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In this paper, a saltwater intrusion model, in view to study the dynamics of the interface between the saltwater and the freshwater
in a coastal aquifer, is established. This dynamic is caused by an injection of saltwater and a freshwater pumping through a well
located in a given position. From the flow model in each phase, we defined an appropriate hypothesis to obtain our global
model based only on the height of the interface. The numerical simulation of our model led us to study the effect of the
parameters and obtain some empirical laws of the pollution time versus the distance well-injection area and pollution time

versus the pumping flow.

1. Introduction

Water in general, and particularly the freshwater, is a scarce
commodity and extremely useful to the human life. Only 3%
of the quantity of water in earth is fresh. The aquifers are, for
most of the countries, a source of supply in freshwater.
Coastal areas are generally the most condensed population
regions in the world [1-3]. Concentrated populations in
those regions result in increased demand for freshwater
and accelerated groundwater pumping, leading to ground-
water depletion, especially in arid and semi-arid regions.
To meet water needs for agriculture, industry, and public
water supplies, groundwater resources have been seriously
over exploited in the last several decades [4]. Globally, fresh
groundwater resources in coastal aquifers are significantly
impacted by seawater intrusion [5]. Seawater intrusion in
coastal aquifers is a common problem and is encountered,
with different degrees, in almost all coastal aquifers. It is
regarded as a natural process that might be accelerated or
retarded by external factors such as increase or decrease in
the groundwater pumping, irrigation and recharge practices,
land use, and possible seawater rise due to the impacts of
global warming. The seawater intrusion problem has been
under investigation for well over a century [6, 7]. A compre-
hensive review on different aspects of seawater intrusion
assessment, monitoring, and modeling is provided by Bear

et al. [8]. Physically, seawater intrusion is a density-
dependent problem [9-16]. Modeling a seawater intrusion
process needs to couple groundwater flow equation with sol-
ute (salt) transport equation [17], since the solution of salt
transport is based on the groundwater flow field, which is
in turn affected by salt and density distribution in the
groundwater field.

Over the years, many results have been established. An
analytical solution for the steady-state salt distribution in a
confined aquifer has been proposed by Henry [18]. A few
years after, Jacob Bear [19] lays the foundations of this
modeling. Segol et al. [9] developed the first transient solu-
tion based on the velocity-dependent dispersion coefficient
using the Galerkin finite element method to solve the set of
non-linear partial differential equations describing the
movement of a saltwater front in a coastal confined aquifer
[20]. A remarkable work has been achieved by Ghyben and
Hergberg, by succeeding to make a relation between the
height of the freshwater above the sea level (h) and the
height of the freshwater under the sea level (H) (H = 40h).
Recent results have been due to [21, 22]. In [23], the author
has proposed a mixed approach between sharp interface and
diffuse interface. Others authors have also achieved great
works. That’s the case of Leéye et al. [24] who developed a
model of saltwater intrusion in a coastal aquifer by taking
into account the high hydrodynamic dispersion of the
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saltwater creating, so a wide transition area between the
freshwater and the saltwater. A similar model has been stud-
ied by Hamidi and Yazdi [20].

In this paper, the problem of the seawater intrusion into
the aquifer is studied by modeling the medium; therefore,
the aquifer as a porous medium in which there is a two-
phase flow. The two phases are separated by a freshwater-
saltwater interface, which is considered as a contact surface.
Following large water mass movements and freshwater
pumping through a well, this interface can move, ie., the
shape and the position of the interface can vary. Our objec-
tive in this paper is to model the dynamic of this interface
into the aquifer by an injection of saltwater and a freshwater
pumping through a well located in a given position. The
global model based only on the height of the interface is
obtained from the flow model in each phase and an appro-
priate hypothesis. A mathematical analysis of the global
model is done before the numerical simulation by a finite
element method. If the interface elevation, due to the fresh-
water pumping through the well, reaches a certain threshold,
we said that the well is polluted and we take this pollution
time. A parametrical study of this pollution time according
to the flow pumping and to the well position variation is
done. Some empirical laws are obtained.

