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The definition of derivatives and integrals of any real or complex order can be found in fractional calculus, which is an extension
of ordinary calculus. Many real-world processes might be more accurately modeled by these fractional calculi. Flexibility and
nonlocality are the two fundamental benefits of fractional derivatives. These derivatives, which are of fractional order, are more
flexible than classical derivatives in how they might approach real data. Due to its applications in numerous domains, the
fractional order model has grown in significance and popularity. The simulation results have been performed for three squirrel
cage induction motors which have different parameter values. To perform fractional order calculus, the Fractional Order
Modeling and Control (FOMCOM) toolbox has been added to MATLAB. To determine the value of the order of
differentiation (α) that best represents the induction motor, speed and torque simulations for several orders of differentiation
(α) were performed. According to the results of the speed and torque simulation, an integer order (α = 1) model is the optimal
representation of the induction motor. The main goal of this paper is to investigate which model, either integer or fractional
order model, best represents an induction motor.

1. Introduction

In control of dynamic systems, fractional integrals and
derivatives are used when a fractional differential equation
is used to describe the controlled system or the controller
[1]. The advantages of applying fractional order calculus in
several scientific fields, such as modeling and automated
control, made it more widely used in recent years. Indeed,
such an increase in attention is associated with the develop-
ment of computer algebra systems (CAS), including
MATLAB and Mathematica, as well as the availability of
much more potent and effective computational methods
made available by technological improvement [2].

Latest studies provide evidence in favor of the use of
fractional order calculus for more precise modeling and con-
trol. Particularly, difficult mathematics and physical issues
used fractional order calculus [3].

Fractional (noninteger order) systems can be considered
an extension of integer order systems. The fractional order
operator, aDα

t , where a and t are the operation’s limit and
α ∈ R, is defined as [4]

aDα
t =

dα

dtα
, α > 0,

1, α = 0,
t

a
dτ −α, α < 0

1

Laplace transform is a crucial technique for modeling
dynamic systems. There are several ways to define the frac-
tional operator. The key definitions of fractional order deriv-
atives are provided in the section below [1, 4–8].

(1) The Riemann-Liouville fractional order derivative
definition is as follows

aDα
t f t = 1

Г m − α

dm

dtm
t

a
t − τ m−α−1f τ dτ, 2

where m − 1 < α ≤m ∈N , α ∈ R, and α represent the order of
differentiation of function f t . Г is the gamma function.
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Laplace transform of causal system based on the
Riemann-Liouville fractional order differentiation definition
becomes

I 0Dα
t f t = sαF s − 〠

n−1

k=0
sk0Dα−k−1

t f 0 , 3

where f 0 are the initial conditions and n − 1 < α ≤ n ∈N .

(2) The Caputo fractional order derivative definition is
as follows

aDα
t f t = 1

Г m − α

t

a
f m τ t − τ m−α−1dτ, 4

where m − 1 < α ≤m ∈N , α ∈ R, and α represent the order of
differentiation of function f t . For a causal system, the
Laplace transform based on the Caputo fractional order dif-
ferentiation definition becomes

I 0Dα
t f t = sαF s − 〠

n−1

k=0
sα−k−1 f k 0 , 5

where n − 1 < α ≤ n ∈N .

Г x =
∞

0
tx−1e−tdt,

Г x = x − 1
6

(3) The Grünwald-Letnikov fractional order derivative
definition is as follows

aDα
t f t = lim

h⟶0

1
hα

〠
t−a /h

j=0
−1 j

α

j
f t − jh , 7

where · represents the integer part and h represents step size.
For a causal system, the Laplace transform based on the

Grünwald-Letnikov fractional order differentiation defini-
tion becomes

I oDα
t f t = sαF s ,
α

j
= α

j α − j
= Г α + 1
Г j + 1 Г α − j + 1

8

Factional order differential equations can be used to
model both SISO and MIMO systems. A fractional differen-
tial equation of the form can be used to describe a generic
linear time-invariant fractional order system [4].

anD
αn
t y t + an−1D

αn−1
t y t +⋯⋯⋯⋯ ⋯ ⋯ ⋯ ⋯ + a0D

α0
t y t

= bmD
βm
t u t + bm−1D

βm−1
t u t +⋯⋯⋯⋯ ⋯ ⋯ ⋯ ⋯ + b0D

β0
t u t

9

The subsequent form describes the transfer function for
incommensurate real orders.

