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Acetyl chloride hydrolysis is a highly sensitive exothermic reaction that has presented several industrial safety issues. In the present
study, a multiparameter mathematical model, previously developed and applied to simulate the oscillatory thermal behavior of an
experimental continuous stirred tank reactor, was used to determine the static/dynamic bifurcation behavior of this reactive
system. The values predicted by the model showed good agreement with the experimental data reported in the literature. Full
topological classification of its fixed points and iterative maps was obtained: unique solutions (stable and unstable), multiple
solutions, cyclic envelope, and bifurcation objects of codimension 1 (e.g., fold and Hopf’s points) and codimension 2 (e.g., cusp
and generalized Hopf and Bogdanov-Takens points) have been uncovered. The emphasis of the analysis is to determine safe
operating conditions through understanding these topological features andmanipulating the reactor design and operating parameters.

1. Introduction

Acetyl chloride, CH3COCl, is a highly volatile and corrosive
organic acid chloride, derived from acetic acid. Due to these
properties, its synthesis is usually carried out near to the
place of its application. It is used as an acetylating agent
for the production of esters and amides, in the pharmaceuti-
cal, dye and liquid crystal industries, and in the synthesis of
acetophenone by the Friedel-Crafts acylation of benzene
[1, 2]. In the presence of water, the highly exothermic and
spontaneous reaction of acetyl chloride hydrolysis can occur
(−ΔHrxn = 22400 cal/mol acetyl chloride). Consequently, a
dangerous phase transition (from liquid to vapor) can take
place. A clear example of the potential hazard of this reaction
occurred in 1997 at Caird Environmental Ltd., located in
Minworth, Birmingham (UK). During the cleaning operation
of an empty 45-gallon drum, residual acetyl chloride was
exposed to water, rapidly releasing a gas that caused an

explosion. As a result, the drum flew like a rocket towards
the surrounding buildings [3]. The total number of such
tanks in the company was 80. So what would be the magni-
tude of the explosion if more acetyl chloride had been
involved? Unfortunately, there is no precise information on
the amount of acetyl chloride handled by the company or
the record of related accidents and/or prevention methods.

Risk assessment has already been shown to be of para-
mount importance in managing reactive systems. In fact,
safety has become an essential factor in the design and oper-
ation of reactive process. Furthermore, learning to predict
and prevent the hazards of chemical process is expected to
be an essential part of the education of chemical engineers
[4–6]. In this sense, different methods of analysis have been
developed. The parametric sensitivity test is a practical tool
for thermal hazard analysis. However, only some critical
points can be identified with this technique (e.g., maximum
temperature points or hot spots) [7–9]. However, their
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criteria are very conservative and are not sufficient to fully
describe the phenomenon of thermal instability of a reactive
system [5]. Another method is dynamic (bifurcation) analy-
sis, which allows rigorous tracking of different variables over
a wide range of operating conditions. This implies the math-
ematical application of the singularity theory and/or bifurca-
tion theory. The first defines the possible topological shapes
and features that a dynamic model can take (i.e., using bifur-
cation diagrams). Furthermore, it provides a useful frame-
work to classify bifurcation phenomena (evidencing the
different types of multiplicity) and their mathematical singu-
larities. The research groups of Uppal et al. [10, 11] and
Balakotaiah et al. [7, 12–16] applied this theory for the study
of the steady-state multiplicity and dynamic behavior of
hypothetical reactions in a CSTR. They used parameter-
parameter diagrams and phase diagrams to qualitatively
explain and characterize the singular behavior of each of
the formed regions. Later, Golubitsky and Schaeffer [17]
developed a special variant of this theory; they called it the
singularity theory with a distinguished parameter. It defines
an “organizing center” as a reference point at which the
highest number of singularities of the system occurs. From
this point, unfolding and parametric projections of space
can be made, which makes it possible to predict all kinds
of bifurcation diagrams. Gray and Roberts [18] presented
an excellent summary of this theory and show the most
representative singular points, their respective nondegene-
racy conditions, unfolding, and bifurcation diagrams. Subse-
quently, they applied it to study the nonlinear behavior of
carbon monoxide oxidation [19]. Chang et al. [20] published
a review of this theory and its application to the study of the
stability of hypothetical reactive systems carried out in a
recirculating CSTR. Stable and unstable equilibria and limit
cycles were identified for single reactions, while quasiperi-
odic, periodic, and chaotic attractors were recognized for
two consecutive reactions. Cho et al. [21] used this theory
to study the stability of a hypothetical, autocatalytic, and
nonisothermal CSTR and outlined its behavior through
qualitative bifurcation diagrams. More recently, Ball and
Gray [22], Elnashaie and Elshishini [23], and Ajbar and
Alhumaizi [24] used this theory to study the stability of
2.3-epoxy-1-propanol hydrolysis, reactions involved in the
petrochemical industry (e.g., benzene oxidation and ethylene
hydrogenation) and enzymatic reactions, respectively, pre-
dicting different behaviors around the arisen bifurcations
and topologically discriminating the generated regions. On
the other hand, the bifurcation theory characterizes the
topological structural changes of a system, which is repre-
sented by a set of equations (e.g., ordinary differential
equations). The locus where such changes arise is called a
bifurcation and can be classified according to its mathemat-
ical properties (e.g., the nature of Jacobian matrix eigen-
values and the normal form). Their behaviors can be
verified, that is, by constructing bifurcation diagrams (state
variables versus bifurcation parameter) and phase diagrams.
Guckenheimer and Holmes [25] proposed a relevant theo-
retical framework on the principles of bifurcations and
placed special emphasis on the study of nonlinear, quasipe-
riodic, and chaotic oscillations. Kubíček and Marek [26]

