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In this study, we introduce an innovative model for evaluating the impact of environmental factors on drone-to-ground control
station datalink communications. Our approach integrates both deterministic and stochastic processes to account for small-scale
and large-scale fading effects, encompassing propagation attenuation, the Rician fading model, and Gaussian noise to accurately
reflect real-world conditions. The model is implemented on signals transmitted using spread spectrum modulation. Through a
comparative analysis of the model’s predictions against actual signals received in three distinct environments, the model’s
efficacy in diverse scenarios is affirmed. Error metrics obtained from Monte Carlo simulations are employed to validate the
theoretical results against experimental data. The proposed approach is pivotal for predicting the transmission range and
understanding the electromagnetic susceptibility of the datalink, offering a substantial contribution to the optimization of
remote drone control.

1. Introduction

Generally, drone control is achieved through a radio link in
the line-of-sight (LOS). This direct link is often subject to
electromagnetic perturbations in the operating environment
of drones. These interferences may originate from both nat-
ural and artificial sources. This noise can arise from various
sources, including transient electromagnetic fields, jamming,
signal attenuation, continuous random noise, Gaussian
noise, and multipath fading. The analysis of environmental
interferences through modeling enables the anticipation of
both the datalink strength and the drone’s control range.

Numerous investigations have been undertaken to assess
how external environmental interferences impact the data-
link of drones. The majority of these studies, employing
either statistical [1] or deterministic methods [2] or a combi-
nation thereof [3], conduct virtual simulations or rely solely

on analytical outcomes. They often rely on virtual simula-
tions or strictly on analytical outcomes.

Recent trends in signal propagation research focus on
predicting signal fading using a variety of methods, as refer-
enced in [4–6]. These methods are predominantly character-
ized by the application of statistical analysis or, in the case of
the most recent studies, artificial intelligence. Furthermore,
to circumvent the issue of signal fading entirely, recent
advancements have been directed towards incorporating
free-space optical (FSO) communication techniques into
drones, as discussed in [7, 8]. However, the practical imple-
mentation of FSO technology in drones presents its own set
of challenges. Precise alignment between the transmitting
and receiving ends is crucial, which poses significant difficul-
ties in dynamic environments typical for drone operations.
Moreover, the efficiency of FSO systems can be adversely
affected by atmospheric conditions such as fog, rain, and
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dust. Despite these obstacles, innovative solutions are emerg-
ing, with studies in [9, 10] offering promising approaches to
mitigate these challenges.

In drone applications, path loss prediction and channel
models represent active research topics as highlighted by
the survey [11]. A lot of studies usually adopt either the path
loss [12] of the drone datalink or the channel in which the
drone operates [13] to predict the datalink behavior. For
instance, Bing [14] modeled both the large-scale and small-
scale fading with only the channel modeling while Perotoni
et al. [15] proposed a tool for modeling the propagation of
drone datalink. In recent researches, these modeling envi-
ronments are incorporated into embedded devices to facili-
tate the analysis and prediction of radio signal path loss in
unmanned aerial vehicle (UAV) communication scenarios
such as the UAVRadio Python module proposed by [16].

The distinctiveness of our model lies in the use of path
loss fading alongside the channel modeling. Indeed, these
two models operate at different levels of communication sys-
tem analysis. Path loss focuses on the physical aspects of
radio wave propagation between antennas over a given dis-
tance, while the channel model applies at a more abstract
level to represent the effect of any communication channel
on a signal.

Although they are different, these models are comple-
mentary in the analysis and design of communication sys-
tems. Path loss is used to estimate the initial signal power
required at the transmitter or to design antennas based on
transmission distance and power requirements at reception.
The channel model is then utilized to analyze how the trans-
mitted signal is affected by the specific channel (including
the effects of propagation modeled by Friis) and by noise,
to optimize error detection and correction at the receiver.

Interferences primarily stem mostly in drone application
from path loss attributed to signal propagation [17], external
noise sources [18, 19], or obstacles in the environment that
cause multipath fading [20].