G S = bmS
βm+⋯+b1Sβ1 + b0S

β0

anS
αn+⋯+a1Sα1 + a0S

α0
= Q Sβk

P Sαk
10

Equation (10) has the following form in the frequency
domain:

G jѡ = bm jѡ βm+⋯+b1 jѡ β1 + b0 jѡ β0

an jѡ αn+⋯+a1 jѡ α1 + a0 jѡ α0
=
Q jѡ βk

P jѡ αk
,

11

where ak (k = 0, 1, 2, 3 ⋯⋯ n) and bk (k = 0, 1, 2 ⋯m) are
constants and αk (k = 0, 1, 2⋯ n) and βk (k = 0, 1, 2⋯m)
are arbitrary numbers. Equation (10) for the incommensu-
rate order system can alternatively be stated by the multiva-
lued transfer function in commensurate form.

H S = bmS
m/v+⋯+b1S1/v + b0

anS
n/v+⋯+a1S1/v + a0

, v > 1 12

The following state space model can also be used to char-
acterize the linear time-invariant fractional order systems.

0Dq
t x t = Ax t + Bu t

y t = Cx t +Du t
, 13

where x ∈ Rn, u ∈ Rr , and y ∈ Rp are the state, input, and out-
put vectors of the system and A ∈ Rn×n, B ∈ Rn×r , C ∈ Rp×n,
D ∈ Rp×r , and q = q1, q2, q3 ⋯, qn

T are the fractional
orders. If q1 = q2 =⋯ = qn ≡ α, the system described by
Equation (13) is a commensurate order system; otherwise,
it is an incommensurate order system.

MIMO systems with fractional orders can be represented
using the state-space model.

G S = C SαI − A −1B +D 14

Nonlinear fractional order system has the form [3]

oDqi
t xi t = f i x1 t , x2 t ,⋯⋯ ⋯ , xn t , t ,
xi 0 = ci, i = 1, 2,⋯⋯ ⋯ , n,

15

where ci represents the initial conditions.

DqX = f X , 16

where q = q1, q2, q3⋯ , qn T for 0 < qi < 2, i = 1, 2, 3 ⋯ ,
n , and X ∈ Rn.
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The speed at which the induction motor rotates is nearly
equal to the synchronous speed, but not quite. Rotor speed is
about equal to synchronous speed when there is no load.
Thus, the induction motor’s no-load speed is dependent on
the number of poles and supply frequency [9].

As the power source for fans, pumps, and compressors,
three-phase squirrel cage-type induction motors with capac-
ities ranging from several kilowatts to hundreds of kilowatts
are often used in industrial applications. Fractional order
differential equations are more suited to describing systems
in the real world. In comparison to traditional (integer)
order-modeled systems, systems modeled with fractional
orders provide more precise modeling and efficient control
capabilities. As a result, when compared to a traditional
ordered system, accurate data can be acquired from frac-
tional order models. The main goal of this paper is to inves-
tigate which model either integer or fractional order model
best represents an induction motor.

The rest of this paper is divided into the following sec-
tions. Section 2 introduces toolboxes added to MATLAB
for investigating fractional order systems; Section 3 presents
a dynamic D-Q model of induction motor; Section 4 covers
results and analysis, and finally, Section 5 presents the
conclusion.

2. Toolboxes Added to MATLAB for
Investigating Fractional Order Systems

The need for numerical methods for fractional calculus com-
putation to model fractional order systems has grown in
recent years as fractional calculus is utilized widely across a
variety of academic areas. The question of which tool is best
for a given application comes up from time to time [10].

