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The Rayleigh flexible Weibull extension (RFWE) distribution, a new three-parameter model introduced in this paper, is a
generalization of the flexible Weibull extension. This model produces best fit for failure time of electronic device obtained from
power-linkage voltage spikes during electronic storms. We derive the statistical properties of the RFWE distribution. The
parameters of this new distribution are estimated using the maximum likelihood method, which also yielded asymptotic
confidence bounds. This model is examined using both real and simulated data. Under various priors, an additional Bayesian
estimate is also carried out. The Bayes estimates and other posterior results are calculated using simulations.

1. Introduction

To model the lifetime components, Weibull distribution is
very useful in fields like physics and engineering. Farooq
et al. [1] focused on investigations to derive a new probabil-
ity model for data sets with extreme values in engineering.
Ijaz et al. [2] developed a new modification with three
parameters of the Lomax distribution. Kumaraswamy Wei-
bull distribution is studied by Corderio et al. [3]. Moreover,
El-Morshedy et al. [4] proposed a three-parameter model by
exponentiating the inverse flexible Weibull extension distri-
bution. They called it exponentiated inverse flexible Weibull
extension (EIFW) distribution. Manisha and Tiensuwan [5]
introduced a beta transmuted Weibull distribution, which
contains several distributions as special cases, and properties
of the distribution are also discussed. Mustafa et al. [6] intro-
duced a four-parameter model called the Weibull general-
ized flexible Weibull extension (WGFWE) distribution
which exhibits a bathtub-shaped hazard rate. Bebbington
et al. [7] discussed applications of the flexible Weibull distri-
bution that includes life testing experiments and applied sta-
tistics. Nadarajah and Kotz [8] and Murthy et al. [9]
discussed the extensions of the Weibull distribution.

In this article, a new generalization of the flexible Wei-
bull extension (FWE) distribution called Rayleigh flexible
Weibull extension (RFWE) distribution is constructed by
using a method developed by Alzaatreh et al. [10] to gener-
ate a family of distributions. This class of distributions is
defined as

G zð Þ =
ð−ln 1−F zð Þð Þ

0
g xð Þ dx: ð1Þ

Alzaatreh et al. [10] derived the Weibull-Pareto distribu-
tion by taking gðxÞ to be the probability density function
(pdf) of the Weibull distribution and FðzÞ to be the cumula-
tive density function (cdf) of the Pareto distribution, and
Alzaatreh et al. [11] derived the gamma-normal distribution
by taking gðxÞ to be the pdf of the gamma distribution and
FðzÞ to be the cdf of the normal distribution.

Now, we consider pdf gðxÞ of Rayleigh distribution as a
parent distribution given as

g xð Þ = 2θxe−θx2 : ð2Þ
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Substituting Equation (2) in Equation (1), we get

G zð Þ = 1 − exp −λ −ln 1 − F zð Þf g½ �2Â Ã
, ð3Þ

and pdf

g zð Þ = 2λf zð Þ
1 − F zð Þf g −ln 1 − F zð Þf g½ � exp −λ −ln 1 − F zð Þf g½ �2Â Ã

:

ð4Þ

In the above expression, the FWE distribution is used as
f ðzÞ as follows:

f zð Þ = β + γ

z2

� �
exp βz − γ

z

� �
exp −exp βz − γ

z

� �n o
, z > 0, β, γ > 0,

ð5Þ

and cdf

F zð Þ = 1 − exp −exp βz − γ

z

� �n o
, z > 0, β, γ > 0: ð6Þ

2. Rayleigh Flexible Weibull Extension
Distribution (RFWE)

If Z follows the flexible Weibull extension distribution with
the pdf given in Equation (5). Then, from Equation (4),
the pdf of RFWE distribution is defined as

g zð Þ = 2λ β + γ

z2

� �
exp 2 βz − γ

z

� �n o
exp

Á −λ exp βz − γ

z

� �n o2� �
, z > 0, β, γ, λ > 0:

ð7Þ

From (3), we obtain the cdf of RFWE distribution as

G zð Þ = 1 − exp −λ exp βz −
γ

z

� �n o2� �
, z > 0, β, γ, λ > 0:

ð8Þ

2.1. Survival and Hazard Functions. From Equation (8), we
can define the survival function (sf) of RFWE distribution
as follows:

S zð Þ = 1 −G zð Þ = exp −λ exp βz −
γ

z

� �n o2� �
, z > 0, β, γ, λ > 0:

ð9Þ

From Equations (7)–(9), we can define the hazard func-
tion (hf) of RFWE distribution as follows:

h zð Þ = g zð Þ
S zð Þ = 2λ β + γ

z2

� �
exp 2 βz −

γ

z

� �n o
, z > 0, β, γ, λ > 0:

ð10Þ

This hazard function (hf) is plotted along with the pdf
(7), cdf (8), and survival function (9) in Figure 1 for different

values of the parameters to depict the nature of the proposed
distribution.

