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Partial discharge evaluation is a principal method for assessing insulation conditions in power transformers. Traditional singular
value decomposition (SVD) approaches, however, face issues like high residual noise and loss of signal details in white noise
suppression. This article introduces an advanced denoising algorithm integrating SVD, variational mode decomposition
(VMD), and wavelet thresholding to effectively address mixed noise in on-site power transformer assessments. The algorithm
initially employs SVD to suppress mixed noise, specifically targeting narrowband interference by decomposing the noisy signal
and nullifying the corresponding singular values. Post-SVD, the signal is further processed through VMD, with its modal
components refined via wavelet thresholding. The final reconstruction of these denoised components effectively eliminates
white noise. Applied to an input signal with a signal-to-noise ratio of -27.593 dB, the proposed method achieves a
postdenoising ratio of 13.654 dB. Comparative analysis indicates its superiority over existing algorithms in mitigating white
noise and narrowband interference and more accurately restoring the partial discharge signal.

1. Introduction

Power transformers are critical components within power
systems, with their operational reliability being integral to
the overall safety and stability of these systems. Empirical
analysis of transformer malfunctions has identified insula-
tion faults as the predominant factor impacting transformer
functionality. Partial discharge (PD) diagnostic tests are a
crucial tool for evaluating the insulation performance of
transformers. However, PD signals, being inherently weak
electrical signals, are susceptible to contamination from
strong electromagnetic fields prevalent in transformers’
high-voltage and high-current operational environments.
Consequently, PD signals captured during on-site testing
often encompass various forms of interference, such as
white noise, periodic narrowband interference, and random

pulse interference, leading to potential masking of PD sig-
nals within these interferences [1]. Such contamination
can severely distort the PD waveform, adversely affecting
the accuracy of fault diagnosis. Therefore, mitigating noise
impact is essential for enhancing the precision of PD signal
analysis and improving fault detection efficacy in practical
scenarios.

Scholarly research has extensively explored various
denoising methods for PD signals, such as fast Fourier
transform (FFT) threshold filtering, empirical mode decom-
position (EMD), wavelet thresholding, and singular value
decomposition (SVD) [2]. Despite EMD’s adaptability, it is
hindered by mode mixing and endpoint effects, leading
to suboptimal denoising [3]. To improve upon EMD, a
method combining complete ensemble EMD with adaptive
noise (CEEMDAN) and approximate entropy has been
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proposed, which, however, risks eliminating valid signals
[4]. An adaptive SVD method is aimed at overcoming the
limitations of manual singular value selection but struggles
with complex signal reconstruction [5]. Fast SVD using
Hankel matrices has shown promise in noise suppression
in PD signals [6]. Improved variational mode decomposi-
tion (VMD) with threshold algorithms has been proposed
for suppressing white noise and periodic narrowband inter-
ference, but it lacks precision in parameter selection [7]. A
joint denoising approach using VMD and maximal overlap
discrete wavelet packet transform (MODWPT) has been
developed for rotating machinery vibration signals, but its
efficacy in filtering both noise types is unspecified [8].
The flower pollination algorithm (FPA) has been used for
parameter selection in VMD, followed by noise component
removal with a Savitzky-Golay filter, albeit with slow con-
vergence issues [9]. Optimizations of VMD through genetic
algorithms have been explored for PD signal denoising, yet
some lack the ability to mitigate narrowband interference
[10, 11]. Curvature-based singular value transformation
combined with empirical wavelet transform has been effec-
tive against white noise and narrowband interference,
although threshold selection is prone to errors [12]. EMD-
based decomposition with mutual information analysis for
VMD suffers from EMD’s inherent limitations [13]. An
adaptive short-time SVD method for white noise demon-
strates potential, but computational inaccuracies may impact
its denoising effectiveness [14].

Aiming to enhance noise reduction efficacy, this article
presents an advanced noise reduction methodology tailored
to suppress mixed noise in PD signals, integrating SVD with
VMD and optimized wavelet thresholding. Initially, a Han-
kel matrix representation of the noisy signal is employed,
followed by the application of SVD to selectively eliminate
narrowband interference, leveraging the distinct singular
value profiles of PD and noise signals. Subsequent to the
SVD process, the signal is decomposed using VMD.
Enhanced wavelet thresholding is then applied to these
modal components. The final step involves the reconstruc-
tion of these processed components, aiming to effectively
remove white noise and suppress mixed noise within the
PD signal framework. In Section 2, the detailed denoising
algorithm is discussed, and simulation analysis is given in
Section 3. Experimental signal validation is carried out in
Section 4. Finally, conclusions are provided in Section 5.