2.1. @fotf. Xue created the @fotf (fractional order transfer
function) toolbox for modeling and control of fractional
order systems. The majority of features here are extensions
of built-in functions in MATLAB. Overload programming
is used to enable the associated operations of the built-in
MATLAB features to handle fractional order models. How-
ever, the graphing functionality was lost due to overloading
of related operations. Time delay is supported in the transfer
function via the @fotf toolbox. MIMO systems cannot be
straightforwardly simulated since direct support for transfer
function matrices is not provided. The accuracy of @fotf is
affected by the sample time, which is a drawback [11].

2.2. Ninteger. The ninteger (noninteger) control toolbox for
MATLAB is a set of tools for creating and evaluating frac-
tional order controllers. In this toolbox, integer order trans-
fer functions are used to approximate the fractional order
integrator/differentiator. Additionally, it offers Simulink
blocks, such as the “nid” and “nipid” blocks, that contain
the relevant functions. MATLAB 2013a and subsequent ver-
sions have an issue with the integer toolbox. Because of the
overload adjustment of the MATLAB built-in function “isin-
teger(),” it contradicts with several built-in functions with-
out further modification [12, 13].

2.3. CRONE. The CRONE toolbox, created by the CRONE
team since the 1990s, is a MATLAB toolbox devoted to frac-
tional derivative fields. It changed from the initial scripted
version to the present object-oriented version. The CRONE
toolbox’s ability to implement some of the approaches for
MIMO fractional transfer functions is a useful feature. One
limitation of the CRONE toolbox is that it is impossible to
add delay time in the resulting fractional order transfer func-
tion [14].

2.4. FOMCON. Tepljakov created the FOMCON (Fractional
Order Modeling and Control) toolbox [3]. The algorithms in
@fotf, ninteger, and CRONE are used in its kernel. It com-
bines the key features of the three toolboxes and constructs
a graphical user interface, with the goal of extending tradi-
tional control strategies for fractional controller designs.
Figure 1 shows the relationship between FOMCON and
the three toolboxes. Because it combines the main features
of the @fotf, ninteger, and CRONE toolboxes, the FOMCON
MATLAB toolbox is employed in this study.

As shown in Figure 2, the FOMCON toolbox contains
continuous fractional linear time-invariant transfer function,
discrete fractional linear time-invariant transfer function,
continuous and discrete fractional PID controllers, fractional
derivative and integrator, etc. block sets to use Simulink.

3. Model of Three-Phase Induction Motor

Mathematical modeling essentially entails creating a frame-
work, frequently based on a set of equations, that simplifies
and mimics reality. Model accuracy is a big concern in con-
trol engineering. The control performance of the induction
motor drive is depending on the model accuracy of the
induction machine [15]. The reason for conducting this
research is to investigate the model of induction motor
which represents more accurately.

3.1. Three-Phase Induction Motor Dynamic D-Q Integer
Order Model. A number of hypotheses are used in the
modeling of the three-phase induction motor. The first
hypothesis is that the magneto motive forces generated by
various stator and rotor phases are distributed throughout
the air gap in a sinusoidal fashion. Reaching this goal
requires an adequate distribution of the windings through-
out space. The machine air gap is intended to be consistently
thick; notching effects and space harmonic generation are
disregarded. The following hypotheses on the physical
behavior of the materials are taken into account for this
modeling [16].

Crone Ninteger

Fomcon

Fotf

Figure 1: Relation between FOMCON and other fractional
MATLAB toolboxes [1].
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(1) Skin effect is not considered

(2) Constant motor parameters regardless of variation in
temperature

(3) Providing the magnetic fields are not saturated

The following formulas provide a mathematical formu-
lation of a symmetrical squirrel cage-type induction motor
in a synchronously rotating reference frame [17–19].