The paper is organized as follows. In Section 2, we pres-
ent the global model describing the dynamic of the
freshwater-saltwater interface. The resolution of this mathe-
matical model is done in Section 3. We start it by a mathe-
matical analysis before the numerical resolution. A
parametrical study and the determination of the different
empirical laws end this section. The last section is devoted
to the conclusion and some perspectives.

2. Model Description

In the present study, conceptual, unconfined coastal aquifer
is considered as shown by a schematic section in Figure 1.
We have two phases: the freshwater and the saltwater, which
is the sea. Between those two phases, we have the interface.
Like shown in Figure 1, there is an injection of saltwater
by the sea and a freshwater pumping by a well; this phenom-
enon involves the dynamic of the interface. We set then, for
each position of this interface, the head by z,,,. So we have
just to study the dynamic of this head. For this, we need to
know the governing equations of the flow in each phase;
we call it local model, and then the global model will trans-
late the dynamic of the interface to the freshwater pumping
and the injection of the saltwater.

We consider a representative domain Q¢ R* com-
posed of Q, the saltwater phase, and €2, the freshwater

phase. Between the two phases, we have the interface.
To obtain our model, we consider the continuity equa-
tions coupled with Darcy’s equation, which means mass
conservation laws for each phase (fresh and saltwater)
coupled with the classical Darcy law for porous media.
The two phases are the same fluid with different charac-
teristics. The flow is then governed by the same laws.
Therefore, we consider just one phase to obtain the
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FIGURE 1: Schematic section of an unconfined coastal aquifer.

model, and for the second phase, the model is obtained
by similarity.

2.1. Governing Equations in Each Phase: Local Models. Let 0,
be the saltwater content, p, be the density, and U, be the
velocity. The continuity equation is given by

a(p0,)

div (p,Ug) + === = p(d ~ ) (1)

where ¢f (respectively q!) is the provided mass flow (respec-
tively the taken mass flow).

The effective velocity U, of the flow is thus related to the
pressure P through the so-called Darcy law

k
US:_[;(VPS-'—psgVZS)’ (2)

where p_ and u are respectively the density and the viscosity
of the fluid, k is the permeability of the soil, and g is the grav-
itational acceleration constant. Introducing the piezometric
head h; defined by

P
hs ==+ Zs (3)
Psg

where z_ is the elevation of the considering particle, we write
equation (2) as follows:

U,=-KVh, (4)

where K=kp g/u is the hydraulic conductivity, which
expresses the ability of the underground to conduct the fluid.
The saltwater content, given by 6, = V /V, where V| is the
volume of ), and V is the volume of (), verifies

1
do, = v (1-0,)dVv.. (5)
We assume that the solid matrix of the aquifer is non-
deformable. However, to take into account the contribution
of its compressibility effect in the specific storage, we will
assume that the solid matrix is elastic, i.e., there is a linear
relationship between the effective compressive stress and
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FIGURE 2: Schematic representation of the aquifer at the initial state. Data: (a) the full interface; (b) the whole aquifer with the saltwater in

green, the freshwater in blue, and the interface in red.

the strain. The state equation of the subdomain Q; is then
given by

s _ Vs 9
S 2-0)aly, (©)

where p; and « are respectively the pressure of saltwater
and the specific coeficient of compressibility of the media.
The partial derivative of the pressure p, according the time
is given by the following equation: from equation (3), we

have p. = p.g(h, — z,), therefore
op, op, oh,
5 =g(h )5 P95, (7)

Combining the state equation of the saltwater given as
follows:

op _ o 0P,
ot - sﬁsa’ (8)

and equation (7), we deduce this following relation:

1+ (2 Bal 2 = pa o, ©)

with 3, the compressibility coefficient of the saltwater. And
since (z, — h,)p,.g < 1, we obtain

op,  Oh
ot P95 (10)

Developing the continuity equation (1) of the saltwater,

we obtain:

podiv (U) + (U, V)p, + p. o2 + 0. p (¢ —g'). (11

Since p, # 0 and does not depend on the space variable,
with relations (6) and (8), equation (11) becomes

div(Us)+%(l—6) pswﬁsat (@-dq). (12)