In this research, we analyze path loss by treating it as a
deterministic factor in signal fading, utilizing the Friis trans-
mission formula to quantify signal attenuation. We address
the inherent variability in signal transmission through sto-
chastic models, specifically incorporating additive white
Gaussian noise (AWGN) to simulate the random interfer-
ence that affects signals in real-world communication sce-
narios. Furthermore, we explore the impact of multipath
fading (stemming from reflections, diffractions, and scatter-
ing caused by physical obstructions) on the datalink from
the control station to the drone’s receiver. The multipath
fading is also considered a stochastic model and can be
expressed by the Rician fading. In fact, the drone’s transmis-
sion is primarily within the line-of-sight. By integrating
these three attenuation models (Friis transmission, AWGN,
and Rician fading), we aim to provide a comprehensive esti-
mate of the received signal power in specific environments.

The remainder of this paper is organized as follows.
Section 2 discusses the drone’s datalink and presents the test
bench for conducted and radiated emission measurements.
In Section 3, we provide an overview of the fading types that
can encounter drone communications. Further details

regarding the fading types applied in the test environments
are provided. In Section 4, we apply the fading signal model
obtained to a signal emitted by a transmitter using spread-
spectrum modulation. In the same section, we compare the
theoretical results obtained using the Monte Carlo simula-
tion with the experimental results. In conclusion, we present
the outcomes of this novel model, articulate the key findings,
and thereby pave the way for future enhancement and
development.

2. Description of the Test Bench

2.1. Datalink. Datalink communication in drones is a crucial
element that plays a critical role in the operation and control
of unmanned aerial vehicles (UAVs). There are several types
of drone datalink systems as stated in [21, 22]. The most
important one is the command datalink. This datalink func-
tions as the communication link between the drone and its
ground control station (GCS), facilitating the real-time
exchange of vital information, such as telemetry data, com-
mands, and video feeds. These communication systems are
designed to establish reliable and secure connections,
enabling operators to remotely pilot and monitor drone per-
formance. The success of a drone’s mission, whether it
involves surveillance, reconnaissance, or other applications,
depends heavily on the strength and efficiency of the datalink.
Advanced datalink technologies incorporate features such as
frequency-hopping, encryption, and error-correction mecha-
nisms [23] to ensure secure and interference-resistant com-
munication. As the drone industry continues to advance,
research and progress in datalink technologies are crucial for
enhancing the overall capabilities, safety, and reliability of
unmanned aerial systems.

In our case, we utilize a command datalink that relies on
modulation using the frequency-hopping spread spectrum
(FHSS). This type of datalink has been proven to be particu-
larly resistant to various environmental perturbations.
Despite its performance, interference from different sources
significantly reduces the communication range. Conse-
quently, modeling the environment based on communica-
tion type allows us to determine the performance of the
employed datalink.

To ensure seamless integration of our model with real-
world scenarios, we have developed a specialized test bench
to evaluate the command datalink under various environ-
mental conditions. The subsequent section describes this
setup, highlighting its deployment across three distinct test-
ing grounds, chosen for their relevance to UAV operational
environments.

2.2. Test Bench Description. The proposed test bench can be
installed in various operational environments for drones.
This environment could be an obstacle-free field, an urban
area, around high-tension power lines, an area with strong
electromagnetic interference, or inside a building.

The test bench was placed in three different environ-
ments: a laboratory room at the basement of the university,
an open area without any obstacle around, and in the forest
with several physical obstacles.
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The test bench essentially comprises

(i) spectrum analyzer Anritsu MS2711E model, cover-
ing the frequency range from 9 KHz to 3GHz

(ii) log-periodic antenna LP-02 NARDA with a gain of
6 dBi

(iii) dual directional coupler 778D Keysight

(iv) T14SG transmitter Futaba using 14-channel
frequency-hopping technique in 2.4GHz

All the equipment used is calibrated and up to date.
The measurements performed are primarily based on the

general instructions described in the U.S. military standard
Mil-Std-461G [24], specifically the conducted emission with
antenna port (CE106 in the standard) and radiated emis-
sions, antenna spurious, and harmonic outputs (RE103 in
the standard).

The two types of measurements were performed follow-
ing the diagrams in Figure 1. In the conducted measurement
(Figure 1(a)), the antennas of the transmitter and receiver
(spectrum analyzer antenna) were substituted with a well-
shielded coaxial cable (Figure 2).

In the radiated measurement (Figure 1(b)), the transmit-
ter was placed on a wooden table at three different environ-
ments. The spectrum analyzer gathered the radiated
emissions through the antenna. In Figure 3, the test was con-
ducted in the university laboratory basement with a distance
of 4m from the receiving antenna connected to the spec-
trum analyzer. In Figure 4, the test was conducted in an
open area far away from any RF source or obstacle with a
distance of 10m from the receiving antenna. In Figure 5,
the test was conducted in a forest where there are several
obstacles around and with a distance of 20m from the
receiving antenna.