The stator voltage formulas are as follows:

Vqs = Rsiqs + ωeλds +
d
dt

λqs,

Vds = Rsids − ωeλqs +
d
dt

λds,

V0s = 0 = Rsi0s +
d
dt

λ0s

17

The rotor voltage formulas are as follows:

Vqr′ = 0 = Rr′iqr′ + ωe − ωr λdr′ + d
dt

λqr′ ,

Vdr′ = 0 = Rr′idr′ − ωe − ωr λqr′ + d
dt

λdr′ ,

V0r′ = 0 = Rr′i0r′ + d
dt

λ0r′

18

The stator flux linkage formulas are as follows:

λqs = Lls iqs + Lm iqs + iqr′ ,

λds = Lls ids + Lm ids + idr′ ,

λ0s = 0 = Lls i0s

19

The rotor flux linkage formulas are as follows:

λqr′ = Llr iqr′ + Lm iqs + iqr′ ,

λdr′ = Llridr′ + Lm ids + idr′ ,

λ0r′ = 0 = Llri0r′

20

The mechanical formula is as follows:

Te = J
dωr

dt
+ Fωr + TL 21

The electromagnetic torque formulas are as follows:

Te =
3
2

P
2 iqsλds − idsλqs ,

Te =
3
2

P
2 Lm iqsidr′ − idsiqr′ ,

Te =
3
2

P
2 λqr′ idr′ − λdr′ iqr′

22

Due to the symmetrical induction motor being taken
into consideration in this study, the zero-sequence compo-
nent becomes zero.

3.2. Three-Phase Induction Motor Dynamic D-Q Fractional
Order Model. Now, we can develop a conceivable fractional
order model with an undetermined differentiation order
after knowing the well-known integer order model. Then,
employ simulation of a fractional model for several orders
of differentiation until a suitable result is reached in order
to decide on the proper order of differentiation.

Fractional LTI
(transfer fcn)

Fotf ('s')

Discrete fractional
transfer fcn

Discrete
frac Tf (z)

Frac Tf (s)

Num Fr Tf
Discrete

Num Fr Tf TID

1/s0.5

D�x = Ax+Bu
y = Cx+Du

s0.25d0.5u/dt0.5

Discrete
PI� D�

Dsc OPT
PI� D�

PI� D�

Fractional
transfer fcn

Num fractional
transfer fcn

Num discrete
fractional transfer fcn

Fractional
derivative

Discrete FPID
OPTIM controller

Discrete fractional
PID controller

TID controller

Fractional
integrator

Fractional
operator

Fractional
state-space

Fractional PID
controller

Figure 2: Simulink components available in FOMCON toolbox.
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Figure 4: Induction motor flux block Simulink model.

Table 1: Induction motor parameter values.

Quantity (unit) Symbol Motor I Motor II Motor III

Rated power (KW) P 0.75 2.2 3

Stator resistance (ohm) Rs 10 9.2 2.3

Stator leakage inductance (H) Lls 0.4642 0.43 0.267

Rotor resistance (ohm) Rr 6.3 4.1 0.55

Rotor leakage inductance (H) Llr 0.4612 0.43 0.261

Mutual inductance (H) Lm 0.4212 0.44 0.249

Frequency (Hz) f S 60 60 60

Pole number p 2 4 6

Inertia (Kg.m2) J 0.02 0.042 0.0076

Friction factor (Nms−1) B 0.2 0.0031 0.0007

Rotor angular velocity(rad/sec.) N 373.7 185.4 122.63
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V_abcs
1
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Vds

Vqs
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Constant

0
Vdr
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Vqr
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Iqr

Vqs
Vds

Vcs

Figure 3: Simulink model of induction motor.
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Figure 5: Electromagnetic torque (a (α = 1 02 and α = 1) and b (α = 0 97 and α = 1)) and speed (c (α = 1 02 and α = 1) and d (α = 0 97 and
α = 1)) simulation results of motor I.
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Figure 6: Continued.
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The stator voltage formulas are as follows:

Vqs = Rsiqs + ωeλds +
dα

dtα
λqs,

Vds = Rsids − ωeλqs +
dα

dtα
λds,

V0s = 0 = Rsi0s +
dα

dtα
λ0s

23

The rotor voltage formulas are as follows:

Vqr′ = 0 = Rr′iqr′ + ωe − ωr λdr′ + dα

dtα
λqr′ ,

Vdr′ = 0 = Rr′idr′ − ωe − ωr λqr′ + dα

dtα
λdr′ ,

V0r′ = 0 = Rr′i0r′ + dα

dtα
λ0r′ ,

24

where α is the differentiation order.
Since none of the equations in the flux linkage formula,

electromagnetic torque formula, or mechanical formula con-
tain a derivative term in motor electrical parameters, they
are equivalent to the integer order model.

4. Results and Analysis

A simulation study employing various values of differentia-
tion order (α) is conducted to prove the fractional order
model of the induction motor. As seen in Figure 3, the
motor is energized by the appropriate three-phase 60Hz
supply at the starting time instant (t = 0) to evaluate the dif-
ferent order of differentiation (α). It is assumed that the load
torque is 0Nm (no load).

After the fractional model with an unknown order of dif-
ferentiation of the induction motor has been constructed,
model evaluation and order of differentiation (α) determina-
tion are required for the fractional order model. The details

of induction motors utilized for the simulation are shown in
Table 1.

As presented in Figure 4, fractional and integer order
integrators are used to implement the differential equation
associated with direct and quadrature axis flux linkage.

Figures 5(a)–5(d) present the outputs of a simulation
performed in MATLAB/Simulink model of the 0.75KW
squirrel cage induction motor specified as motor I in
Table 1. As presented in Figure 5(a), electromagnetic torque
at integration order α = 1 02 settles to its near-zero value
after the electromagnetic torque of integer order (α = 1)
result settles. When we come to Figure 5(b) at α = 0 97, the
electromagnetic torque settles before the integer-order
model electromagnetic torque. Based on the results, as the
integration order increases, the electromagnetic torque
becomes slower to settle to its final value. Similarly, as pre-
sented in Figure 5(c) at α = 1 02, the rotor speed settles its
final value at 1.384 sec. and the final value becomes
420.79 rad/sec. Additionally, at α = 1, the rotor speed settles
its final value at 1.1 sec. and the final value becomes
376.93 rad/sec. As shown in Figure 5(d) at α = 0 97, the rotor
speed settles its final value at 0.642 sec. and the final value
becomes 312.42 rad/sec. The above results show that as the
integration order increases, the slower the no-load motor
rotor speed settles to some constant speed.

The outputs of a MATLAB simulation utilizing the
Simulink model of the 2.2KW squirrel cage induction motor
designated as motor II in Table 1 are displayed in
Figures 6(a)–6(d). The electromagnetic torque at α = 1 01
settles to a value that is quite close to zero after the electro-
magnetic torque of integer order (α = 1) result settles, as pre-
sented in Figure 6(a). The electromagnetic torque settles
ahead of the integer-order model electromagnetic torque at
α = 0 97, as seen in Figure 6(b). According to the findings,
the electromagnetic torque takes longer to reach its final
value as the integration order increases. Similar to this, in
Figure 6(c) at α = 1 01, the rotor speed settles its final value
at 0.56 sec. and the final value becomes 198.8 rad/sec. Addi-
tionally, at α = 1, the rotor speed settles its final value at
0.451 sec. and the final value becomes 188.3 rad/sec. As
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Figure 6: Electromagnetic torque (a (α = 1 01 and α = 1) and b (α = 0 97 and α = 1)) and speed (c (α = 1 01 and α = 1) and d (α = 0 97 and
α = 1)) simulation results of motor II.
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Figure 7: Continued.
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shown in Figure 6(d) at α = 0 97, the rotor speed settles its
final value at 0.28 sec. and the final value becomes
155.8 rad/sec. The above results show that the no-load motor
rotor speed settles to a steady speed more slowly as the inte-
gration order increases.