Considering equation (10) and setting the specific stor-
age coefficient of Qg

V.1-6,
85:P5939|:ﬁ5+7 0 (X:|, (13>

N

equation (12) becomes

div (U) + S92 = (¢ - ). (14)

With Darcy’s equation in each phase, we obtain the fol-
lowing system in the saltwater phase

¢ —q. in [0,T]xQ,

div ( ) + SSW s)

U =-KVh,,

and by similarity the governing system for the freshwater
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Ficure 3: Continued.
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F1GURE 3: The non-uniform dynamic of the interface and the pumping duration effect. Data: (a), (b), and (c) are a vertical section at y = -1
for pumping duration ¢ = 40, 50, and 60, respectively. (d), (e), and (f) are a vertical section at y = -2 for pumping duration t = 40, 50, and 60,

respectively.
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FIGURE 4: Pumping flow effect on the interface dynamic shown by the pollution time versus the flow for different fixed distance, d, between

the well and I',. Data: (a) d=1.5 and (b) d=3.

movement
. oh
div (U, ) +S,—L =g’ —q". in [0,T]xQ,,
IV( f)+f8t 4-qr i [T]x 7 (16)
. .
U, =-K,Vh;,

« »

where S is given like in equation (13) replacing the “s” indice by
°f". Being in the same homogeneous media (2, we take K, = K
= k. The specific storage coeflicient of the saltwater and the fresh-
water, S; and S;, respectively, depends on 6 and 6, respectively.

To close the models (15) and (16), we consider the case S, and
S ¢ are constants.

2.2. The Global Model. In the previous section, we have local
systems that govern the flow in each compartment Q. and
Q; of our study domain ©. Now, we need to find a valid sys-
tem throughout the domain (2, which means a global model
of the phenomena. For that, we set global variables using
indicator function, which is defined as follows:

Xa(x) = (17)

1 if xeQ,
0 elsewhere’
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F1GURE 5: Pumping flow and distance well-sea effect on the pollution time. Data: (a) pollution time versus distance well-sea for fixed flows
given by the well radius; (0)r = 0.2, (c)r =0.4, (O)r = 0.6, (<)r = 1; (b) pollution time versus the flow for different fixed distance, d, between

the well and I';; (0)d = 1.5, (e)d =3, (O)d = 4.5, (<)d = 6.
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FIGURE 6: Pollution time versus the distance between the well and the saltwater injection part for different fixed flows: comparison between
the simulation results and the empirical law. Data: (a) r = 0.3, (b) r = 0.5. In both, marked line is for simulation results, and continuous bold

line is for empirical law.
like

h= thf + xh
S= stf + XS
U:Xfo+XsUs .

4 = xq; + X.4»

q' = X495 + X4

In this work, freshwater and saltwater are considered.
Off course those two fluids are miscible. Therefore, they

are separated by a transition zone characterized by the vari-
ations of the salt concentration. Nevertheless, the thickness
of the transition zone is small compared to dimensions of
the aquifer. We then assume that an abrupt interface sepa-
rates two distinct domains, one for the saltwater and one
for the freshwater. This interface is then considered like a
contact surface, which means there is continuity of the pres-
sure at the interface.

The piezometric head in the saltwater, i, and in the
freshwater, h, are given respectively by hs=(p,/p.g) + z
and hy = (ps/p;g) + 2.

Let a particle at the interface with elevation z,,,, means
Z, =2y =2z, with the continuity of the pressure at the
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FIGURE 7: Pollution time versus the pumping flow for different fixed distances: comparison between the simulation results and the empirical
law. Data: (a) d =2, (b) d =3.5. In both, marked line is for simulation results, and continuous bold line is for empirical law.

interface, p,=p;, we have p,g(h, = 2) = prg(ly - 7
means Ziy = (p,/p, = py)hs = (pslps = py)hy
We obtain the following relation

Py
Ps_Pf

Zp = ~Ohy + (1 +8)h, with 8= (19)