proposed very useful mathematical tools and numerical
techniques to determine the different types of bifurcations
and to construct the solution curves for equilibrium points
and limit cycles (i.e., using continuation methods). Some of
their algorithms have been implemented in software such
as Fortran and C language. Kim et al. [27] used this theory
to demonstrate the occurrence of period doubling bifurca-
tions, irregular oscillations, and chaos in a system of two
chemical reactions in series carried out in a tubular reactor.
Troger and Steindl [28] contextualized this theory from an
engineering point of view and applied it to solve mechanical
problems. More recently, Strogatz [29] proposed a system-
atic development of this theory. It covers essential topics
such as first-order differential equations and their bifurca-
tions, analysis in phase planes, limit cycles and their bifurca-
tions, chaos, and strange attractors. Elnashaie and Elshishini
[30] explicitly used this theory in real cases of heterogeneous
chemical reactors at the petrochemical industry. Govaerts
[31] detailed numerical methods for solving problems with
bifurcations, including improvements to equilibrium contin-
uation algorithms (e.g., arc length continuation). Kim et al.
[32] constructed bifurcation and phase diagrams to explain
the highly nonlinear behavior of a bioreactor with immobi-
lized enzymes, considering diffusion and substrate inhibition
phenomena. Kim and Chang [33] tested the chaotic
behavior of two consecutive first-order irreversible reactions
carried out in a nonisothermal CSTR, using bifurcation dia-
grams and phase portraits. Furthermore, its dynamical
model was validated by an artificial neural network method.
Wiggins [34], Kuznetsov [35], and Seydel [36] have shown
the evolution of bifurcation theory in recent decades, based
on excellent graphical patterns of system behavior around
different types of bifurcations. Kuznetsov’s work stands
out, since in a very peculiar and elegant way the mathemat-
ical principles of this theory were synthesized, introducing
important concepts such as local and global bifurcations,
codimension of a bifurcation, bifurcations in continuous
and discrete times, and continuation methods of equilibria
and limit cycles. In addition, he developed the MATCONT’s
graphical interface, available for MATLAB®, which incorpo-
rates numerical continuation methods for the construction
of bifurcation and continuation diagrams. Izhikevich [37]
adopted the notions of this theory and applied them to neu-
ral problems. He also proposed adequate and very assertive
diagrams about the appearance of different types of bifurca-
tion. Ajbar and Alhumaizi [24] used this theory to study the
dynamic behavior of chemostats (enzymatic reactions) with
stability problems. It was possible to identify different
bifurcations and multiplicity phenomenon characteristic of
these reactions. Finally, in the works of Ball and Gray [38],
Ojeda Toro et al. [5, 6], and Gómez García et al. [39, 40],
both theories were synergistically combined. In these, the
study of thermal stability and dynamic behavior of specific
reactive systems was systematically addressed, such as
hydrolysis of methyl isocyanate, acid-catalyzed hydrolysis
of glycidol, acetic anhydride hydrolysis, and hydrogen per-
oxide decomposition. All possible bifurcation diagrams and
two parameter continuation diagrams were constructed.
Therefore, the regions of stability (safe operating conditions)
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and instability could be topologically discriminated for each
case, and the dynamic behavior was verified by computed
time series (sensitivity analysis). It should be noted that the
bifurcation and dynamical analyses and the aforementioned
mathematical tools can be considered as key strategies for
the design and control of a nonisothermal reactor with a
priori stability problems for its large-scale commissioning
and operating start-up.

In this study, a systematic methodology was used to
study the dynamic behavior of acetyl chloride hydrolysis. It
was based on the combination of the principles of the
singularity and bifurcation theories and was supported by
continuation methods incorporated in the MATCONT
(MATLAB®) package. The experimental results reported
by Baccaro et al. [41] were initially reviewed. Therefore, both
reaction kinetics of the reaction and the characteristics of the
reactor and experimental conditions were adopted. They
demonstrated that the hydrolysis of acetyl chloride, in the
presence of acetone as solvent, presents thermal oscillations
in a continuous stirred tank reactor (CSTR). Here, the
characteristics of the CSTR were considered to derive an
appropriate dimensionless mathematical model. To examine
in detail the topological features of the acetyl chloride hydro-
lysis, different bifurcation and continuation diagrams were
mapped and analyzed. As a result, stable (safe) and unstable
operating conditions were defined.