The obtained model will be tested in the 3 different con-
figurations to test its efficiency with a maximum of parame-
ters available in static mode. The aim is not to draw
comparisons among the three environments; rather, it is to
contrast the theoretical outcomes with the experimental
ones, considering various parameters, hence the choice of 3
different distances.

For the 4 measurements (one conducted and three radi-
ated), the same spectrum analyzer parameters were applied
(span, reference level, sweep time, detection mode, resolu-
tion bandwidth, video bandwidth, etc.).

It is noteworthy that the conducted test measurement
should be performed in an environment without electro-
magnetic interference, ideally in an anechoic chamber. In
the absence of this facility, a special shielded coaxial cable
is used to enable interference-free communication.

Note that in other cases where the transmission ground
station has a fixed nonremovable antenna, the same signal
from the transmitter can be reproduced using an arbitrary
waveform generator (AWG). The reproduced signal can be
then measured by the spectrum analyzer by means of coaxial
cable. This generator can replicate almost any signal by pro-
viding the exact data of a desired signal.

Transmitter
T14SG

Spectrum
analyzerCoaxial cable

Dual-
coupler

TX antenna

(a)

Transmitter
T14SG

Spectrum
analyzer

TX antenna RX antenna

4 m

(b)

Figure 1: Conducted and radiated emission test bench diagram: (a) diagram for conductedmeasurement; (b) diagram for radiatedmeasurement.

Figure 2: Conducted emission measurement of the transmitter
T14SG.

Figure 3: Radiated emission measurement in the laboratory
basement (4m between the transmitter TX and the receiver RX).
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2.3. Fading Modeling. The main idea is to process the con-
ducted signal in Figure 1(a) based on the environmental
data in Figure 1(b) to obtain a theoretical radiated signal
at the receiving antenna. This theoretically received signal
is then compared to the experimentally received signal in
Figure 1(b). Analyzing the situation, the signal emitted
from the transmitter goes through the following steps:

(i) The signal is converted into an electromagnetic field
by the transmitter antenna

(ii) The radiated emitted signal undergoes path loss
attenuation due to the distance propagation

(iii) The emitted signal undergoes reflection, diffraction,
and scattering owing to multipath fading

(iv) Environmental noise adds to the emitted field

The field received by the receiving antenna is trans-
formed into an electrical signal and then introduced to the
spectrum analyzer through internal filters for measurement
and display.

The convolution of these different phenomena produces
a radiated field. The conducted signal was processed follow-

ing the aforementioned steps to obtain results similar to
those measured experimentally.

2.4. Transmission Hardware. The T14SG transmitter transmits
control data in a frequency band between 2405.376MHz and
2477.056MHz using Frequency Agile Spread Spectrum
Technology (FASST). It is a proprietary radio transmission
protocol developed by Futaba for use in radio control sys-
tems. FASST is a more expensive protocol with less latency
and a much greater range than the classical frequency-
hopping spread spectrum (FHSS).

The spectrum analyzer was configured to capture signals
from 2300 to 2600MHz. For each test, 551 power measure-
ment samples were taken in this 300MHz bandwidth. The
focus here is not to detect spurious signals outside the trans-
mission domain in a large bandwidth but rather to process
the useful control data, hence the choice of the configured
frequency band.

3. Fading Experience for Drone

3.1. Fading Types. In drone communication systems, the
exploration of fading phenomena is essential for improving
the reliability and performance of the wireless links. Fading,
characterized by fluctuations in the signal strength during
transmission, is a phenomenon that is influenced by various
environmental factors. There are two major types of fading,
the large-scale and small-scale fading. Large-scale fading,
associated with gradual changes in signal strength, holds
particular significance in drone applications, where the ter-
rain and surrounding obstacles can lead to sustained alter-
ations in communication quality. Conversely, small-scale
fading, marked by rapid signal fluctuations, is closely tied
to the dynamic movement of drones and multipath direc-
tions of the signal, causing abrupt changes in the signal
propagation path. Investigating these fading types is crucial
for developing robust communication protocols and adap-
tive systems that can effectively address the challenges posed
by the unpredictable and dynamic nature of a drone’s oper-
ational environment. Several types of signal fading [25] can
be distinguished, as shown in Figure 6.