Only pumping freshwater throughout the pumping well
w is considered, and let gy, the pumping term. We assume

that there are not providing freshwater and not taking salt-
water, i.e., qj'i =0and g’ = 0. Let I', the part of the boundary

of O, where the saltwater injection is done and let g, the
injection term. The dynamics of the interface between the
saltwater and the freshwater can be obtained by solving
the local models given by equations (15) and (16) and the
interface head in equation (19). But in this work, we find
a global system that gives directly the dynamics of the
interface. We can remark that the dynamics of the interface
drive the dynamics of the salt wedge and vice versa.
Thereby, considering systems (15) and (16) and the expres-
sion of z;,, given in equation (19), we have the following
equation

0z,

S5 kAo = ‘5@? - q}) +(1+0)(f —q;), (20)

where S is given in equation (18). Like in the local models,
we study only the case S;=S;=S=constant. Under the
pumping of freshwater and the injection of saltwater, we
obtain the following system governing the movement of

the interface

0z.
S gltm ~kAz, =841, in [0,T]xQ,
aZint t :
- =(1+8)q, on [0, T] x I,
Zint(0: %, Y) = Zipgo (% y) in Q.

(21)

The next step is devoted to the resolution of the system
(21) for studying the movement of the interface.

3. Resolutions

In this section, we solve theoretically and numerically our
global model (21). We start by a mathematical analysis,
where we show that our problem is well posed. Before end-
ing this section by a parametrical study, we expose the
numerical solution, which shows the interface dynamic
under the freshwater pumping and saltwater injection
effects.

3.1. Mathematical Analysis. We consider an open bounded
domain Q of R? describing the interface. The boundary of
O, assumed C' is denoted I'. The time interval is [0,T], T
being any non-negative real number, and we set Q, =[0, T
] x Q. The space of real values functions that are square inte-
gral on Q with respect to the Lebesgue measure dx is
denoted by the relationship

()= {u . @ — Riuch that <Lu2 (x)dx) <oo}. (22)



The space L*(Q) is equipped with the norm
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Iz = (| Jw@)lPdx) (23)
Q
and the scalar product
(V)20 = Jgu(x)v(x)dx. (24)

The Sobolev space H'(Q) is denoted by the expression

H'(Q) = {u: Q— Rsuchthatu € L*(Q),Vu € L*(Q)’ }.
(25)

The space H'(Q) is equipped with the scalar product

(1 V)i1(0) = JQ(u(x)v(x)+Vu(x)Vv(x))dx, (26)
that induces the norm
wioy= (| (e +vucof)as) . @)

We can remark that H'(Q) is a particular case of the
Sobolev space W™?(Q), m and p integers, where

W™ (Q) = {

u: Q— Rsuchthatu € [/(Q), }

Due (IP(Q))’, Va = (a;, &y, a3)eN? : [a|<m
(28)

D% is given by D=0 u/0x}0x520x3’, x = (x, X, x3) €
Q,and |a| =0y +a, + 3.

Indeed H'(Q) = W(Q) and so H*(Q) = W>*(Q).

We define L%(0, T, H*(Q2)) by the set of all function u
such that u(t,-) € H*(Q),Vt € [0, T] and u(- ,x) € L*([0, T))
Vx € Q.

The following theorem shows that our model (21), under
some assumptions, has an unique solution.

Theorem 1. For q, in L?([0, T] x w), q, in L*([0, T] x I',), and
Zino in L*(Q), the system (21) admits a unique solution in
L*(0, T, H*(Q)). This solution that we denote by z,,, satisfies
0z;,,/0n € L*(0, T, L*(I',)) and 0z,,/0t € L*(0, T, L*(Q2)).

For elements of proof and more documentation, see [25]
or [26].

3.2. Numerical Simulation and Parametrical Study. In this
section, using some numerical schemes, we solve the prob-
lem (21). Like the dynamic of the interface depends on the
parameters of the model, a parametrical study ends this
section.