2. Kinetics of Acetyl Chloride Hydrolysis

The acetyl chloride hydrolysis can be expressed as follows:

CH3COCl + H2O ⟶
acetone CH3COOH +HCl 1

The background on its reaction rate law and its experi-
mental conditions were reported elsewhere [41–43]. Briefly,
a 2-liter polyester CSTR was used to carry out the hydroly-
sis reaction. The CSTR was continuously fed by two liquid
currents: the first, acetyl chloride with a volumetric flow
rate of 27.5 cm3/min, a concentration of 4.21M and a tem-
perature of 284K, and the second, a mixture of 8.33 to
10wt.% of water (5.06M) in acetone with a controlled flow
rate of 64 cm3/min and a temperature of 284K. In addition,
the reactor included cooling coils that also functioned as
baffles. A cold mixture of 10% methanol, 25% ethylene
glycol, and 65% water by volume was pumped through
the cooling coils with a flow rate of 200 cm3/min and a
temperature of 270K. The temperature change of the refrig-
erant was negligible due to its high volumetric flow rate.
Subsequently, combining the mass and energy balances and
using nonlinear regression, kinetic parameters were linear
fitted to the following reaction rate law:

−rA = A0e
−Ea/RT CACB, 2

where the subscripts A and B correspond to acetyl chloride
and water, respectively. The experimental conditions as well
as the values of the fitted kinetic parameters (A0 and Ea)
are presented in Table 1.

3. Dynamic Model for the Thermal
Stability Analysis

For the thermal stability analysis, a homogeneous and
un-steady-state CSTR model was considered. The start-
up of the reactor corresponds with a CSTR of fixed volume,
with constant overflow (V = V0) and constant density.
Furthermore, all thermal and composition gradients were
neglected. Therefore, the material and energy balances can
be represented as follows:

VR
dCA
dt

= υ CAf
− CA − A0 exp −

Ea
RT

CACBVR, 3

ρVRCP
dT
dt

= ρυCP T f − T

+ −ΔHrxn A0 exp −
Ea
RT

CACBVR

−
UAcKυc
1 + Kυc

T − Tc ,

4

where K = 2CPcρc/UAc.
Differential equations (3) and (4) are restricted to the

following initial conditions:

t = 0,

CA = CA0
,

T = T0

5

Equations (3) and (4) were reparametrized, correlating
the selected parameters with those of the original data
reported by Baccaro et al. [41]. Thus, the following dimen-
sionless variables and parameters were introduced:

xA =
CA0

− CA

CA0

, acetyl chloride conversion,

θ =
RT
Ea

, dimensionless reaction temperature,

θc =
RTc
Ea

, dimensionless cooling temperature,

ΘB =
CB0

CA0

, water feed ratio,

τ =
t
tr
, dimensionless time, where tr is the residence time, tr =

VR
υ

,

θf =
RTf
Ea

, dimensionless feed temperature,

α = A0trCA0
, dimensionless frequency factor,

β =
−UAcKυctr

1 + Kυc VρCPT0
, heat transfer term,

ψ =
−ΔHrxn CA0

R

ρCPEa
, heat released term

6
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Therefore, the dimensionless dynamic model can be
expressed as follows:

dxA
dτ

= −xA + α exp −
1
θ

1 − xA ΘB − xA , 7

dθ
dτ

= β θ − θc + θf − θ

+ αψ exp −
1
θ

1 − xA ΘB − xA ,
8

with the following initial conditions:

τ = 0,

xA = 0,

θ = θ0

9

Thermal stability analysis for the acetyl chloride hydro-
lysis can be performed by simultaneously solving equations
(7) and (8) and varying the parameters (α, β, ψ, θc, θf , and
ΘB). Experimental conditions, from Baccaro et al. [41]
(Table 1), were used as the starting point of the numerical
routine. They are listed in dimensionless form in Table 2.

4. Characteristics of the Dynamic Behavior

The mathematical model was solved by an iterative numeric
method using MATCONT (MATLAB®) package. At first,
the steady state was determined over a long integration time.
It represents the starting point of the numerical continuation
for the subsequent construction of the bifurcation and con-
tinuation diagrams in different conditions. Singularity and
bifurcations theories were combined to locate and interpret
the geometric points in a multiparameter space. The eigen-
values of the continuation points have a direct correspon-
dence with the stability of the system (the appendix shows
the relationship between the dynamic reactor model and
the eigenvalues of the characteristic or Jacobian matrix), as
shown below [23, 35]:

(1) Stable Points. These can be classified as stable nodes
or stable foci. The former is present when the eigen-
values of a solution are negative real numbers.
Meanwhile, the second ones appear when the eigen-
values of a solution are a pair of complex conjugates
with negative real part. When the reactive system is
operated in a stable node and a disturbance is
applied to it, the system variables (conversion and
temperature) quickly tend to return to the condi-
tions of the stable node. On the other hand, when
operating on a stable focus and a disturbance is
applied to it, the system variables present oscillatory
behavior that decreases in amplitude with time until
reaching the conditions of the stable focus

(2) Unstable Points. These can be classified as unstable
nodes, unstable foci, and unstable saddles. The first
arises when the eigenvalues are positive real num-
bers. For their part, the seconds appear when the
eigenvalues are a pair of complex conjugates with a
positive real part. And the third parties arise when a
pair of eigenvalues are real numbers with opposite
sign. Contrary to stable points, when the reactive sys-
tem operates in an unstable node, the conversion and
temperature tend to deviate rapidly from these condi-
tions towards a more stable region. This trend persists
when the reactive system operates in an unstable
focus, with the variables deviating from this condition
in an oscillatory manner and increasing their ampli-
tude over time. However, if the system operates near
a saddle point (generating an imaginary separatrix of
stable regions), the conversion and temperature tend
rapidly towards the nearest stable region

