initial guess Ck for the diffusion-
convection equation, we solve for Ck+1 inð

Ω

Ck+1:w − Ck:w + D∇Ck+1:∇wð ÞΔt + Δt u:∇ð ÞCk+1w

− FwΔtÞdx−
ð
∂ΩN

Dw∇Ck+1:nð ÞΔtds = 0:

ð121Þ

The above algorithms are implemented in FreeFem and
some MATLAB codes in addition are utilized.

3. Results and Discussions

Consider a hypothetical factory located next to a water body
as shown in Figure 7. The factory discharges the pollution on
part of the land marked Γin. Groundwater flows in the direc-
tion Γup to Γdown, where Γup is the boundary between the
water body and the groundwater domain while Γdown is the
downstream boundary.

A 2-D cut of Ω in the x − y plane where x represents the
horizontal section of Ω and y represents the vertical section
of Ω is presented. Figure 8 shows a discretized domain of
size x = 0 to x = 10 and y = 0 to y = 5: Circular obstacles
are inserted to simulate a real groundwater flow process.
The domain is now described in detail as follows:

(a) Γinis the inlet boundary

(b) Γup is the upstream boundary with a baseline con-
centration of pollute Cp. Γup is the interface between
the water body and the computational domain Ω

(c) Γdown is the downstream boundary that is far away
such that it can be assumed that the flux is zero

(d) The flux on Γland is proportional to the difference
between the concentration of Γland, Cland and the
concentration in Ω, C

(e) Diffusivity coefficient D is a constant

The following boundary and initial conditions for the
diffusion-convection equation (121) are prescribed in

C = Cm onΓin,

C = Cup onΓup,

C = 0 onΓbottom,

D∇C:n = 0 onΓdown,

D∇Cn = β Cland − Cð Þ onΓland,

β = 0:1,

ð122Þ

and the following boundary conditions. For velocity u =

u1

u2

 !
in the Navier-Stokes equations are prescribed in

expressions

u1 = 5, yð Þy, u2 = 0 onΓup,

u1, u2 = 0 onΓbottom andΓland ∪ Γin:
ð123Þ

In addition, no-slip boundary conditions are prescribed
on the obstacles in Ω and no boundary condition in pre-
scribed on Γdown, which implies a homogenous Neumann
condition on Γdown: In the next section, the Navier-Stokes
and diffusion-convection equations are solved to determine
the impact of various flow and concentration parameters.

3

2

1

Figure 4: Approximate space for pressure and concentration.

1 4
2

56

3

Figure 5: Approximate space for velocity.
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3.1. Velocity and Pressure Profile. For Reynolds’ number,
Re = 10, the velocity profile shown in Figure 9 shows that
the maximum velocity of 15.3 occurs along the line y = 2:5,
which is zero for y = 0 and y = 5. This is because of the pre-

scribed inflow velocity, which is parabolic and the no-slip
conditions imposed on the boundaries. Data in Figure 9 also
shows that the velocity increases in regions where the obsta-
cles are widely spaced. The color bar shows the variations in
the magnitude of velocity with the color variations from top
to bottom in the order of decreasing magnitude. The pres-
sure distribution shown in Figure 10 shows that pressure
decreases in the direction of groundwater flow. It has a max-
imum of 282.36 at x = 0. It was reduced from 253.34 at x = 2
to 166.29 at x = 5, further reduced to 50.123 at 9.6, and
finally to 0 when x = 10. This is in agreement with the phys-
ical interpretation that a fluid flows from a region of higher
pressure to a region of lower pressure. Comparing Figures 9
and 10, it is seen that the velocity is highest in regions of
higher pressure and lowest in regions of lower pressure.

3.2. Concentration Profile. Prescribing the following bound-
ary and initial conditions in expressions in

Cup = 10,

Cin = 100,

Cland = 1:

8>><>>: ð124Þ

For the diffusion-convection equation, the transport
equation is solved using the velocity obtained from solving
the Navier-Stokes equation for Re = 10. The concentration
profile for diffusivity coefficient D = 0:5 is studied. After 5
time steps, a steady-state solution is reached. Figure 11

Set u=u0 and p=p0
N=0

Solve for (uN+1, p=pN+1) in

No

Is error
less than

TOL?

Yes

Stop

Error=

+

𝛼A+B(u) YT

T 0
=

uN+1
s

t
pN+1

uN=uN+1
pN=pN+1

N=1

||uN+1–uN||H1

||pN+1–pN||L2

||pN+1||L2

||u0||H1

Figure 6: Steps of the set-up algorithm.