2. Denoising Algorithm

The schematic diagram of the denoising algorithm for PD
signals with mixed noise is shown in Figure 1. This sec-
tion mainly introduces the basic theory of the denoising
algorithm.

2.1. Singular Value Decomposition. The initial step necessi-
tates the formation of a Hankel matrix [15].The construc-
tion is shown below: Let s be a noisy PD signal with noise.
Transform s into a Hankel matrix as shown in the following
equation.

A =

s 1 s 2 ⋯ s n

s 2 s 3 ⋯ s n + 1
⋮ ⋮ ⋮

s m s m + 1 ⋯ s N

1

Matrix A, with dimensions m × n and a rank of r, can be
expressed as a product of an m-order orthogonal matrix U
and an n-order orthogonal matrix V .

A =UΣVT , 2

where Σ is an m × n-order diagonal matrix, with the first r
orders having nonzero elements representing the singular
values, and the rest are zeros [16]. The singular values corre-
sponding to the noise components exhibit differences com-
pared to the singular values of the original signal. By
setting the singular values associated with noise to zero
and retaining the singular values of the original signal, the
process involves performing the inverse operation of SVD
and reconstructing the signal to achieve denoising.

2.2. Variational Mode Decomposition. The solution of VMD
consists mainly of two parts: the construction of the varia-
tional problem and its solution [17].

By estimating the signal’s bandwidth, the variational
constrained model is obtained as follows:

min
uk , ωk

〠
K

k=1
∂t δ t + j

πt
uk t e−jωt

2

2
,

s t 〠
K

k=1
uk = f ,

3

where f is the noisy PD signal, uk represents the K decom-
posed modal components, and ωk denotes the center fre-
quency of each decomposed modal component. δ t
represents the unit impulse function.

Subsequently, we use the multiplier alternating direc-
tion algorithm to iteratively update the k intrinsic mode
function (IMF) components and their respective center fre-
quencies. The iterative formulas for modal components and
center frequencies are shown in equations (4) and (5),
respectively [18].

ûn+1k ω = f̂ ω −∑i<kû
n+1
i ω −∑i>kû

n+1
i ω + λ

n
ω /2

1 + 2α ω − ωn
k

2 ,

4

ωn+1
k =

∞
0 ω ûn+1k ω

2dω
∞
0 ûn+1k ω

2dω
5

The iteration stops when the termination condition in
equation (6) is satisfied, and k modal components are
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output, completing the decomposition. Here, ε represents
the convergence accuracy.

〠
k

ûn+1k − ûnk
2
2

ûnk
2
2

< ε 6

2.3. Wavelet Threshold Denoising.Wavelet threshold denois-
ing entails the assessment of mathematical characteristics of
wavelet coefficients, contrasting those between the target sig-
nal and the noise signal. Typically, the wavelet coefficients of
the desired signal have larger amplitudes and concentrated
energy, while those of the noise signal tend to have smaller
amplitudes and more uniform energy distribution. There-
fore, a specific threshold function can be set to distinguish
between the desired signal and the noise signal [19].

The choice of threshold significantly affects the denois-
ing effectiveness. Traditional threshold functions include
hard thresholding and soft thresholding. Hard thresholding
can lead to discontinuities in wavelet coefficients, resulting
in reconstructed signals that lack the smoothness of the orig-
inal signal. On the other hand, soft thresholding introduces a
constant bias, distorting the reconstructed signal. To address
the shortcomings of these traditional threshold functions, a
refined threshold function is introduced, as illustrated in
the following equation.

yj,k =
sgn ω j,k ∗ ωj,k −

λ

1 + α
∗ γ ω2

j,k−λ
2 , ωj,k > λ,

sgn ω j,k ∗
α

1 + α
∗ e10∗ ω j,k −λ ∗ ωj,k , ω j,k < λ

7

This new function does not suffer from the fixed bias
issues associated with soft and hard functions. By adjusting
the tuning parameters α and λ, it can adapt to noise of varying
intensities under different signal-to-noise ratio conditions.