Modelling and Simulation in Engineering

3.2.1. Numerical Simulation. For the numerical simulation of
our model, we use the P, Lagrange finite element to deal
with the spatial discretization of the problem (21). For that,
it is convenient to write the variational formulation of the
problem. It consists to replace the equation of the problem
by an equivalent formula, said variational. This formula is
obtained by multiplying the equation by a test function to
integrate. The main tools for the variational formulation
are the Green formula [26-28]. We obtain the following
integral equation

(1+68)q,vdo

s

0
kJ Zine VVAX + SJ —Z - vdX - kJ
o o Ot

r

= 6(qr)1,vdX, 2, (0, X) = 2y o (%)
| 5(a)) {(0,%) = 20 ()

(29)

The time operator (9/0t)zy, is approximated by an
implicit Euler scheme 0z,,,/0t =z — 2" /dt.

The variational formulation is given as follows:

J (Szipy'v + dt - kVZn ' Vv)dX - dt - kJ

int int
o

(1+6)g,vdo
r

s

= JQ (Szi'gtv +dt-8 (qf) le) dX;, 2 (0, X) = Zjp0(X)-

(30)

The software are FreeFem++ for the resolution of the
model and Python for visualization of the obtained results.
The aquifer is represented by a three-dimensional Q of size
[-4, 4] x [-4, 4] x [-2, 35]. The freshwater pumping is done
in a circular well w, which is centered at (0,0, 34.5), and
the saltwater injection is done at the face I'; = {4} x [-4, 4]
X [-2,20]. We use the P, finite elements with a structured
mesh. The initial state of our domain is illustrated in
Figure 2, where we have the interface alone in Figure 2(a)
and the interface and the two fluids (freshwater and saltwa-
ter) in Figure 2(b).

To start solving our model, the following flow parame-
ters g, = 1.5, k=S=1, and g, = -1 are considered. The dif-

ferent results plotted in Figure 3 show a movement of the
interface under the freshwater pumping effects. We notice
that this movement is much more visible at the level of the
pumping well, hence this kind of bump on the interface. In
Figure 3, we can see that the dynamic of the interface is
not uniform and depends on which position we are accord-
ing to the well. In Figures 3(a), 3(b), 3(c), 3(d), 3(e), and 3(f),
we plot the interface respectively in the section y =-1 and
y=-2. The bump elevation due to the freshwater pumping
is more remarkable at y = -1 than at y = —2. Moreover, this
bump elevation depends also on the pumping duration.
We notice it in Figures 3(a), 3(b), and 3(c) in the position
y=-1and in Figures 3(d), 3(e), and 3(f), for y = -2 for times
t =40, 50, and 60, respectively. We can remark that the
pumping flow plays an important role in the interface
dynamic. This effect can be shown if we consider the
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pollution time of the well. Indeed, we saw that when we
pump the freshwater, the interface moves and we have a
bump on the well level; this bump can grow up to reach
one certain head. If this bump level is equal to 34,5, we said
there is pollution and stop pumping. We recall that the
upper bound of the head of our domain is 35. The effect of
pumping flow is shown by the pollution time versus the
flow. This effect is plotted in Figure 4 for different positions
of the freshwater pumping well. In Figure 4(a), results are
obtained for the well located to the distance d=1.5 from
the saltwater injection face I'; and in Figure 4(b) for d = 3.
In both figures, we remark that the pollution time depends
deeply on the pumping flow. It is a decreasing function of
the flow. We notice also that this pollution time, for a fixed
flow, increases with the distance between the well and the
saltwater injection area. It can be seen by comparing
Figures 4(a) and 4(b). All these observed phenomena lead
us to make a parametric study in view of drawing empirical
laws.

3.2.2. Parametrical Study. We have taken different pumping
flows and different positions of our pumping well. The pol-
lution threshold remains fixed at z=34.5, this means that
when the interface elevation reaches this level, we say that
the pumping well is polluted. According to these flows and
positions, we have different pollution times. The flow is the
product between the velocity (here noted by g, otherwise
our pumping term) and the well area, so for obtaining our
different flows, we fixed the velocity g, and taking different
radius r. In the different figures, the values of the flow are
in reality the values of the well radius. The distances well-
sea are the different distances between the well and the salt-
water injection part.