3. Statistical Properties of RFWE Distribution

In this section, we study the quantile function, rth moment,
moment generating function, characteristic function, proba-
bility generating function, and factorial moment generating
function.

3.1. Quantile Function. For a positive continuous random
variable, Let Z follows the RFWE distribution, then, the
quantile function of Z is derived as

P Z ≤ zq
À Á

= q, 0 < q < 1,

1 − exp −λ exp βzq −
γ

zq

 !( )2" #
= q:

ð11Þ

By solving the above equation, we get zq as follows:

zq =
1
2β ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − qð Þ

λ

r( )
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − qð Þ

λ

r !( )2

+ 4βγ

vuut24 35:
ð12Þ

Since quantile zq is positive, then we get zq as follows:

zq =
1
2β ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − qð Þ

λ

r( )
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − qð Þ

λ

r !( )2

+ 4βγ

vuut24 35:
ð13Þ

The median of RFWE can be obtained from Equation
(13) by takingq = 1/2. That is,

Median = 1
2β ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − 1/2ð Þð Þ

λ

r( )
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − 1/2ð Þð Þ

λ

r !( )2

+ 4βγ

vuut24 35:
ð14Þ

Now, to generate data from the cdf of RFWE, first generate
the randomnumbers from standard uniform distribution then
transform the random numbers into inverse cdf function. The
inverse cdf function of RFWE can be written as

GRFWE z ; β, γ, λð Þ = u, ð15Þ

whereU is a standard uniform random variable; from (8), we get

1 − exp −λ exp βz −
γ

z

� �n o2� �
= u: ð16Þ
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In Equation (13), if we replace q by u, we get the inverse
function

zu =
1
2β ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − uð Þ

λ

r( )
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1/1 − uð Þ

λ

r !( )2

+ 4βγ

vuut24 35:
ð17Þ

3.2. TheMoments.Moments are very important for the statistical
analysis to study the average, variation, skewness, and kurtosis.

The rth moment of RFWE distribution is introduced by
the following theorem.

Theorem 1. The rth moment of a random variable Z ∼
RFWEðΘÞ, where Θ = ðβ, γ, λÞ is given by

μr′ = 〠
∞

i=0
〠
∞

j=0

−1ð Þi+j λð Þi+1 γð ÞjΓ r − j − 1ð Þ
i!j! βð Þr−j2γ−2j i + 1ð Þr−2j+1

Á r − jð Þ r − j − 1ð Þ + 4γβ i + 1ð Þ2È É
:

ð18Þ

Proof. The rth moment of the random variable Z with gðzÞ
is defined as

μr′ =
ð∞
0
zrg zð Þdz: ð19Þ

By putting Equation (7) into Equation (19), we get

μr′ = 2λ
ð∞
0
zr β + γ

z2

� �
exp 2 βz −

γ

z

� �n o
exp

Á −λ exp βz −
γ

z

� �n o2� �
dz,

ð20Þ

using the Taylor series

exp −λxð Þ = 〠
∞

i=0
−1ð Þi xλð Þi

i!
: ð21Þ

Take x = fexp ðβz − ðγ/zÞÞg2 in the above equation:

exp −λ exp βz −
γ

z

� �n o2� �
= 〠

∞

i=0
−1ð Þi λ

i exp βz − γ/zð Þð Þf g2Â Ãi
i!

,

ð22Þ

Equation (20) becomes

μr′ = 2〠
∞

i=0
−1ð Þi λ

i+1

i!

ð∞
0
zr β + γ

z2

� �
exp

Á 2 βz −
γ

z

� �n o
exp βz −

γ

z

� �n o2� �i
dz:

ð23Þ
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Figure 1: Visual plots for the pdf, cdf, sf, and hf of the proposed model.
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By solving the above equation, we obtain

μr′ = 2〠
∞

i=0
−1ð Þi λ

i+1

i!

ð∞
0
zr β + γ

z2

� �
exp

Á 2 i + 1ð Þ βzð Þf g exp −2 i + 1ð Þ γ

z

� �n o
dz:

ð24Þ

Using the series expansion of exp f−2ði + 1Þðγ/zÞg, we
obtain

μr′ = 2〠
∞

i=0
〠
∞

j=0

−1ð Þi+j2j i + 1ð Þjγjλi+1
i!j!