(3) Fold Bifurcation (FB). In many references, it can also
be found as static limit point, turning point, or sad-
dle node. Its occurrence must satisfy the following
condition: a real eigenvalue must change sign (e.g.,
a positive real eigenvalue becomes negative or vice
versa). This is the point responsible for the appear-
ance of the hysteresis phenomenon. If a perturbation
is applied when the reactive system operates near
this bifurcation, the conversion and temperature
tend to jump across the separatrix generated by a

Table 1: Experimental conditions for the hydrolysis of acetyl
chloride (from [41]).

Physical quantity Value Dimension

A0 2 02200 × 1010 cm3⋅mol-1⋅min-1

CA0 4 21 × 10−3 mol⋅cm-3

CAf 4 21 × 10−3 mol⋅cm-3

CB0 5 06 × 10−3 mol⋅cm-3

CBf 5 06 × 10−3 mol⋅cm-3

CP 0.777 cal⋅mol-1⋅K-1

CPc ⋅ ρc 0.887 cal⋅cm-3⋅K-1

Ea 1 20 × 104 cal⋅mol-1

R 1.98626 cal⋅mol-1⋅K-1

t 500 min

T0 284 K

Tc 270 K

T f 284 K

U ⋅ Ac 2 11103 × 102 cal⋅min-1⋅K-1

VR 1 0 × 103 cm3

ΔHrxn −2 24 × 104 cal⋅mol-1

ρ 0.583 g⋅cm-3

υ 84.4664 cm3⋅min-1

υc 200 cm3⋅min-1
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saddle point until they again reach a stable point
(stable node or stable focus). The occurrence of this
phenomenon can be highly risky in the operation
of highly reactive systems

(4) Hopf Bifurcation (HB). In several references it can be
also found as the Andronov-Hopf bifurcation. In this
case, the following condition must be met: the real
part of a complex conjugate eigenvalue pair changes
sign (e.g., negative real part of a complex conjugate
pair changes to positive real part). When the reactive
system is operated in the vicinity of this bifurcation,
it is exposed to both conversion and temperature
exhibiting continuous oscillatory behavior (with
fixed amplitude). This region is also considered out
of control and highly dangerous for highly exother-
mic reactive systems

(5) First Periodic Orbits or Limit Cycle Oscillation. These
arise just after a Hopf bifurcation appears, that is,
when the eigenvalues are pure imaginary numbers.
This condition is associated with the first cycle or
oscillatory behavior that forms after the appearance
of the Hopf bifurcation. In other words, it corresponds
to the initial cycle with lower emerging amplitude

(6) Generalized Hopf (GH) Bifurcation. It can be also
found as Bautin bifurcation. It arises when a Hopf
bifurcation appears (i.e., it has a pair of pure imagi-
nary eigenvalues) and the first Lyapunov coefficient
has a value of zero. This type of bifurcation occurs
when two Hopf bifurcations (one supercritical and
one subcritical) and a fold bifurcation of limit cycles
collide. When the reactive system operates near this
bifurcation, both the conversion and temperature
are exposed to a hysteresis phenomenon, where the
separatrix is an unstable limit cycle and the stable
solutions can be a stable focus and a stable limit cycle
(described above). It should be noted that under
these conditions, the operation of exothermic reac-
tive system is highly unsafe

(7) Bogdanov-Takens (BT) Bifurcation. It can also be
found as double zero bifurcation. It arises when a pair
of eigenvalues has zero values. This type of bifurcation

occurs when twofold bifurcations, a supercritical Hopf
bifurcation, and a homoclinic saddle orbit collide
simultaneously. When the reactive system operates
in the vicinity of this point, the variables are exposed
to undergo the hysteresis phenomenon, where the
separatrix is a saddle point, and the solutions can be
two stable foci or an oscillatory envelope (stable limit
cycles). Again, to ensure a stable and safe operation
of exothermic reactive systems, it is important to avoid
these types of conditions

(8) Cusp Bifurcation (CB). This arises when the follow-
ing conditions are met: an eigenvalue has zero value,
and the second derivative of a state function with
respect to a state variable has zero value (this restric-
tion is also known as the center manifold). This
bifurcation arises when twofold bifurcations collide.
Consequently, the reactive system in these condi-
tions can be exposed to multiple steady-state regimes
(hysteresis phenomenon), which makes it a highly
unsafe operation in the vicinity of this point

For each dimensionless parameter, dimensionless tem-
perature (θ) and conversion (xA) diagrams can be obtained
as a function of dimensionless time (τ), where critical points
and stable/unstable regions are adequately discriminated.
Likewise, continuation diagrams can be mapped by simulta-
neously varying two parameters.

5. Results and Discussion

As a first stage in the numerical analysis, the thermal profile
for the hydrolysis of acetyl chloride was calculated using the
reaction rate law experimentally verified by Baccaro et al.
[41]. Figure 1(a) reveals a hot spot at τ = 0 2279 and θ =
0 0750 and a sustained cyclical behavior before it approaches
steady state. From another perspective, a temperature-
conversion phase plane was plotted (Figure 1(b)). Notice
that it exhibits spiral trajectories before reaching steady state.