The outcomes of a MATLAB simulation utilizing the
Simulink model of the 3KW squirrel cage induction motor
listed in Table 1 as motor III are presented in
Figures 7(a)–7(d). As presented in Figure 7(a), electromag-
netic torque at integration order α = 1 02 settles to its
near-zero value after the electromagnetic torque of integer
order (α = 1) result settles. Figure 7(b) at α = 0 98 shows that
the electromagnetic torque settles before the integer-order
model electromagnetic torque. The results show that the
electromagnetic torque takes longer to reach its final value
as the order of integration increases. In Figure 7(c) at α =
1 02, the rotor speed settles its final value at 0.711 sec. and
the final value becomes 139.5 rad/sec. Additionally, at α = 1,
the rotor speed settles its final value at 0.48 sec. and the final
value becomes 124.8 rad/sec. As shown in Figure 7(d) at α =
0 98, the rotor speed settles its final value at 0.35 sec. and the
final value becomes 110.2 rad/sec. The above results show that
as the integration order increases, the slower the no-load
motor rotor speed settles to some constant speed.

A squirrel cage induction motor has an electromagnetic
torque that is very small or almost nil when there is no load.
This is due to the fact that the rotor of a squirrel cage induc-
tion motor functions according to the induction principle, in
which the rotor currents are induced by the revolving mag-
netic field generated by the stator windings.

The revolving sinusoidal flux is generated in the air gap
at a speed determined by Equation (25) when excited by a
sinusoidal source delivered to the stator’s windings.

NS =
120f s
p

, 25

where NS is the synchronous speed expressed in rpm, f S is
the applied excitation’s frequency in Hz, and P represents
the number of stator poles.

The best value of α is chosen using a variety of criteria.
The value determined by Equation (25) does not match the
speed response of fractional order models when there is no
load.

As can be observed from Table 2, maximum torque falls
as the order of integration (α) rises, whereas the speed at no-
load rises and settling time for speed and torque rises.
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Figure 7: Electromagnetic torque (a (α = 1 02 and α = 1) and b (α = 0 98 and α = 1)) and speed (c (α = 1 02 and α = 1) and d (α = 0 98 and
α = 1)) simulation results of motor III.

Table 2: Criteria of simulation results at different order of differentiation (α).

Motor
Differentiation

order
Maximum
torque (Nm)

Electromagnetic torque
settling time (sec.)

Settled
torque (Nm)

Speed settling
time (sec.)

Settled speed
(rad/sec.)

Calculated synchronous
speed (rad/sec.)

I

1.02 247.7 1.44 0.421 1.384 420.79

376.991 295.5 1.12 0.375 1.10 376.93

0.97 395.2 0.72 0.312 0.642 312.42

II

1.01 123.8 0.64 3.24 0.56 198.8

188.51 135.7 0.57 3.065 0.451 188.3

0.97 191.3 0.32 2.54 0.28 155.8

III

1.02 603.1 0.76 51.96 0.711 139.5

125.661 724.3 0.54 46.43 0.48 124.8

0.98 887.5 0.393 41.06 0.35 110.2
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Equation (25) calculates the synchronous speed, which is
almost identical to the simulation output at an integer order
of α = 1. As a result, an integer order model is the induction
motor’s optimum model.

5. Conclusion

To study the fractional order model of induction motor,
evaluation of the results of speed and torque simulations
without load with various values of differentiation order (α)
below and above one has been performed. Three various
induction motors with various parameters have been taken
into consideration. FOMCON toolbox was incorporated into
MATLAB and utilized for simulation with regard to fractional
orders. The optimal differential order (α) is chosen based on a
variety of evaluation criteria, including peak torque, speed and
torque settling times, and final speed and torque values under
no load conditions. The integer order model is the best repre-
sentation of the induction motor based on the examination of
simulation results.
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