Á
ð∞
0
zr−j β + γ

z2

� �
exp 2 i + 1ð Þ βzð Þf gdz,

ð25Þ

by using the gamma function in the form

Γ αð Þ = βα
ð∞
0

exp tβð Þtα−1dt, α, β > 0: ð26Þ

Finally, we get the rth moment of RFWE in the form

μr′ = 〠
∞

i=0
〠
∞

j=0

−1ð Þi+j λð Þi+1 γð ÞjΓ r − j − 1ð Þ
i!j! βð Þr−j2γ−2j i + 1ð Þr−2j+1

Á r − jð Þ r − j − 1ð Þ + 4γβ i + 1ð Þ2È É
:

ð27Þ

3.3. Moment Generating Function. In this section, we derive
the moment generating function of RFWE distribution.

Theorem 2. The moment generating function MZðtÞ of a
random variable Z, that is, Z ∼ RFWEðΘÞ, where Θ = ðβ, γ,
λÞ is given by

Mz tð Þ = 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð ÞjtmΓ m − j − 1ð Þ
i!j!m! βð Þm− j i + 1ð Þm−2j+12m−2j

Á m − jð Þ m − j − 1ð Þf g

+ 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð ÞjtmΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j

4γβ i + 1ð Þ2È É
:

ð28Þ

Proof. The moment generating function MZðtÞ is defined as

MZ tð Þ =
ð∞
0

exp tzð Þg zð Þdz: ð29Þ

Using series expansion of etz , we obtain

MZ tð Þ = 〠
∞

m=0

tm

m!

ð∞
0
zmg zð Þdz = 〠

∞

m=0

tm

m!
μm′ : ð30Þ

Substituting from Equation (27) into Equation (30), we
get

Mz tð Þ = 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð ÞjtmΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j

Á m − jð Þ m − j − 1ð Þf g

+ 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð ÞjtmΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j 4γβ i + 1ð Þ2È É

:

ð31Þ

Hence, the proof.

3.4. Characteristic Function. The characteristic function of
RFWE distribution can be given as follows:

ϕz tð Þ = 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð Þ j itð ÞmΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j

Á m − jð Þ m − j − 1ð Þf g

+ 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð Þj itð ÞmΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j 4γβ i + 1ð Þ2È É

:

ð32Þ

3.5. Probability Generating Function. The probability gen-
erating function of RFWE distribution can be given as fol-
lows:

G αð Þ = E αzð Þ,

G αð Þ =
ð∞
0

exp z ln αð Þf gg zð Þdz,

G αð Þ = 2λ
ð∞
0

exp z ln αð Þf g β + γ

z2

� �
exp 2 βz − γ

z

� �n o
exp

Á −λ exp βz − γ

z

� �n o2� �
dz,

G αð Þ = 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð Þj lnm αð Þð ÞΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j

Á m − jð Þ m − j − 1ð Þf g

+ 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð Þj lnm αð Þð ÞΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j

Á 4γβ i + 1ð Þ2È É
:

ð33Þ

3.6. Factorial Moment Generating Function. The factorial
moment generating function of RFWE distribution can
be given as follows:
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H0 δð Þ = E 1 + δð Þzð Þ,

H0 δð Þ =
ð∞
0

exp z ln 1 + δð Þf gg z ; β, γ, λð Þdz,

H0 δð Þ = 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

−1ð Þi+j λð Þi+1 γð Þj lnm 1 + δð Þð ÞΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j

Á m − jð Þ m − j − 1ð Þf g + 〠
∞

i=0
〠
∞

j=0
〠
∞

m=0

× −1ð Þi+j λð Þi+1 γð Þj lnm 1 + δð Þð ÞΓ m − j − 1ð Þ
i!j!m! βð Þm−j i + 1ð Þm−2j+12m−2j

Á 4γβ i + 1ð Þ2È É
:

ð34Þ

4. Renyi Entropy

Entropy is widely used in physics; Renyi entropy is one of
the famous measures introduced by Renyi [12]. It is used
to measure the unpredictability of a distribution, high
entropy exhibits more uncertainty, and low entropy shows
minimum uncertainty or another word more informative.
Zero value of entropy indicates surety of completely certain
information.

Let Z ~ RFWEðβ, γ, λÞ; then, the corresponding Renyi
entropy can be obtained as

H ρð Þ = 1
1 − ρ

log
ð∞
0

g z ; β, γ, λð Þf gρdz
� �

,

H ρð Þ = 1
1 − ρ

log 〠
ρ

i=0
〠
∞

k=0
〠
∞

j=0

×

ρ

i

 !
−1ð Þkγi 2λð Þρ+kρkβρ−i+j 2ρ + kð Þj

j!k!