Chang et al. [20] proposed a Bayes shrink method suit-
able for image denoising based on the distribution of two-
dimensional wavelet coefficients. For a given parameter δx,
it is necessary to find a threshold T that minimizes the
Bayesian risk [21].

r T = E x − x 2 = Ex ∗ Ex y x − x 2

=∬ n y − x 2p y x p x dydx = δ2 ∗ ω
δ2x
δ2

, T
δ

8

The threshold calculation expression is as follows [22]:

T j =
δ2

δx
9
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Figure 1: Schematic diagram of denoising mixed signals.
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Figure 2: Algorithm denoising flowchart.

Table 1: The parameters for the simulated PD signal, including
amplitude, attenuation coefficient, and oscillation frequency.

PD
pulse

Amplitude
(A/mv)

Attenuation
coefficient (τ/μs)

Oscillation frequency
(f c/MHz)

1 10 0.1 20

2 5 0.15 40

3 10 0.1 20

4 5 0.15 40
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In the above formula, δ2 represents the variance of noise
coefficients, and δx is the square root of the variance of sub-
band coefficients. Here, j represents a specific decomposition
level. The calculation for δ2 is performed using the following
equation [23]:

δ =
med yj,k

0 6745 10

In this equation, y i represents the coefficients of the
noisy signal at different decomposition levels.

δ = 1
n
〠
n

i=1
y2j,k, 11

in which n represents the length of wavelet coefficients at
each decomposition level, and it can be inferred from
δ2y = δ2x + δ2:

δx = max δ
2
y − δ2, 0 12

Therefore, the threshold based on the Bayesian criterion
can be determined through equations (10), (11), and (12).
It is observed that the Bayesian threshold exhibits adapt-
ability across different levels, overcoming the drawbacks
of a fixed threshold.

2.4. Algorithm Steps. Based on the above theories, SVD is
adopted in this paper to remove periodic narrowband inter-
ference, and VMD is combined with improved wavelet
threshold denoising to remove white noise interference.
The general flow chart is shown in Figure 2.

3. Simulation Analysis

3.1. Simulation Model. PD signals are characterized by their
high-frequency nature, marked by rapid rising edges and
durations typically spanning tens of nanoseconds. Due to
the complexity of acquiring pure PD signals under practical
field conditions, mathematical modeling is often employed
to simulate these signals for theoretical analysis. Predomi-
nantly, four mathematical models are utilized for this pur-
pose: the single exponential decay pulse model, the double
exponential decay pulse model, the single exponential decay
oscillation model, and the double exponential decay oscilla-

tion model, as referenced in [24, 25]. These models are
mathematically formulated in the following equations.

x1 t = A1e
− t−t0 /τ, 13

x2 t = A2 e−1 3 t−t0 /τ − e−2 2 t−t0 /τ , 14

x3 t = A3e
− t−t0 /τ sin 2πf c t − t0 , 15

x4 t = A4 e−1 3 t−t0 /τ − e−2 2 t−t0 /τ sin 2πf c t − t0 ,

16
where A signifies amplitude, τ the decay coefficient, f c the
oscillation frequency, and t0 the initial pulse time.

For transformer PD signals, specific parameters of these
models are detailed in Table 1, where pulses 1 and 3 align
with single exponential decay oscillations and pulses 2 and
4 with double exponential decay oscillations. Figure 3 pre-
sents a visual representation of the simulated PD signal.

Periodic narrowband interference, characterized by a
fixed resonant frequency, concentrated energy in the fre-
quency domain, and a fixed phase distribution, is often sim-
ulated by superposing sinusoidal or cosinusoidal signals of
varying frequencies and amplitudes [26]. The mathematical
model for such interference is encapsulated in the following
equation.

si = Ai 〠
n

i=1
sin 2πf it , 17

where A indicates the signal amplitude and f i the frequency.
The parameters for this model are listed in Table 2.
Figure 4(a) demonstrates the PD signal with added narrow-
band interference, resulting in an SNR of -27.593 dB, which
significantly obscures the original PD signal. Additionally,
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Figure 3: PD simulated signal.

Table 2: Parameters of the simulated periodic narrowband
interference signal.