Starting from steady-state conditions (i.e., xA = 0 3552
and θ = 0 0451), dimensionless temperature and conversion
bifurcation diagrams were calculated as function of β, ψ,
and θc parameters. For each case, the envelop of periodic
solutions, Hopf bifurcation points, and the stable and unsta-
ble conditions are shown in Figure 2. Each diagram can be
divided in three regions as follows:

(i) The first one corresponds to the ranges of 0 < β <
2 2189 (0 < υc < 85 8735 cm3/min), 0 < ψ < 0 03385
(0 < CA0 < 0 0043mol/cm3), and 0 0448 < θc <
0 04517 (271 2 < Tc < 273 45K): in this region,
global stability is achieved since there is only one
stable solution. Conversion and dimensionless tem-
perature profiles decrease with increasing values of
β values, from β = 0 (adiabatic case) till β < 2 2189
(Figures 2(a) and 2(b)). The opposite effect was
observed with the heat released and cooling temper-
ature (e.g., conversion and dimensionless tempera-
ture increase with an increase of ψ and θc,
Figures 2(c)–2(f))

Table 2: Dimensionless experimental conditions for the acetyl
chloride hydrolysis.

Operating parameter Value

α 9 95771 × 108

β 3.31909

ψ 3 31311 × 10−2

θc 4 46257 × 10−2

θf 4 68960 × 10−2

ΘB 1.21021

θ0 4 68960 × 10−2
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(ii) The second region corresponds to the following
ranges: 2 2189 ≤ β ≤ 3 19912 (85 8735 ≤ υc ≤ 182
cm3/min1), 0 03385 ≤ ψ ≤ 0 05761 (0 0043 ≤ CA0 ≤
0 0073mol/cm3), and 0 04517 ≤ θc ≤ 0 04559
(273 45 ≤ Tc ≤ 276K): this region begins with a
supercritical Hopf bifurcation (at β = 2 2189, ψ =
0 03385, and θc = 0 04517). From this point on,
the state variables exhibit high sensitivity to fluctua-
tions in operational conditions. Indeed, the state

variables present a high sensitivity to fluctuations
in operating conditions (i.e., they become unstable
and a branch of periodic solutions emerges. Only
the maximum and minimum values of cyclic orbits
are shown in Figure 2). The maximum values of
conversion and dimensionless temperature reach
the following values: xA = 0 8878 and θ = 0 05778
(T = 349 08K) for β = 2 63051; xA = 0 98747 and θ
= 0 068210 (T = 412 09K) for ψ = 0 047325, and
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Figure 1: (a) Dimensionless temperature profile of acetyl chloride hydrolysis (simulated results) and (b) phase plane (dimensionless
temperature vs. conversion) at experimental conditions (Table 2, [41]).
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Figure 2: Continued.
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Figure 2: Continued.
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xA = 0 63186 and θ = 0 051090 (T = 308 66K) for
θc = 0 045435. In the first two cases (i.e., β =
2 63051 or ψ = 0 047325), temperatures are higher
than the boiling points of single reactive species:
acetyl chloride (Tsat = 325 15K or θsat = 0 0537),
water (Tsat = 373 15K or θsat = 0 0616), acetic acid
(Tsat = 391 15K or θsat = 0 0646), and hydrochloric

acid (Tsat = 321 15K or θsat = 0 0530). Therefore,
the reactive system can undergo a phase transition
(liquid-vapor) within an oscillating thermal enve-
lope from β and ψ parameters. Consequently, the
pressure in the reactor can increase to the point of
causing an explosion. Finally, in this region, the
oscillatory dynamic behavior prevails up to a second

Envelop of periodic solutions
Hopf Bifurcations

Stability
Instability

Region 1 Region 2 Region 3
0.65

0.60

0.55

0.50
0.0450 0.0455 0.0460 0.0465
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Region 1 Region 2 Region 3
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0.0500

0.0495

0.0490
0.0452 0.0456 0.0460 0.0464

�C

�

(f)

Figure 2: Conversion and dimensionless temperature dynamic behavior of the acetyl chloride hydrolysis: (a, b) β, (c, d) ψ, and (e, f) θc. The
other parameter values are maintained constant as in Table 2.
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supercritical Hopf bifurcation (at β = 3 19912, ψ =
0 05761, and θc = 0 04559)

(iii) In the third region, which corresponds to the values
of β > 3 19912 (υc > 182 cm3⋅min-1), ψ > 0 05761
(CA0 > 0 0073mol⋅cm-3), and θc > 0 04559 (Tc >
276K), steady-state stability is restored. Note that
as the values of ψ and θc increase, dimensionless
temperature also increases proportionally, reaching
quite high values

The dynamic behaviors generated from the variation in
the water feed ratio (ΘB) and the feed temperature (θf ) are
similar to those explained in Figure 2. They were included
as supplementary material (Figure S1a-d).