Factory 𝛤land𝛤land

𝛺
𝛤down𝛤up

𝛤bottom

𝛤in

Figure 7: Domain for the pollute transport problem.
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Figure 8: Computational domain for the pollute transport
problem.
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shows its concentration profile. The concentration on Γin
reduces from 100 to 6.3239 at y = 4:3 between x = 2:5 and
x = 6:0. It further reduces to 0.81352 at y = 4:1 between x
= 2:3 and x = 6:0. The baseline concentration reduces from
10 on Γup to 6.03239 at ðx, yÞ = ð0:62, 2:6Þ and ðx, yÞ = ð0:6,
1:4Þ. It further reduces to 0.81325 at ðx, yÞ = ð1:9, 2:6Þ. The
concentration elsewhere is 0.

3.3. Impact of Increasing Inflow and Baseline Concentrations.
Keeping the baseline concentration constant and increasing
the inflow concentration, the transport equation is solved
for the boundary and initial conditions prescribed by the
expressions in

Cup = 10,

Cin = 500,

Cland = 1,

8>><>>: ð125Þ

andD = 0:5. At steady state, the concentration profile is
shown in Figure 12.

Diffusion of molecules depends entirely on movement
from regions of high concentration to regions of low con-
centration. That is, diffusion occurs down the concentration
gradient of that molecule. The greater the difference in
concentration, the faster the molecule descends along the
concentration gradient. If the difference in concentration is
not large, the molecules do not move quickly and the diffu-
sion rate decreases. Figure 12 shows that the concentration
on Γin, reduced from 500 to 31.524 at y = 4:3 between x =
2:3 and x = 6:0. It was then reduced to 3.9664 at y = 4:1
between x = 2:3 and x = 6:0. The baseline concentration
reduces from 10 on Γup, to 3.9664 at ðx, yÞ = ð0:8, 2:5Þ and
ðx, yÞ = ð0:8, 1:4Þ. The concentration elsewhere is 0.
Figures 12 and 13 show that increasing the inflow concentra-
tion while keeping the baseline concentration constant
increases the amount of the pollutant diffusing from Γin
and reduces the amount of pollution due to convective
transport from Γup: Keeping the inflow concentration
constant and increasing the baseline concentration, the
transport equation is solved for the boundary and initial
conditions prescribed by expressions in

Cup = 50,

Cin = 100,

Cland = 1,

8>><>>: ð126Þ
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Figure 9: Velocity profile at Re = 10.
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Figure 10: Pressure distribution at Re = 10.
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Figure 11: Concentration, D = 0:5, T = 5.
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Figure 12: Concentration, D = 0:5, Cup = 10, Cin = 500, T = 5.
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Figure 13: Concentration, D = 0:5, Cup = 10, Cin = 100, T = 5.
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and D = 0:5. At steady state, the concentration profile is
shown in Figure 14.

Figure 14 shows that the concentration on Γin reduces
from 100 to 6.03239 at y = 4:3 between x = 2:3 and x = 6:0.
It then reduces to 0.81352 at y = 4:1 between x = 2:3 and x
= 6:0. The baseline concentration reduces from 50 on Γup
to 11.834 at ðx, yÞ = ð1:2, 2:5Þ. It then reduces to 0.81352 at
ðx, yÞ = ð2:6, 1:4Þ and ðx, yÞ = ð2:8, 2:5Þ. Elsewhere, the
concentration is 0. Figures 14 and 15 show that increasing
the baseline concentration while keeping the inflow concen-
tration constant increases the amount of pollutant due to
convective transport from Γup. The amount of pollutant
diffusing from Γin is constant. This is because the velocity
of groundwater at the boundary Γin is zero.

3.4. Impact of Decreasing the Diffusivity Coefficient. Using
the boundary and initial conditions prescribed in equation
(124) and Re = 10 for the Navier-Stokes equations, the trans-
port equation is solved for different diffusivity coefficients.

Figure 16 shows the steady state concentration for D =
0:5 described earlier. Figure 17 shows the steady state con-
centration for D = 0:1. The concentration on Γin reduces
from 100 to 6.5495 at y = 4:5 between x = 2:3 and x = 6:0.
It then reduced to 1.0524 at y = 4:1 between x = 2:3 and x
= 6:0. The baseline concentration reduces from 10 on Γup
to 6.5495 at ðx, yÞ = ð0:6, 1:5Þ and ðx, yÞ = ð0:6, 2:5Þ. It was
reduced to 1.0524 at ðx, yÞ = ð2:5, 2:5Þ. The concentration
elsewhere is 0.