To study the pumping well position effects, we move the
well for different fixed flows. The obtained results are plotted
in Figure 5(a). The pollution time is given versus the dis-
tance between the pumping well and the saltwater injection
area for each fixed flow. For all fixed flow, the pollution time
is small if we are close to the sea, on the other hand, if one
moves away from the sea, this time increases, it means that
one can exploit the well longer. Thus, for sustainable use of
the well in coastal aquifer, it is very important to take into
account the well positions and maximize as much as possible
the distance between the pumping well and the sea. It is
shown too in Figure 5(a) that the pollution time depends
on the using flow, which justifies the different curves in this
figure. To emphasize this effect, we plot the pollution time
versus the flow for different fixed distance in Figure 5(b).
In Figure 5(b), the flow effect on the pollution time is stud-
ied. For each fixed position of the pumping well, we pump
with different flows. We recall that the different flows are
obtained by taking different well radius. The plotted results
in Figure 5(b) show that the pollution time is a decreasing
function of the flow for each position, which means for each
distance between the pumping well and the saltwater injec-
tion part. This shows us that if we want to use a pumping
well for a long time, we must manage the flow. The appro-
priate flow for well position given can be known if we find
a relation between the pollution time and the distance for a

fixed flow or the pollution time and the flow for a given dis-
tance. This leads us to look for empirical laws between pol-
lution time and the flow but also between pollution time
and the distance between the pumping well and the saltwater
injection part.

3.3. Empirical Laws. The results plotted in Figures 5(a) and
5(b) lead us to think about a relationship between pollution
time and the distance in one hand and pollution time and
the flow in another hand. For that, we fit the different curves
according to a logarithmic representation. We see that for
fixed flows, the pollution time can be obtained by a power
law function of the distance between the pumping well and
the saltwater injection part. This power law function is given
by equation (31)

PT = exp () x (distance)”. (31)

In another hand, for fixed distance, which means fixed
position of the pumping well, the pollution time is also
obtained by a power law function of the flow, which is given
by equation (32)

PT = exp (y) x (flow)™. (32)

Of course, the coefficients in equations (31) and (32)
depend on the fixed parameters of the model. In the empir-
ical law (31), o and S depend on the fixed flow, and we
remark that 3 is a positive number, which shows that our
increasing function is like the curves in Figure 5(a). The
coefficients y and A in the empirical law (32) depend also
on the fixed distance, and A is a negative number. So we have
here a decreasing function of the flow, which is shown in
Figure 5(b). A comparison between the pollution time
obtained in simulation and the one calculated with the
empirical laws is done in Figure 6 (pollution time versus dis-
tance for r =0.3 and r = 0.5) and in Figure 7 (pollution time
versus flow for d =2 and d = 3.5). The results of this com-
parison are satisfactory.

4. Conclusion

The work done in this paper is very interesting, and the
results obtained are very important. The global model,
which governs the dynamic of the interface between the salt-
water and the freshwater, is obtained considering the flow
model in each phase. Therefore, the salt concentration of
each fluid is not considered, then we have no transport equa-
tions like the previous works in this field. The dynamic of
the interface is due to an injection of saltwater by the sea
and a freshwater pumping through a well. In this work, only
one well is considered, and the injection flow of saltwater is
constant. The pollution time is studied for several well posi-
tions and pumping flows. We can conclude that this study is
very important in coastal aquifer. In fact, for an efficient use
of the pumping wells, it is interesting to consider the dis-
tance between the well position and the saltwater injection
part because pollution time is seen to be an increasing func-
tion of this distance for any fixed pumping flow. Moreover, a
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good management of the pumping flow can help for a longer
use of the well. The reason is for a fixed distance, the pollu-
tion time is a decreasing function of the pumping flow.
Empirical laws are found for the pollution time versus the
distance respectively versus the flow for fixed flow respec-
tively fixed distance. The results obtained here for saltwater
intrusion can be used in other field, where we have two
phases of fluid in the similar conditions. For future works,
we can consider two or several pumping wells and compare
the results with the use of a single well. The saltwater injec-
tion, which is taken as constant for any time, can be consid-
ered as varying and a control of the injections, and the
pumping flows can be done. To obtain our global model,
we assumed the interface as a contact surface, otherwise a
pressure jump is to be expected.
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