Á Γ i − j + 1ð Þ
γ 2ρ + kð Þi−j+1

 !
:

ð35Þ

5. Classical Estimation

In this section, we discussed the estimation of RFWE param-
eters by using the method of maximum likelihood and
asymptotic confidence bounds.

5.1. Maximum Likelihood Estimators (MLEs). Let Z1, Z2,⋯
, Zk be independent and identical random sample of size k
from RFWE ðβ, γ, λÞ with observed values z1, z2,⋯, zk; then
the likelihood function can be written as

L =
Yk
i=1

g zi ; β, γ, λð Þ: ð36Þ

Substituting from Equation (7) into Equation (36), we get

L =
Yk
i=1

β + γ

zi2

� �
exp 2 βzi −

γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
" #

:

ð37Þ

The log-likelihood function can be written as

ln L = k ln 2 + k ln λ + 〠
k

i=1
ln β + γ

z2i

� �� �
+ 2β〠k

i=1

k

zi

− 2γ〠
k

i=1

1
zi

� �
− 2λ〠

k

i=1
exp βzi −

γ

zi

� �� �
:

ð38Þ

The MLEs of the parameters are obtained by differentiat-
ing the log-likelihood function with respect to the parameters
β, γ, λ and setting the result to zero.

∂ ln L
∂β

= 〠
k

i=1

z2i
βz2i + γ

� �
+ 2〠

k

i=1
zi − 2λ〠

k

i=1
zi exp βzi −

γ

zi

� �� �
,

∂ ln L
∂γ

= 〠
k

i=1

1
βz2i + γ

� �
− 2〠

k

i=1

1
zi

� �
+ 2λ〠

k

i=1

exp βzi − γ/zið Þð Þ
zi

� �
,

∂ ln L
∂λ

= k
λ
− 2〠

k

i=1
exp βzi −

γ

zi

� �� �
:

ð39Þ

There is no closed-form solution to the above equations.
Therefore, R software and Mathematica are used to get the
numerical solutions.

5.2. Asymptotic Confidence Bounds. Now, we obtain the
asymptotic confidence interval of the unknown parameters
β, γ, λ. We assume that the MLEs (β, γ, λ) are approximately
multivariate normal with mean (β, γ, λ) and covariance
matrix I−10 , where I−10 is the inverse of the observed informa-
tion matrix defined as

I−10 = −

∂2 ln L

∂β2
∂2 ln L
∂β∂γ

∂2 ln L
∂β∂λ

∂2 ln L
∂γ∂β

∂2 ln L
∂γ2

∂2 ln L
∂γ∂λ

∂2 ln L
∂λ∂β

∂2 ln L
∂λ∂γ

∂2 ln L

∂λ2

0BBBBBBBBB@

1CCCCCCCCCA

−1

,

var bβ� �
cov bβ , bγ� �

cov bβ , bλ� �
cov bγ , bβ� �

var bγð Þ cov bγ , bλ� �
cov bλ , bβ� �

cov bλ , bγ� �
var bλ� �

0BBBBB@

1CCCCCA: ð40Þ
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The second partial derivatives included in I−10 are given
as follows:

∂2 ln L

∂λ2
= −

k

λ2
,

∂2 ln L
∂λ∂γ

= 2〠
k

i=1

exp βzi − γ/zið Þð Þ
zi

� �
,

∂2 ln L

∂β2 = 〠
k

i=1

z4i
βz2i + γ
À Á2

( )
− 2λ〠

k

i=1
z2i exp βzi −

γ

zi

� �
,

∂2 ln L
∂γ2

= −〠
k

i=1

1
βz2i + γ
À Á2

( )
− 2λ〠

k

i=1

exp βzi − γ/zið Þð Þ
z2i

� �
,

∂2 ln L
∂β∂γ

= −〠
k

i=1

z2i
βz2i + γ
À Á2

( )
+ λ〠

k

i=1
exp βzi −

γ

zi

� �� �
,

∂2 ln L
∂λ∂β

= −2〠
k

i=1
zi exp βzi −

γ

zi

� �� �
:

ð41Þ

The above expressions are used to derive the ð 1 − δÞ
100% confidence intervals for the parameters β, γ, and λ
as in the following forms:

bβ ± z δ/2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bβ� �r

,

bγ ± zδ/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bγð Þ

q
,

bλ ± zδ/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bλ� �r

,

ð42Þ

where zδ/2 is the upper ðδ/2Þth percentile of the standard
normal distribution.