In our scenario, the fixed-wing drone is in LOS with the
transmitter at a known distance (4m for the basement, 10m
in open area, and 20m in the forest). Shadowing attenuation
is not considered in the large-scale fading branch. In addi-
tion, because the transmission and reception antennas are
static, we can deduce the absence of the Doppler effect.
However, frequency-selective fading is noted, which is a
more precise model of multipath fading than the flat fading
model. Hence, the control signal undergoes attenuation in
both path loss and multipath fading.

In our tests, despite the fixed-wing drone’s static LOS
with the transmitter, our results accounted for both large-
scale path loss and frequency-selective fading. These find-
ings set the stage for a deeper examination of path loss,
which we explore next in the context of the generalized Friis
formula and its practical implications in our experimental
setup.

Figure 4: Radiated emission in open test area (10m between the
transmitter TX and the receiver RX).

4 Modelling and Simulation in Engineering



3.2. Path Loss Fading. Telecommunications engineering
states that the power density of an incident field from a radio
transmitter undergoes attenuation owing to phenomena
such as free-space propagation, presence of obstacles, and
antenna losses (impedance, polarization, and directivity).
The attenuations recorded in the communication between
two antennas separated by the distance R are summarized
by the generalized Friis formula:

Pr
Pt

=GtGr 1 − s11
2 1 − s22

2 · u · v
2
· C

4πRf
2
, 1

where Pr/t represents the received/transmitted power, Gr/t
denotes the gain of the receiving/transmitting antenna, and
s11 and s22 are the reflection coefficients of the transmitting
and receiving antennas, respectively. The scalar u · v
denotes the term related to the antennas mismatch. For test-
ing purposes, the antennas are well polarized ( u · v ≈ 1)
and adapted according to a common impedance of 50Ω

( s11
2= s11

2 ≈ 0) to simplify the formula. Note that the
losses due to multipath fading are modeled in the next sec-
tion. The insertion losses of the coaxial cable were retrieved
from the calibration test report and considered.

First, we calculate the effective emitted power of trans-
mitter T14SG starting from the power data displayed on
the spectrum analyzer in Figure 1(a), following these steps:

(i) The amplitude of the power read on the spectrum
analyzer is the first data to be considered (Pt,dB′ )

(ii) The input attenuation of the spectrum analyzer fil-
ter (5 dB) is added

(iii) The insertion losses related to the used cable
(0.6 dB) are added

(iv) Attenuation of the directional coupler (20 dB) is
added. The directional coupler lowers the transmit-
ter signal power to protect the input filters of the
frequency analyzer

The obtained result represents the effective transmitted
power of the signal emitted by the T14SG transmitter; thus,
Pt,dB = Pt,dB′ + 25 6.

To obtain the theoretical power density of the signal at
the receiving antenna, such as in the experiment in
Figure 1(b), the emitted signal from the transmitter T14SG
undergoes the following:

(i) Gain Gt of the transmitting antenna: it is assumed
that the losses due to antenna mismatch are nearly
zero

(ii) Attenuation due to propagation in free space: the
antennas are in line-of-sight

(iii) Reception of the incident power field by the receiv-
ing antenna with a gain Gr

The operations outlined above regarding attenuation due
to propagation allow us to simplify Equation (1) into its log-
arithmic form:

Transmitter

Spectrum
analyzer

RX
antenna

Figure 5: Radiated emission measurement in the forest (20m between the transmitter TX and the receiver RX).

Fading types

Large scale
fading

Path loss

Shadowing

Small scale
fading

Multipath delay
spread

Flat fading

Frequency
selective fading

Doppler spread

Fast fading

Slow fading

Figure 6: Fading types.
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Pr,dB = Pt,dB′ + Gr,dB +Gt,dB + 20 · log10
C

4πRf + 25 6 2

To obtain the theoretical power of the received signal,
one must consider the power losses due to multipath fading,
as well as the noise present in the environment.

3.3. Multipath Fading. Multipath fading occurs when signals
transmitted to the drone experience multiple reflections and
refractions as they interact with obstacles or the Earth’s sur-
face, resulting in variations in the signal strength and phase
at the receiver. Understanding and mitigating the effects of
multipath fading are of paramount importance in drone
applications, where high reliability and low-latency commu-
nication are essential. Addressing the impact of multipath
fading in drone communication systems is pivotal for
improving the capabilities and reliability of UAVs in diverse
applications.