If ideally all operating parameters could be fixed (strict
control) except for one (one degree of freedom) and the
objective of the operation was to generate the greatest
amount of acetic acid and hydrogen chloride in a stable
manner, then the operating parameters should be the follow-
ing: β < 2 2189 (υc < 85 8735 cm3/min1), ψ > 0 05761
(CA0 > 0 0073mol/cm3), and θc > 0 04559 (Tc > 276K). On
the other hand, if the idea is to prevent the chemical reaction
from occurring or to control it safely, the operating param-
eters should be the following: β > 3 19912 (υc > 182 cm3/
min1), ψ < 0 03385 (CA0 < 0 0043mol/cm3), and θc <
0 04517 (Tc < 273 45K). However, any real process could
be exposed to the simultaneous disturbance or change of
more than one operating parameter. For this purpose, the
analysis of the system dynamics is performed using a contin-
uation diagrams, as demonstrated below.

Bifurcation diagrams, as a function of two parameters,
also called two-parameter continuation diagram (TPCD), is
another way of presenting the dynamic behavior of reactive
systems [5, 6, 23, 39, 40]. TPCD is especially useful if two
codimension bifurcations arise (this type of bifurcation can
be observed if two parameters are perturbed simultaneously)
[35]. Figures 3 and 4 show the possible TPCD combinations
for acetyl chloride hydrolysis (additional figures for θf -ΘB
and ψ-θf are included as supplementary material,
Figure S2 a and b).

The region enclosed by the Hopf bifurcation curve rep-
resents the oscillatory behavior of the state variables. Each
pair of the Hopf bifurcation loci is connected by a periodic
orbit with different amplitudes. In other words, in this
region, both conversion and dimensionless temperature
experience a sustained cyclical behavior (similar to those
shown in Figure 2), with the amplitude of the oscillation
changing as the parameters described above are modified.
Beyond the limits of the Hopf curve, a transition regimen
(stable to cyclical envelope) can be expected. Likewise, the
limit point curve defines the region of multiplicity of station-
ary states (multiple solutions). As mentioned above in
Section 4, in this region, the system variables are prone to
operate in multiple steady-state regimes, causing abrupt
jumps in them even when the reactive system experiences
small perturbations in its parameters.

Additional topological features of this reactive system
are evident in the TPCDs. They include the presence of
generalized Hopf (GH), cusp bifurcation (CB), and

Bogdanov-Takens (BT) bifurcation points. The occurrence
of a GH bifurcation (the first Lyapunov coefficient disap-
pears of the Hopf bifurcation) greatly affects the qualitative
topology of the continuation diagram and therefore the
dynamic behavior of the state variables of the system. From
its coordinates (point marked as 0 in Figure 5), two separate
branches emerge (subcritical (H+) and supercritical (H-)
Hopf bifurcations corresponding to the Hopf bifurcation
points with positive and negative Lyapunov coefficient,
respectively). They generate a separatrix (which divides the
θc vs. β plane in two regions marked as 1 and 2 in Figure 5).

To disaggregate the bifurcation diagram, the quantitative
and qualitative behavior of the reactive system in the vicinity
of the GH bifurcation point within the multiparametric
space was examined, for instance, a locus in the region 1
where the system presents a stable focus in the absence of
limit cycles (Figure 5, plot 1, H-). Crossing the separatrix
from region 1 to region 2 infers the appearance of a unique
stable limit cycle (Figure 5, plot 2, H+). Note that in the con-
ditions of the GH point, an extra unstable cycle is evident
(Figure 5, plot 0). This implies that, for parameter values
close to the GH point, the system presents two limit cycles,
which collide and disappear through a saddle-node bifurca-
tion of periodic orbits. However, for this particular case, the
saddle-node bifurcation (fold or turning point) of the cycles
overlaps the HB curve with great precision, making the
missing region to be imperceptible.

On the other hand, two branches of the fold bifurcation
curve (T1 and T2) meet tangentially at point CB (marked as
0 in Figure 6) dividing the bifurcation diagram into two
regions (marked as 1 and 2 in Figure 6). Make a round trip
from region 2 where limit cycles are not possible (i.e., stable
node can be reached when the reactor operates in this region,
Figure 6, plot 2). Then, the node moves to another coordinate
on the T1 component of the fold curve (Figure 6, plot T1).
Entering region 1 produces other stable steady-state nodes
that divide the phase plane into two attraction domains
(Figure 6, plot 1). These roots or equilibrium values merged
and disappeared at point CB. If we continue the clockwise
journey, the T2 component of the fold curve reverts to stable
single-node behavior (Figure 6, plot T2). To complete our
round trip, notice that a stable cycle limit is present at the
coordinates of point CB (plot 0 in Figure 6). In summary,
the incidence of CB point implies the presence of hysteresis
or multiplicity phenomena in steady state.

To complete the analysis, the dynamic behavior around
the BT bifurcation point (marked as 0 in Figure 7) was
evaluated. It separates two branches T- and T+ from the
fold curve. Notice that the Hopf bifurcation curve (H in
Figure 7) is tangential to the fold curve. When we move
clockwise around the coordinates of the bifurcation point
BT in the parameter plane, four regions can be distin-
guished. Regions 1 and 2 are enclosed by the loci of limit
points. Two equilibria (saddle point and a stable node)
are predicted in these regions, colliding and vanishing via
fold bifurcation curve (plots 1 and 2 in Figure 7). The stable
node becomes a stable focus and loses stability after cross-
ing the H boundary of the Hopf bifurcation. A stable limit
cycle is present in regions 3 and 4 (plot 3, 4, T+ in
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Figure 7). Going back to point 0 produces a node transition
(plot 0, T-, H in Figure 7).