Narrowband
interference

Amplitude (A/mV) Frequency (f i/MHz)

s1 10 2

s2 15 10

s3 10 15
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Figure 4: Time-domain plots of PD signals with interference. (a) PD signal with added narrowband interference. (b) PD signal with added
white noise. (c) PD signal with both white noise and narrowband interference added.
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Figure 5: Singular value spectrum of signals with added narrowband interference.
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Figure 6: Signal after denoising periodic narrowband interference using SVD.
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Figure 7: Singular value spectrum of PD signal with white noise interference.
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Gaussian white noise with a standard deviation of 0.2 is
incorporated into the PD signal. Time-domain representa-
tions of the PD signal with added white noise and with both
white noise and narrowband interference are exhibited in
Figures 4(b) and 4(c), respectively.

The effectiveness of the denoising process is quantita-
tively assessed using three key metrics: signal-to-noise ratio
(SNR), mean squared error (MSE), and normalized cross-
correlation (NCC) [27]. In the context of the noisy signal
analyzed above, the SNR was computed to be -27.593 dB,
indicating the extent of noise prior to denoising. The
MSE was calculated as 212.231, reflecting the initial dis-
crepancy between the estimated and actual signal values.
Additionally, the NCC was determined to be 0.047, illus-
trating the initial dissimilarity between the pre- and postde-
noising signals.

3.2. Noise Reduction Processing

3.2.1. Using the SVD Method to Remove Narrowband
Interference. Performing SVD on partial discharge signals
superimposed with narrowband interference, Figure 5 illus-
trates the singular value spectrum of these signals. A nota-
ble observation from this spectrum is the clear distinction
in the singular values corresponding to the narrowband
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Figure 8: Localized discharge signal with white noise after SVD denoising.
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Figure 9: Denoising result comparison. (a) Denoising result using the method proposed in this paper. (b) Denoising result using wavelet
thresholding. (c) Denoising result using SVD. (d) Denoising result using SVD combined with wavelet thresholding.

Table 3: Parameters for evaluating denoising of PD simulated
signals.

Denoising methods SNR (dB) NCC MSE

Method of this paper 13.654 0.982 0.016

SVD 9.791 0.951 0.039

SVD +WT 11.156 0.975 0.028

6 Modelling and Simulation in Engineering



interference, in contrast to those of the original PD signal.
This distinction facilitates the identification and subsequent
nullification of the singular values associated with the nar-
rowband interference.

Subsequent to the annulment of singular values attributed
to the periodic narrowband interference, Figure 6 portrays the
resultant PD signal postremoval of this interference, employ-
ing SVD.

The computed metrics postdenoising are as follows: SN
R = 26 341 dB, NCC = 0 998, andMSE = 8 581 × 10−4. These
values indicate that the periodic narrowband interference
has been effectively mitigated.

Conducting singular value decomposition on the PD
signal contaminated with white noise, the outcomes are
depicted in Figure 7. It is evident that the singular values
postdecomposition of the PD signal, which solely contains
white noise, demonstrate substantial continuity with no dis-
tinct inflection points. This characteristic implies the unsuit-
ability of SVD as a method for white noise elimination in
such a scenario.

3.2.2. Denoising White Noise Using a Combination of VMD
and Improved Wavelet Thresholding. In the context of simu-

lated signals with mixed noise, the localized discharge signal
post-SVD denoising is depicted in Figure 8. Following this
process, the SNR is calculated to be 9.64 dB, indicating a
notable enhancement in denoising effectiveness. The time-
domain waveform after this treatment closely aligns with
that of Figure 4(b), representing the PD signal with added
white noise.

The signal processed using the proposed method, which
combines VMD and improved wavelet thresholding subse-
quent to SVD, yields the denoised time-domain signal dis-
played in Figure 9(a). For comparative analysis, the PD
signal containing both narrowband and white noise interfer-
ence underwent processing through three distinct denoising
methods: wavelet thresholding denoising, SVD denoising,
and a combination of SVD andwavelet thresholding denoising,
with outcomes illustrated in Figures 9(b)–9(d), respectively.
Figure 9(b) presents the result post-wavelet thresholding
denoising, revealing significant signal loss and minimal
denoising effectiveness. Figure 9(c) exhibits the outcome of
the SVD method, which effectively suppresses interference
and retains discharge characteristics, though challenges in
completely removing residual white noise persist. Figure 9(d)
demonstrates the efficiency of the combined SVD and
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Figure 10: Signal spectrum comparison. (a) Spectrum of the original signal. (b) Spectrum of the denoised signal.

Experimental
power

Discharge
model

PD input unit

OscillographCoupling
capacitor

(a) (b)
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wavelet thresholding method in suppressing both periodic
narrowband and white noise interference, albeit with a slight
diminution in partial discharge features.