To describe multipath fading, several statistical models
exist that best capture the observed phenomenon. Examples
include Rayleigh fading, Rician fading, Nakagami fading,
and Weibull fading.

The model best suited to our situation is Rician fading.
This model is applied when there is a strong line-of-sight
signal component in the presence of other scattered compo-
nents from different paths and reflecting obstacles in the
environment.

It is crucial to understand the model’s dependency on a
strong line-of-sight (LOS) component for accurately model-
ing signal transmission in diverse environmental conditions
with Rician fading model. While the model provides a
robust framework for scenarios with a clear LOS path, its
efficacy diminishes in environments where the LOS compo-
nent is weak or obstructed, leading to a scenario where the
scattered components predominate. Such conditions are
not uncommon in urban or heavily built-up areas, where
buildings and other structures can significantly interfere
with the signal path. In these cases, the proposed model
may not fully capture the complexity and variability of
real-world signal behavior, necessitating the consideration
of alternative fading models like Rayleigh, Nakagami, or
Weibull. These models offer a more nuanced understanding
of signal transmission in environments characterized by
nondominant or absent LOS components, providing a com-
plementary perspective to the limitations of the current
approach.

3.4. Rician Fading. The Rician fading distribution provides
an appropriate representation of the variations in the signal
envelope within narrowband multipath fading channels,
characterized by a clear LOS path connecting the transmitter
and the receiver. This is a statistical representation that
models the effects of multipath propagation in a wireless
communication channel, which is our case. The Rician prob-
ability density function is as follows:

f z = −
z2

σ2
e− z2+ν2 /2σ2 I0

zν
σ2

, 3

where I0 is the modified Bessel function of the first kind with
a zero order, ν2 is the LOS component, and 2σ2 is the non-
LOS component.

The Rician distribution is often represented by its K
-factor defined by

K = ν2

2σ2 4

According to [26, 27], the received signal Y t through
the Rician channel from a transmitted signal x t can be
expressed as follows:

Y t = h t ⊗ x t + n t , 5

where n t is the noise and h t is the complex response of
the Rician channel. In the integral form, the received signal
in time domain can be expressed by

Y t =
+∞

−∞
h τ x t − τ dτ + n t 6

The complex expression of the Rician channel response
h is deduced from [28, 29]

h = Ae−j2πθ + 〠
N

i=1
aie

−j2πϕi , 7

where A ≥ 0 is the magnitude of the direct path of the signal
communication, θ is the corresponding phase shift caused
by the transmission distance and can uniformly take any
value in 0, 1 , ai are the amplitudes of the scattered waves,
and ϕi are their respective phase shifts. The sum is over N
paths of the scattered waves. Each of these scattered paths
possesses a comparable strength but is noticeably weaker
than the direct path.

Equation (7) of the Rician response channel can be
developed in another form by introducing the Rician K
-factor according to [20]:

h = K
K + 1hLOS +

1
K + 1 hNLOS, 8

where the NLOS component hNLOS ~N ℂ 0 ; 1 . This com-
plex Gaussian distribution is motivated by the central limit
theorem, which states that the sum of several independent
and identically distributed random variables is approxi-
mately Gaussian.

hLOS = e−j2πθ and θ ~U 0, 1 are the phase shift uniform
random variables.

Note that in many studies, the LOS component is men-
tioned as a deterministic value, as in [26]. However, it was
demonstrated in several new research works, such as [29],
that the LOS component hLOS has a phase shift that follows
a uniform random value U 0, 2π , which will be considered
for this study.
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3.5. Rician Channel Response in Frequency Domain. The
aforementioned Rician distribution model was expressed in
the time domain. In order to use the power data measured
by the frequency analyzer, we must convert the time domain
model to the frequency domain through Fourier transforma-
tion. Furthermore, by using the frequency domain, the con-
volution product in Equation (6) becomes a simple
multiplication. Equation (5) becomes

Y f =H f · X f +N f ,

Y f = K
K + 1 · e

−j2πθ + 1
K + 1 hNL · X f +N f ,

9

where hNL ~N ℂ 0 ; 1 is a random normal complex variable
and N f ~N ℂ 0 ;N0 is a random Gaussian variable. N0
represents the noise power spectral density.