In summary, for a safe operation of the reactor (e.g., to
avoid oscillations of the state variables and the hysteresis
phenomena), the following operating rangesmust be avoided:

(i) 1 2127 ≤ β ≤ 3 3350 (35 3355 ≤ υc ≤ 202 95 cm3/
min1) and 0 0383 ≤ θc ≤ 0 0459 (231 86 ≤ Tc ≤
277 87K) (Figure 3(a))

(ii) β ≥ 2 1680 (υc ≥ 82 5334 cm3/min1) and ψ ≥ 0 0290
(CA0

≥ 0 0037mol/cm3) (Figure 3(b))

(iii) 1 2127 ≤ β ≤ 3 3350 (35 3355 ≤ υc ≤ 202 9510 cm3/
min1) and 0 0392 ≤ θf ≤ 0 0508 (237 31 ≤ T f ≤
307 53K) (Figure 3(c))

(iv) 0 8676 ≤ΘB ≤ 2 7470 (0 0036 ≤ CB0
≤ 0 0115mol/

cm3) and 1 9475 ≤ β ≤ 4 9931 (69 2392 ≤ υc ≤
1992 3 cm3/min1) (Figure 3(d))

(v) 0 075 ≤ΘB ≤ 2 0274 (3 1504 × 10−4 ≤ CB0
≤ 0 0085

mol/cm3) and ψ ≥ 0 0293 (CA0
≥ 0 0037mol/cm3)

(Figure 4(a))

(vi) ΘB ≥ 1 22 (CB0
≥ 0 0051mol/cm3) and 0 0383 ≤ θc

≤ 0 0459 (231 86 ≤ Tc ≤ 277 87K) (Figure 4(b))

(vii) 0 040 ≤ θc ≤ 0 0465 (242 15 ≤ Tc ≤ 281 50K) and
0 0331 ≤ ψ ≤ 0 0821 (0 0042 ≤ CA0

≤ 0 0104mol/
cm3) (Figure 4(c))

Note that the analysis of each parameter allows for a
comprehensive risk assessment of the system. This defines
the safe and unsafe regions of reactor operation and
characterizes the atypical or complex behavior of the
reactive system.

At this point in the discussion, an important question for
practical applications arises: what is the location of operating
points where the reactor could normally be operated? Con-
sidering that the hydrolysis of acetyl chloride is carried out
at high temperatures, the operating conditions must be set
other than the practical limit of stability (i.e., they must be
chosen based on low conversion). However, choosing a safe
operating point is not easy because very small differences
between parameter values can result in large differences in
dynamic behavior and ultimately in steady-state quality.
Experimental data and simulations of dynamic behavior
have shown that the oscillations shift the reactor to a lower
steady state. Additional data on reactor performance can
be found in bifurcation diagrams involving dimensionless
reactor temperature and acetyl chloride conversion
(Figure 2). Operation within these multiple steady-state
regions bounded by turning points and oscillation regime
regions can take place only with a high flow rate of acetyl
chloride, which is not common. In the case of reduced feed
flow (e.g., rapid or steady decrease in acetyl chloride flow
rate), conversion and temperature will fall following the
branch of steady states. No regime of multiplicity or oscilla-
tion is located there. Conversely, an increase in the flow rate
of the cooling medium will increase heat removal by chang-

ing, through branch shifting, the operation point from a
region of sustained oscillations to a lower steady state char-
acterized by low acetyl chloride conversion. The operator
must be aware of these situations in the event of a change
in acetyl chloride flow rate and/or refrigerant flow rate.

6. Conclusions

This work has made it possible to mathematically verify the
behavior of the hydrolysis of acetyl chloride. Based on the
bifurcation theory, applied to the multiparameter dynamic
system, safe operating conditions were identified. Bifurca-
tion and multiparameter continuation diagrams were
constructed. All dynamic and critical states were located
using MATLAB® software. The oscillatory behavior of the
variables and the multiplicity of steady states were demon-
strated, in a wide range of parameters. Furthermore, the
quantitative dynamic behavior around two codimension
bifurcations was predicted satisfactorily. Therefore, the
following conditions are recommended for safe operation:
low values of ψ (<0.0330), θc (<0.0452), θf (<0.04869), and
ΘB (<1.2439) and high values of β (>3.1940), that is, in
dimensional way, CA0 < 4 2 × 10−3mol/cm3, Tc < 273 63K,
T f < 294 76K, and υc > 181 3 cm3/min1.