6. Order Statistics

Let Z1:k, Z2:k,⋯, Zk:k denote the order statistics obtained
from a random sample Z1, Z2,⋯, Zk taken from a continu-
ous population with cdf Gðz,ΦÞ and pdf gðz,ΦÞ as follows:

gi:k z,Φð Þ = 1
B i, n − i + 1ð Þg z,Φð Þ G z,Φð Þf gi−1 1 − G z,Φð Þf gk−i,

ð43Þ

where Bði, n − i + 1Þ is the beta function.
6.1. PDF of Minimum, Median, and Maximum Order
Statistics. In this subsection, we will consider the expression
for the sample distribution of the minimum, median, and
the maximum order statistics when a random sample of size
k is drawn from the RFWE ðβ, γ, λÞ distribution. These pdfs
can be obtained by solving Equation (43).

The pdf of the minimum order statistics is as follows:

g1:k zð Þ = 2λk β + γ

z2

� �
exp 2 βz −

γ

z

� �n o
Á exp −λ exp βz −

γ

z

� �� �2� �� �k
:

ð44Þ

The pdf of the median order statistics is as follows:

gm+1:k ~zð Þ = 2m + 1ð Þ!
m!m!

2λ β + γ

z2

� �
exp 2 βz −

γ

z

� �n o
Á exp −λ exp βz −

γ

z

� �� �2� �� �m+1

× 1 − exp −λ exp βz −
γ

z

� �� �2� �� �m

:

ð45Þ

Finally, the pdf of the maximum order statistics is as fol-
lows:

gk:k zð Þ = 2kλ β + γ

z2

� �
exp 2 βz −

γ

z

� �n o
exp

Á −λ exp βz −
γ

z

� �� �2� �
× 1 − exp −λ exp βz −

γ

z

� �� �2� �� �k−1
:

ð46Þ

6.2. Joint PDF of the Minimum and Maximum Order
Statistics. In this subsection, we will consider the expression
for the joint pdf of the minimum and the maximum order
statistics when a random sample of size k is drawn from
the RFWE ðβ, γ, λÞ distribution. These pdfs can be obtained
by solving the following equation:

gi: j:k zi, zj
À Á

= C G zið Þ½ �i−1 G zj
À Á

− G zið ÞÂ Ãj−i−1
Á 1 −G zj

À ÁÂ Ãk−j g zið Þg zj
À Á

,
ð47Þ

where

C = k!
i − 1ð Þ! j − i − 1ð Þ! k − jð Þ! : ð48Þ

The joint pdf of the minimum and maximum, that is, ith-
and jth-order statistics from RFWE distribution, is
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gi:j:k zi, zj
À Á

= 4Cλ2 1 − exp −λ exp βzi −
γ

zi

� �� �2
 !" #i−1

× exp −λ exp βzi −
γ

zi

� �� �2
" #"

− exp −λ exp βzj −
γ

zj

 ! !2( )# j−i−1

× exp −λ exp βzj −
γ

zj

 ! !2( )" #k−j

Á β + γ

z2i

� �
exp 2 βzi −

γ

zi

� �� �
× exp −λ exp βzi −

γ

zi

� �� �2
" #

β + γ

z2j

 !
:

ð49Þ

For special case, let us supposei = 1andj = k; the joint pdf
of minimum and maximum order statistics is as follows:

g1:k:k z1, zkð Þ = k k − 1ð Þ4λ2 exp −λ exp βz1 −
γ

z1

� �� �2
 !"

− exp −λ exp βzk −
γ

zk

� �� �2
 !#k−2

× β + γ

z21

� �
exp 2 βz1 −

γ

z1

� �� �
exp

Á −λ exp βz1 −
γ

z1

� �� �2
 !

× β + γ

z2k

� �
exp

Á 2 βzk −
γ

zk

� �� �
exp −λ exp βzk −

γ

zk

� �� �2
 !

× exp 2 βzj −
γ

zj

 !( )
exp −λ exp βzj −

γ

zj

 ! !2( )
:

ð50Þ

7. Data Analysis

In this section, we use a real data set to show that the RFWE
distribution can be a better model, compared with many
known distributions such as the FWE distribution, Weibull
distribution, exponential distribution, and Rayleigh distribu-
tion. Consider that the data obtained by Khan and Jan [13]
represents the failure time of electronic devices obtained
from power-line voltage spikes during electronic storms.
The times are 2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10,
3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61,
2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, and
2.66.

The MLEs of the unknown parameters β, γ, λ for the dif-
ferent distributions are given in Table 1. We considered
Anderson–Darling (AD) test statistic, Cramer-von-Misses
(CM) test statistic, and Kolmogorov–Smirnov (KS) test sta-
tistic. Hannan-Quinn information criterion (HQIC), Bayes-
ian information criterion (BIC), Akaike’s Information

Criterion (AIC), and Consistent Akaike’s Information Crite-
rion (CAIC) as investigative measures are given in Table 2.