Because this model concerns the transmission channel
related to the test environment, we must use the radiated
measurement power data in Figure 1(b) to estimate the
K-factor used in frequency Rician channel response H f .

Note that estimating the K-factor is a delicate exercise
and continues to be the subject of several studies, such as
those in [30–33].

In this study, we used the computed LOS component
and the measured received power (LOS + NLOS) in
Figure 1(b) to estimate the K-factor over the bandwidth con-
sidered. Thus, we obtain

K = 1
N + 1〠

N

i=0

PLOS
PLOS+NLOS − PLOS

, 10

where PLOS+NLOS is the power measured in Figure 1(b)
and PLOS is the determinist LOS power calculated in
Equation (2) without considering the multipath fading.
The K-factor is obtained by calculating the average over
the N measurement samples across the considered fre-
quency bandwidth.

3.6. Multipath Fading of the Conducted Measured Signal.
The power measured by the frequency analyzer is an aver-
aged power over the RBW (resolution bandwidth); thus,
we got in frequency domain the averaged received power
spectral density (PSD) in

Y2 f
2 =H2 f · X

2 f
2 + X f N f + N2 f

2 , 11

where Pt F = F+RBW
F X2 f /2 df is the conducted

power of transmitted signal measured by the spectrum
analyzer in Figure 1(a) (see Section 3.2). Ph F =
F+RBW
F Y2 f /2 df is the received power in the consid-

ered Rician channel.

3.7. Noise Measurement. In drone applications, the presence
of noise poses a significant challenge that can affect the reli-

ability and precision of various functionalities. Noise in
drone applications can originate from diverse sources,
including sensor inaccuracies, environmental conditions,
and electronic interference [6]. Accurate modeling of this
noise is important for enhancing the performance of drone
systems. Statistical models offer a systematic approach for
characterizing and understanding the stochastic nature of
noise in drone applications. By employing generalized statis-
tical models [34], researchers have aimed to capture the var-
iability and randomness associated with different noise
sources following the environment specificity. For instance,
Gaussian models are commonly used to represent additive
noise, whereas more complex models exist and may be
employed to simulate specific environmental conditions.
These statistical models enable researchers and engineers
to assess the impact of noise on drone operation, refine
control algorithms, and develop strategies to mitigate the
adverse effects of noise.

The noise considered in Equation (5) is modeled as
additive white Gaussian noise (AWGN). It is important
to note that, in practice, “white” noise possessing an infi-
nite bandwidth is an idealization. In real-world communi-
cation systems, the bandwidth is finite, and thus, the
spectrum of the noise is limited to this bandwidth. Never-
theless, the AWGN model is employed as an effective
approximation for a wide range of frequencies within the
system’s operational bandwidth. The statistical properties
of AWGN, particularly its mean and variance, are crucial
for predicting the performance of communication chan-
nels, designing error-correction codes, and assessing the
overall reliability of the communication system in the
presence of noise. The use of the AWGN model in this
context is a standard approach in the analysis of commu-
nication systems and is intended to represent the com-
bined effect of many random noise sources found in
typical operating environments.

Hence, the noise power within the datalink bandwidth
was measured on the receiving antenna. Noise listening
was recorded in the test environments without any transmis-
sion operations to capture fluctuations in noise power. These
data are transmitted to the MATLAB tool to determine the
statistical parameters of AWGN, namely, the average trans-
mitted power and its statistical variance relative to this
average.

For all measurements in the three environments studied
(basement, forest, and open area), we have recorded the
background signal present with the transmitter turned off.
A goodness-of-fit test is applied in MATLAB to confirm
the noise characterization, namely, mean and variance.

In general communication systems and signal pro-
cessing theory, the assumption of zero mean for AWGN
simplifies the analysis and aligns with the idea that noise
is equally likely to be positive or negative and has no
systematic bias. However, in some specific cases or
models, noise with a nonzero mean may be considered.
Because the measurement is conducted with a spectrum
analyzer that gives the received signal a certain amplifi-
cation with its filters, we consider the mean to be a
nonzero value.
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These parameters are used to generate the noise power
with the simplest statistical formula:

N = N0 · Z, 12

where Z ~N ℂ 0 ; 1 is a complex normal Gaussian random
variable and N0 is the power spectral density of the noise.