Table 3 presents the results for three denoising evalua-
tion parameters: SNR, NCC, and MSE, for the proposed
method, the SVD method, and the combination of SVD

and wavelet thresholding. The method introduced in this
paper exhibits superior interference suppression and more
effective waveform restoration.

Figure 10 facilitates a comparison between the spectral
plots of the original and denoised signals. The spectral con-
tents of both signals are remarkably similar, with only minor
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Figure 14: Comparison of denoising results for surface discharge. (a) Intentional noise addition. (b) Denoising result using SVD. (c)
Denoising result using SVD combined with wavelet thresholding. (d) Denoising result using the method proposed in this paper.
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Figure 13: Measured PD signal for corona discharge.
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Figure 12: Measured PD signal for surface discharge.
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alterations observed in the primary peak regions, affirming
the successful reduction of noise.

4. Denoising of Measured Signals

An empirical investigation was conducted in a laboratory
environment to ascertain the performance of the proposed
denoising method on real-world measured signals. The
experimental setup comprised a discharge model, a coupling
capacitor, a local measurement unit, a voltage withstand tes-
ter, and an oscilloscope. The configuration of this experi-
mental arrangement is illustrated in Figure 11.

Figures 12 and 13 exhibit PD signals acquired in the
laboratory setting for surface discharge and corona dis-
charge, respectively. Given the minimal noise levels in these
measured PD signals, they are treated as approximations of
noise-free signals.

To further validate the method’s efficacy, artificial noise
was added to the signals for denoising analysis. Figures 14(a)
and 15(a) illustrate the noisy PD signals, derived from
collecting ambient laboratory noise under nondischarge
conditions and the deliberate introduction of sinusoidal
narrowband interference. These figures show that low-
amplitude PD pulses are overwhelmed by the noise.
Figures 14(b) and 15(b) demonstrate the results postdenois-
ing using the SVD method, while Figures 14(c) and 15(c)
display the outcomes following denoising with a combina-
tion of SVD and wavelet thresholding (SVD +WT). The
denoising results using the proposed method are presented
in Figures 14(d) and 15(d).

Table 4 lists the evaluation parameters for the actual
measured signals. The proposed method not only augments
the discernibility of PD features but also exhibits superior
evaluation metrics compared to other methods. It effectively

Table 4: Measured parameters for denoised PD signals.

Denoising methods PD signal SVD SVD +WT Method of this paper

SNR
Surface discharge -7.611 1.469 8.360

Corona discharge -11.204 2.115 7.802

MSE (10-3)
Surface discharge 0.934 0.115 0.023

Corona discharge 0.098 0.004 0.001

NCC
Surface discharge 0.338 0.566 0.970

Corona discharge 0.266 0.669 0.956
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Figure 15: Comparison of denoising results for corona discharge. (a) Intentional noise addition. (b) Denoising result using SVD. (c)
Denoising result using SVD combined with wavelet thresholding. (d) Denoising result using the method proposed in this paper.
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eliminates most interference noise, highlighting its proficient
denoising effect.

In summary, our method demonstrates marked improve-
ment in the visibility of PD features and excels in noise
reduction, as evidenced by the denoising results and evalu-
ation parameters for both surface and corona discharge
signals.

5. Conclusions

This work introduces a denoising methodology that syner-
gizes SVD and VMD with an enhanced wavelet thresholding
technique, aimed at attenuating both periodic narrowband
interference and white noise in PD signals. The efficacy of
this integrated approach is validated through the analysis
of both simulated and measured data, yielding several key
findings:

(1) The singular values associated with periodic narrow-
band interference demonstrate specific distribution
patterns. While SVD proves effective in attenuating
this type of interference in PD signals, its perfor-
mance in suppressing white noise interference is
compromised, primarily due to challenges in accu-
rately determining the threshold for singular values
associated with white noise

(2) Wavelet transform, commonly employed in signal
processing across diverse frequency ranges, may
not efficiently capture the distinct frequency compo-
nents characteristic of narrowband interference. This
limitation potentially leads to less than optimal
denoising outcomes

(3) The application of the refined thresholding method
facilitates the adaptive adjustment of thresholds at
varying scales, thereby enhancing the reduction of
noise coefficients. This adaptability is particularly
advantageous in addressing noise across different
decomposition scales, improving the overall denois-
ing efficiency
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