7.1. Discussion. From the above tables, the test statistics
above mentioned showed smaller values for the RFWE dis-
tribution as compared with the rest of the distributions that
indicate better performance of the model.

8. Simulations

The accuracy and the performance in estimating the model
parameters with different sample sizes are investigated by
using Equation (17) to generate the data from the RFWE
distribution. We take n = 20, 60, and 200, and the true values
of the parameters are given in Tables 3 and 4; for each n, we
simulate 100 random data sets from the RFWE distribution
and for different values of the parameters, average bias
(bias), mean square errors (MSE), estimated mean (Est.),
and variance (Var) are calculated for different sample sizes.

8.1. Discussion. As we increase the sample size, it is clearly
noticed from the above tables that the bias and MSE tend
to decrease, Est. tends towards the true parameter values,
and Var also tends to decrease.

9. Bayesian Analyses

In this section, we are going to estimate the parameters of
the proposed distribution and that of exponential, Rayleigh,
Weibull, and FWEx distributions under different prior dis-
tributions. The posterior variances are calculated, and the
credible intervals are provided for each parameter. To com-
pare our proposed distribution with the others considered,
we calculate difference information criteria (DIC). Muham-
mad et al. [14] used the DIC, and their scheme is better with
a minimum number of parameters.

Table 1: Goodness of fit results using AD, CM, and KS.

Distributions MLE’s AD CM KS

RFWE bβ = 0:45, bγ = 0:04, bλ = 0:147 1.14 0.17 0.19

FEW bβ = 0:328, bγ = 0:158 2.04 0.32 0.39

Weibull bα = 1:264, bγ = 1:820 1.82 0.30 0.21

Exponential bλ = 0:564 1.90 0.32 0.21

Rayleigh bσ = 1:485 1.64 0.26 0.21

Table 2: Goodness of fit results using AIC, BIC, CAIC, and HQIC.

Distribution AIC BIC CAIC HQIC

RFWE 82.75 86.95 83.67 84.09

FEW 111.31 114.11 111.75 112.20

Weibull 96.317 99.119 96.761 97.213

Exponential 96.270 97.671 96.412 96.718

Rayleigh 103.76 105.16 103.90 104.21
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The likelihood function of RFWE distribution is

L =
Yk
i=1

2λ β + γ

zi2

� �
exp 2 βzi −

γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

:

ð51Þ

First, we consider the uninformative uniform prior dis-
tribution for the parameters involved in Equation (51) as

p λ, β, γð Þ∝ 1: ð52Þ

The joint posterior distribution under uniform prior dis-
tribution given in Equation (52) is as follows:

p λ, β, γ zjð Þ∝
Yk
i=1

2λ β + γ

zi2

� �
exp 2 βzi −

γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

:

ð53Þ

The constant of proportionality, C, is obtained as

C =
ð
γ

ð
β

ð
λ

Yk
i=1

2λ β + γ

zi2

� �
exp 2 βzi −

γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

dλdβdγ:

ð54Þ

The marginal posterior distribution of the parameter
given data may be obtained as follows:

Table 3: True value of parameters with MSE and bias of RFWEðβ, γ, λÞ.

β, γð , λÞ n Bias (bβ) Bias (bγ) Bias (bλ) MSE (bβ) MSE (bγ) MSE (bλ)
(0.008, 0.009, 0.3)

20 0.010132 0.0059832 0.24598 0.0013112 0.00523868 0.125635

60 0.005630 0.0043496 0.237024 0.0007432 0.0055031 0.094754

200 0.000846 -0.004023 0.205216 0.0000008 0.00001689 0.042515

(0.008, 0.008, 0.3)

20 0.005679 0.0037737 0.225885 0.0006367 0.00303306 0.080190

60 0.005270 -0.002586 0.215227 0.0005765 0.00015290 0.070337

200 0.002294 -0.003548 0.216339 0.0002232 0.00001552 0.053182

(0.0008, 0.0009, 0.3)

20 0.051085 0.0658686 0.650023 0.0054512 0.0345581 0.6694

60 0.048204 0.0234407 0.449733 0.0044114 0.00126066 0.359507

200 0.029875 0.0226881 0.319649 0.0018333 0.00119996 0.185328

(0.0008, 0.0009, 0.4)

20 0.055087 0.0441444 0.481222 0.0056520 0.0150503 0.457649

60 0.045361 0.0210023 0.259504 0.0036151 0.00104289 0.17942

200 0.035612 0.0123426 0.127486 0.0024561 0.00036699 0.015043

Table 4: True value of parameters with mean (Est.) and variance (Var).