4. Results and Discussion

4.1. Conversion to Frequency Domain. In this study, we
recorded measurements of conducted emissions, radiated
emissions, and environmental AWGN using the frequency
analyzer. These measurements were then diligently struc-
tured into tabular arrays, facilitating their integration and
subsequent manipulation in MATLAB. This step is crucial
for the ensuing analysis, which necessitates a transition of
all data from the time domain into the frequency domain,
encompassing the Rician channel response as well as the
associated noise profile.

The Fourier transform, renowned for its extensive appli-
cability and simplicity of execution within MATLAB, was
the transformation technique of choice. It is important to
note, however, that the MATLAB FFT (fast Fourier trans-
form) algorithm assumes the signal to be periodic, which
conflicts with the characteristics of the spread spectrum
modulation used in this context. To reconcile this and utilize
the FFT algorithm effectively, we applied a Hamming win-
dow. This approach accommodates the nonperiodic nature
of both the channel response h and the noise, ensuring a
smooth and accurate transformation into the frequency
domain for our analysis.

4.2. Theoretical Received Power. It should be noted that the
theoretical power supposed to be received by the receiving
antenna of the spectrum analyzer arises from the emitted
conducted power in Figure 1(a) and undergoes the following
attenuations:

(i) Path loss due to free-space propagation between the
two antennas

(ii) Attenuation due to the multipath fading
phenomenon

(iii) Gaussian noise in the working environment

From Equation (2) and Equation (11), the final logarith-
mic format of the power vector is deduced as follows:

Pr,dB = 10 · log10 Ph +Gr,dB +Gt,dB + 20 · log10
C

4πRf + 25 6

13

4.3. Monte Carlo Simulation. Given the stochastic nature of
the proposed model, each execution of the corresponding
MATLAB script yields different results. This variability is
intrinsic to models that incorporate random elements or
are influenced by probabilistic factors, reflecting real-world

conditions where slight changes can lead to different
outcomes.

To enhance the robustness and reliability of our results,
we will employ the Monte Carlo simulation method. This
approach will allow us to perform a large number of trials
with the model, which helps in capturing a broader spec-
trum of possible outcomes and provides a more comprehen-
sive statistical analysis. By aggregating the data from these
numerous simulations, we can determine a more accurate
and dependable representation of the model’s predictions.

The Monte Carlo method is particularly beneficial
because it does not rely on a single set of results; instead, it
considers the variability and uncertainty inherent in the
model to predict a range of possible outcomes. This will
enable us to derive meaningful insights and more useful
data, as we can statistically quantify the confidence in our
model’s predictions and better understand the probability
distribution of the potential results. Upon executing the
MATLAB code with a varying number of simulations, we
observe that the error metrics (discussed in the Section 4.4)
stabilize after reaching a threshold of 50,000 simulations.

Note that 50,000 simulations are mentioned to ensure
that anyone wishing to replicate the simulation using the
MATLAB code can achieve stable values to the nearest thou-
sandth of a dB for both mean absolute error (MAE) and
mean squared error (MSE) (discussed later in this paper).
However, this increases the program’s execution time to
about 17 seconds. 5000 simulations could also achieve stable
values to the nearest hundredth in less than 1 second.

While running the program on a PC does not present a
significant time constraint, if the program is to be deployed
on a drone, the number of simulations must be adjusted
based on the embedded system’s processing speed to allow
for real-time operation by the drone.

4.4. Results and Discussion. In Figure 7, we plot the radiated
power field emitted by the transmitter, recorded experimen-
tally at the receiving antenna of the frequency analyzer
(Figure 1(b)), along with the conducted emitted power
(Figure 1(a)). The observed difference between the two
traces indicates that the power emitted by the transmitter
undergoes significant attenuation and distortion when irra-
diated in the test environment.

The measured conducted signal experiences attenuation
due to free-space propagation. By computing the theoretical
received signal by only considering the path loss (large-scale
fading) in the basement environment, we obtain the plotted
curves in Figure 8. Also, a significant difference was observed
between the two curves. We conclude that the small-scale
fading plays a critical role in the signal attenuation and
should be considered.