Figure 18 shows the steady state concentration profile for
D = 0:001. The concentration on Γin reduces from 100 to
3.8776 at y = 4:3 between x = 2:3 and x = 6:0, and the baseline
concentration reduces from 10 to Γup to 3.8776 at ðx, yÞ
= ð1:4, 1:5Þ and ðx, yÞ = ð1:5, 2:5Þ. The concentration else-
where is 0. Figure 19 shows the concentration profile for
D = 0:005, the concentration on Γin reduced from 100 to
1.8236 at y = 4:3 between x = 2:3 and x = 6:0, and the baseline
concentration reduces from 10 on Γup to 1.8236 at ðx, yÞ =
ð2:5, 2:5Þ. The concentration elsewhere is 0. From
Figures 16–19, it is seen that decreasing the diffusivity coeffi-
cient D increases the number of pollutants due to convective
transport from the boundary Γup and decreases the amount
of pollutant that diffuses from the boundary Γin
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Figure 14: Concentration, D = 0:5, Cup = 50, Cin = 100, T = 5.
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Figure 15: Concentration, D = 0:5, Cup = 10, Cin = 100, T = 5.
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Figure 16: Concentration, D = 0:5, Cup = 10, Cin = 100, T = 5.
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Figure 17: Concentration, D = 0:1, Cup = 10, Cin = 100, T = 5.
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3.5. Comparison of Various Scenarios for the Management of
Polluted Computational Domains for Pollutant Transport
Problems and Their Impact on Groundwater Quality. In this
study, we present simulation results for four hypothetical
case studies. Figure 11 shows the results of the concentration
profiles and diffusion coefficients (initial and final concen-
trations in this scenario) of the aquifer for four cases, includ-
ing the scenario investigated. The velocity and pressure
profile [34] concentration profiles for increasing input and
base concentrations, decreasing diffusion coefficient and
concentration profile for diffusivity coefficient D = 0:5. For
the three cases, the movement of contaminants can be
expressed as an increase in the input concentration, and
while maintaining a constant reference concentration, the
number of contaminants diffused from Γin increases, and
the number of contaminants due to convective movement
from Γup decreases. In addition, it can be seen that the
decrease in diffusion coefficient D increases the number of
pollutants due to convection motion from the boundary
Γup and decreases the number of pollutants diffused from
the boundary Γin. Concentrations elsewhere are zero, indi-
cating the effect of boundary conditions on groundwater
contamination. The same result as above can be achieved
by modifying the hypothetical scenario for the contamina-
tion site in terms of different concentrations and diffusion
coefficients, probing the location of the contaminated site,
and keeping 5-step scenario. For the hypothetical scenario,
the results show that the groundwater quality can be con-
trolled by the dividing wall in shallow aquifers, but not in
deep aquifers. However, lining contaminated areas is an

effective way to prevent groundwater contamination in both
shallow and deep aquifers [32]. In addition, the use of linings
in polluted areas is superior to other methods of collecting
and treating wetland wastewater to protect aquifers from
contamination. This method can be used taking into account
the conditions of the geotechnical characteristics of the soil,
the type of lining, the pollution load in these areas, and the
type of element.

4. Conclusions and Recommendations

The idea of a depth-dependent initial filtration coefficient is
consistent with the following conceptual model: Given a con-
stant flow rate, the larger particles that are more likely to be
trapped are more trapped in the porous medium, so most
of the larger particles are retained at the top of the conceptual
domain as relatively small particles, with the small particles
being less likely to be trapped. This disproportionate absorp-
tion leads to an increase in the concentration of fine particles
in the migratory particle population and the deeper parts of
the porous medium have a greater ability to accommodate
the particles, but the colloidal population becomes less sticky
as the migration distance increases. Finally, particles that are
less likely to be captured are more likely to be found in waste-
water by transporting longer filters or passing through the
medium. As a result, the initial filtration coefficient decreases
along the porous medium. Therefore, groundwater is not
entirely harmless, like the simulation results in Figures 8–
19. An increase in the input and base concentrations, as well
as a decrease in the diffusivity coefficient D, increases the
extent of groundwater contamination. Building a model that
takes into account the processes involved in the transport of
soil pollutants is complicated. In this model, for example, soil
porosity was treated as a constant to facilitate calculation,
analysis, and programming, but it is actually a highly variable
quantity. This model can be improved by taking into account
a 3D transitory equation from Navier-Stokes, adding a vari-
able coefficient of porosity and diffusivity of the soil, increas-
ing the dimensions of the calculation area and the number of
obstacles to obtain a better approximation of the geometric
structure of the water underground. Industries or others that
dispose of toxic substances, such as chemicals, oil, or pharma-
ceuticals, must treat them before disposal to reduce the level
of groundwater contamination. Recommendations of dump-
ing sites should be located far away from water bodies or
direction of groundwater flow. To further check the presented
simulation results, experimental studies will be conducted.

Data Availability

No raw data were used in support of this study

Disclosure

The authors acknowledge that this paper was partly based on
a study by Isaac Enyogoi (IE) (2017).

5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00

0.500
0.00

100
99.606
86.212
77.878
70.424
63.05
56.636
46.282
40.848
33.464
26.06
18.666
11.272
0.8774
–3.5764
–10.97
–18.304

Y

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
X

Figure 18: Concentrations, D = 0:001, Cup = 10, Cin = 100, T = 5.
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