R-FWEx β, γ, λð Þ n
β γ λ

Est. Var Est. Var Est. Var

R-FWEx (0.008, 0.009, 0.3)

20 0.018 0.0012 0.0149 0.0052 0.545 0.0657

60 0.013 0.0007 0.0133 0.0055 0.537 0.0389

200 0.008 <0.0001 0.004 <0.0001 0.505 0.0004

R-FWEx (0.008, 0.008, 0.3)

20 0.0136 0.0006 0.0117 0.0030 0.525 0.0294

60 0.0132 0.0005 0.0054 <0.0001 0.5152 0.0242

200 0.0102 0.0002 0.0044 <0.0001 0.5163 0.0064

R-FWEx (0.0008, 0.0009, 0.3)

20 0.0518 0.0028 0.066 0.0305 0.9500 0.2493

60 0.049 0.0021 0.0243 0.0007 0.7497 0.1588

200 0.0306 0.0009 0.0235 0.0006 0.619 0.0839

R-FWEx (0.0008, 0.0009, 0.4)

20 0.0558 0.0026 0.0450 0.0132 0.8812 0.2283

60 0.046 0.00157 0.0219 0.0006 0.6595 0.1132

200 0.1857 0.0097 0.0166 0.00002 0.9501 0.14413
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p γ zjð Þ = 1
C

ð
β

ð
λ

Yk
i=1

2λ β + γ

zi2

� �
exp

Á 2 βzi −
γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

dλdβ, 0 ≤ γ ≤∞,

ð55Þ

p λ zjð Þ = 1
C

ð
β

ð
γ

Yk
i=1

2λ β + γ

zi2

� �
exp

Á 2 βzi −
γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

dγdβ, 0 ≤ λ ≤∞,

ð56Þ

p β zjð Þ = 1
C

ð
λ

ð
γ

Yk
i=1

2λ β + γ

zi2

� �
exp

Á 2 βzi −
γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

dγdλ, 0 ≤ β ≤∞:

ð57Þ
As the posterior distribution given in Equations (55)–(57)
are not analytically tractable, so we use MCMC simulations
for the calculation of the Bayes estimates (BE) and other
posterior results.

Furthermore, we now consider an informative prior dis-
tribution, gamma distribution, for the parameters. The joint
gamma prior is the simple product of the marginal gamma
distribution and is given as

p λ, β, γð Þ = ba11
Γ a1ð Þ

ba22
Γ a2ð Þ

ba33
Γ a3ð Þ λ

a1−1 exp

Á −λb1ð Þβa2−1 exp −βb2ð Þγa3−1 exp −γb3ð Þ,
ð58Þ

where, in (58), ða1, b1Þ, ða2, b2Þ, and ða3, b3Þ are the hyper-
parameters of the prior distribution of λ,β, and γ, respec-
tively. The joint posterior distribution under Equation (58)
is as follows:

p λ, β, γ zjð Þ = 1
C1

ba11
Γ a1ð Þ

ba22
Γ a2ð Þ

ba33
Γ a3ð Þλ

a1−1 exp

Á −λb1ð Þβa2−1 exp −βb2ð Þγa3−1 exp −γb3ð Þ

×
Yk
i=1

2λ β + γ

zi2

� �
exp 2 βzi −

γ

zi

� �� �
exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

,

ð59Þ

where C1 is known as the constant of proportionality and
obtained as follows:

C1 =
ð
γ

ð
β

ð
λ

ba11
Γ a1ð Þ

ba22
Γ a2ð Þ

ba33
Γ a3ð Þ λ

a1−1 exp

Á −λb1ð Þβa2−1 exp −βb2ð Þγa3−1 exp −γb3ð Þ

×
Yk
i=1

2λ β + γ

zi2

� �
exp 2 βzi −

γ

zi
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exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

dλ dβ dγ:

ð60Þ

The marginal posterior distribution of the parameter
given data, under gamma prior distribution, is obtained by
integrating Equation (59) as follows:

p γ zjð Þ = 1
C1

ð
β

ð
λ

ba11
Γ a1ð Þ

ba22
Γ a2ð Þ

ba33
Γ a3ð Þ λ

a1−1 exp

Á −λb1ð Þβa2−1 exp −βb2ð Þγa3−1 exp −γb3ð Þ

×
Yk
i=1

2λ β + γ

zi2

� �
exp 2 βzi −

γ

zi
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exp

Á −λ exp βzi −
γ

zi

� �� �2
( )