Appendix

The dynamic model of the CSTR (equations (7) and (8)) can
also be expressed as follows:

dxA
dτ

= f1 xA, θ , A 1

dθ
dτ

= f2 xA, θ A 2

They can be linearized considering only the first-order
terms of the Taylor series as follows:

dxA
dτ

= f1 xASS
, θSS

+
∂f1 xA, θ

∂xA SS
xA − xASS

+
∂f1 xA, θ

∂θ SS
θ − θSS ,

A 3

dθ
dτ

= f2 xASS
, θSS

+
∂f2 xA, θ

∂xA SS
xA − xASS

+
∂f2 xA, θ

∂θ SS
θ − θSS ,

A 4

where the subscript SS denotes at steady-state condition.
From equations (A.1) and (A.2), it can be inferred that

dxASS

dτ
= f1 xASS

, θSS , A 5
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dθSS
dτ

= f2 xASS
, θSS A 6

When equations (A.5) and (A.6) are replaced in (A.3)
and (A.4) and ordered, two coupled homogeneous linear
differential equations are obtained

dx̂
dτ

=
∂f1 xA, θ

∂xA SS
x̂ +

∂f1 xA, θ
∂θ SS

θ ,

dθ
dτ

= ∂f 2 xA, θ
∂xA SS

x̂ + ∂f2 xA, θ
∂θ SS

θ ,

A 7

where x̂ = xA − xASS
and θ = θ − θSS are defined as deviation

variables.
In matrix form, they can be expressed as

dx
dτ

= A∙x, A 8

where

x =
x̂

θ
,

A =

∂f1 xA, θ
∂xA SS

∂f1 xA, θ
∂θ SS

∂f2 xA, θ
∂xA SS

∂f2 xA, θ
∂θ SS

A 9

x is the vector of deviation variables and A is the
Jacobian or characteristic matrix of the system.

The differential equation system (A.8) has the flowing
analytic solution:

x τ = eA∙τ∙x 0 A 10

Using the Sylvester theorem, it is possible to express
(A.10) as a function of the eigenvalues (λ1, λ2,⋯, λn) of
the Jacobian matrix [44], as shown below:

x τ = eAτx 0

= 〠
n

j=1
eλ jτ∙

2
i=1,i≠j A − λi∙I
2
i=1,i≠j λj − λi

x 0

= eλ1τ
A − λ2∙I
λ1 − λ2

+ eλ2τ
A − λ1∙I
λ2 − λ1

x 0 ,

A 11

where I is the identity matrix.
Therefore, the solution vector equals to

x τ =
1

λ1 − λ2
A − λ2I eλ1τ − A − λ1I eλ2τ x 0 A 12

It is clear that the behavior of x τ depends on the nature
of the eigenvalues. These are obtained from the following
equation [45, 46]:

det A − λI = 0,

A11 − λ A12

A21 A22 − λ
= 0

A 13

The determinant solution is a λ polynomial (characteris-
tic equation):

λ2 − trA λ + det A = 0 A 14

Note that the degree of this polynomial will depend on

the dimensional size of the system; it is grade two x̂, θ
for the present case.

λ2 − trA λ + det A = 0 A 15

By solving the quadratic equation, the eigenvalues are
equal to

λ1,2 =
trA ± trA 2 − 4 det A

2
, A 16

where

trA = A11 + A22 =
∂f1 xA, θ

∂xA SS
+
∂f2 xA, θ

∂θ SS
, A 17

det A =
A11 A12

A21 A22

= A11∙A22 − A12∙A21

=
∂f1 xA, θ

∂xA SS
∙
∂f2 xA, θ

∂θ SS

−
∂f1 xA, θ

∂θ SS
∙
∂f2 xA, θ

∂xA SS

A 18

Thus, the eigenvalues depend on the trace values (tr) and
the determinant (det) of Jacobian matrix A. In turn, these
will depend on the operational parameter values of the orig-
inal system, according to equations (7) and (8).

Notation

Latin Symbols

Ao: Frequency factor (cm3⋅mol-1⋅min-1)
Ac: Cooling coil area (cm2)
C: Reacting concentration (mol⋅cm-3)
CP: Specific heat of the reaction mixture (cal⋅mol-1⋅K-1)
Ea: Activation energy (cal⋅mol-1)
r: Reaction rate (mol⋅cm-3⋅min-1)
R: Ideal gas constant (cal⋅mol-1⋅K-1)
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T : Time (min) or temperature (K)
tr: Residence time (min)
U : Overall heat transfer coefficient of the coil (cal⋅cm-2⋅min-

1⋅K-1)
VR: Reactor volume (cm3)
xA: Conversion.

Greek Symbols

α: Dimensionless frequency factor
β: Dimensionless heat transfer term
ΔHrxn: Reaction enthalpy (cal⋅mol-1)
θ: Dimensionless temperature
ρ: Density (g⋅cm-3)
τ: Dimensionless time
υ: Volumetric flow (cm3⋅min-1)
ψ: Dimensionless heat released term.

Subscripts

0: Initial condition
A: Acetyl chloride
B: Water
c: Cooling condition
f : Feed condition.
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Supplementary Materials

Fig. S1: conversion and temperature dynamic behavior of
the acetyl chloride hydrolysis. (a and b) ΘB and (c and d)
θf . The other parameter values are maintained constant as
in Table 1. Fig. S2: multiparameter continuation diagrams

showing the critical points. (a) θf −ΘB and (b) ψ − θf .
The other parameter values are maintained constant as in
Table 1. (Supplementary Materials)
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