dλdβ, 0 ≤ γ ≤∞,

p λ zjð Þ = 1
C1

ð
β

ð
γ

ba11
Γ a1ð Þ

ba22
Γ a2ð Þ

ba33
Γ a3ð Þ λ

a1−1 exp

Á −λb1ð Þβa2−1 exp −βb2ð Þγa3−1 exp −γb3ð Þ

×
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dβdγ, 0 ≤ λ ≤∞,

p β zjð Þ = 1
C1

ð
λ

ð
γ

ba11
Γ a1ð Þ

ba22
Γ a2ð Þ

ba33
Γ a3ð Þ λ

a1−1 exp

Á −λb1ð Þβa2−1 exp −βb2ð Þγa3−1 exp −γb3ð Þ

×
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i=1

2λ β + γ
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exp 2 βzi −

γ
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Á −λ exp βzi −
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( )

dγdλ:0 ≤ β ≤∞:

ð61Þ

These posterior distributions are summarized in Tables 5
and 6. For numerical calculation, we set the hyperparameters
as a1 = 2, b1 = 5, a1 = 3, b1 = 6, and a1 = 2, b1 = 4.

9.1. Discussion.We noticed a reduction in the posterior stan-
dard deviations (SDs) while changing the prior from nonin-
formative to informative prior distribution in Equation (58),
and consequently, the credible intervals, that is, lower cred-
ible interval (LCL) and upper credible interval (UCL),
become narrower for the all parameters in all of the distribu-
tions. Further, the DIC is minimum in gamma prior.
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So we conclude that the gamma prior is more suitable
than the uniform prior. While using the uniform prior dis-
tribution for our proposed model, RFWE produced a mini-
mum DIC as compared to the others considered, namely,
exponential, Weibull, Rayleigh, and FWE distributions.

In fact, this value of 219.5698 is better than the DICs
produced by other models under uninformative prior distri-
bution. A decrease in the DIC is observed when we consid-
ered gamma prior distribution; and this DIC, 205.1394, is
the smallest among all.

10. Conclusions

We propose a new three-parameter distribution, based on the
idea which is to add parameters to the flexible Weibull exten-
sion distribution; this new distribution is called the Rayleigh
flexible Weibull extension (RFWE) distribution. Its statistical
properties are studied. We use the maximum likelihood
method for estimating the parameters of the distribution.
Finally, the advantage of the RFWE distribution is concluded
by an application using real data set and a simulation study
is conducted. From the simulation study, as the sample size

increases, the bias, MSE, and variance tend to decrease, and
the estimated means tend towards the true parameter value.

Moreover, it is shown that the RFWE distribution fits
better than existing known distributions in the classical
approach, while our proposed, RFWE, distribution has min-
imum DIC under uniform and gamma priors under the
Bayesian paradigm. This showed that our proposed model
is better than the other consideration. Furthermore, our
model performs better when informative gamma prior dis-
tributions were considered, better in terms of narrower cred-
ible intervals and minimum posterior standard variations. In
this study, we used a single real data set and two priors; in
the future, one can consider the other uninformative prior,
like Jeffrey’s prior, and in informative priors like normal,
lognormal can be used for comparison purposes.

Data Availability
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Table 6: Posterior results under gamma prior distribution.

Distribution Parameter BE S.D [LCL, UCL] DIC

RFWE

λ 0.0581 0.0715 [0.0771, 0.3508]

205.1394β 0.4100 0.0685 [0.2871, 0.5583]

γ 0.0581 0.0213 [0.0239, 0.1065]

Exponential λ 0.5484 0.0966 [0.3734, 0.7625] 238.2889

Rayleigh θ 0.2332 0.0409 [0.1576, 0.3194] 253.4404

Weibull
ϕ 1.0480 0.1702 [0.7487, 1.4153]

269.9739
α 1.5462 0.2596 [1.0749, 2.0872]

FWE
β 0.3284 0.0459 [0.2380, 0.4164]

266.0848
γ 0.1724 0.0545 [0.0811, 0.2918]

Table 5: Posterior results under uniform prior distribution.

Distribution Parameter BE SD [LCL, UCL] DIC

RFWE

λ 0.1612 0.0733 [0.0565, 0.3393]

219.5698β 0.4438 0.0791 [0.3038, 0.6088]

γ 0.0430 0.0201 [0.0123, 0.0882]

Exponential λ 0.5863 0.1030 [0.4053, 0.8038] 248.0342

Rayleigh θ 0.2341 0.04074 [0.1594, 0.3162] 266.7312

Weibull
ϕ 1.2655 0.2028 [0.8922, 1.6879]

256.7191
α 1.9662 0.2988 [1.4206, 2.6207]

FWE
β 0.3193 0.0456 [0.2334, 0.4115]

293.6861
γ 0.1793 0.0515 [0.0903, 0.2922]
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