After accounting for multipath fading and the noise
effect, the signals shown in Figures 9–11 were obtained using
the statistical model in MATLAB. It is concluded that this
theoretical model closely aligns with the data measured in
practice using a frequency analyzer. To quantify the discrep-
ancy, we will proceed with a comparative analysis using
location-based error metrics, mean absolute error (MAE)
and mean square error (MSE), summarized in Table 1.
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Table 1 provides a comparative analysis of location-
based error metrics, mean square error (MSE) and mean
absolute error (MAE), both expressed in decibels (dB) for
the theoretical model’s calculation of a received signal
against an experimental model. These metrics are computed
using 551 samples within a bandwidth ranging from

2300MHz to 2600MHz across various environments: base-
ment, open area, and forest.

In the basement environment, the MAE is the highest at
6.66 dB, indicating a moderate level of average absolute devi-
ation from the actual measurements. This suggests that the
theoretical model tends to be less accurate in the basement
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Figure 7: Conducted emission vs. radiated emission in the basement.
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Figure 8: Radiated emission vs. theoretic radiated emission after considering only path loss attenuation in the basement.
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setting. The MSE is also quite high at 90.87 dB, pointing
towards larger errors and possibly a few extreme deviations,
which significantly affect the model’s predictive accuracy in
this environment.

In the forest environment, the MAE is slightly lower
than the basement at 6.40 dB but still indicates substantial
average errors, which may be due to the complex signal
propagation conditions typically found in forested areas.
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Figure 9: Experimental RE vs. theoretic RE after considering path loss, Rician channel, and AWGN channel in the basement.
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Figure 10: Experimental RE vs. theoretic RE after considering path loss, Rician channel, and AWGN channel in the forest.
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The MSE is 82.33 dB, indicating that while the average errors
are smaller than in the basement, there are still significant
deviations from the actual values, reflecting the challenging
nature of accurately modeling signal behavior in a forest
environment.

In the open area environment, the MAE shows the low-
est error at 5.39 dB, suggesting that the theoretical model is
more accurate in open areas, which typically have fewer
obstructions and a clearer line-of-sight for signal propaga-
tion. The MSE is significantly lower at 61.12 dB, implying
fewer large errors and a higher overall accuracy of the model
in open area conditions compared to the other
environments.

It is important to highlight in this context that the exper-
imentally measured signal underwent several processing
steps within the frequency analyzer to achieve the smooth
curve that is presented. Among these processing steps, the
use of filters such as RBW (resolution bandwidth filters),
VBW (video bandwidth filters), and antialiasing filters
should be noted. This processing substantially accounts for
the significant discrepancy observed in the mean square
error (MSE) values.

The developed model intentionally omitted the consider-
ation of filtering effects due to the unspecified behavior of

the spectrum analyzer’s filters within our specific context.
Our primary objective centers on forecasting the influence
of a particular environment on the drone’s datalink through
the application of mean absolute error (MAE) metrics. This
focus led to the oversight of incorporating the signal pro-
cessing parameters of the frequency analyzer, as evidenced
by the elevated mean squared error (MSE) values.

In summary, the model has been successfully tested in 3
environments where the transmitted signal presents a strong
LOS component compared to the scattered component:

(i) In the transmission scenario in the first environ-
ment, inside the basement room, several types of
multipath fading can occur due to the specific envi-
ronmental characteristics, such as limited space,
walls, floors, ceilings, and possibly the presence of
various objects. These conditions lead to different
paths that the signal can travel from the transmitter
to the receiver (4m), yet Rician fading remains
applicable, with the highest MAE (mean absolute
error) value

(ii) In the forest environment, the signal is still in LOS
with trees around. Even with greater distance
between the transmitter and the receiver, the MAE
metric is less than for the basement. We can explain
that by the reduction of scattered paths reflected on
the trees and the absence of ceiling and rebars in all
the walls of the basement

(iii) In the open area, the situation is closely similar to
the OATS. The signal in these kinds of sites has
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Figure 11: Experimental RE vs. theoretic RE after considering path loss, Rician channel, and AWGN channel in the open area.

Table 1: Comparative analysis of location-based error metrics
across different environments using Monte Carlo simulation.

Basement Forest Open area

MAE (dB) 6.658304 6.400293 5.395559

MSE (dB) 90.869257 82.337156 61.115936
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reduced reflection paths, which explains the good
MAE metric

5. Conclusion

The control of a drone through radio communication
involves various attenuations caused by the operational envi-
ronment. Frequency-hopping modulation provides trans-
mitted signal robustness against jamming and attenuation.
Despite this, the signal is strongly affected by its environ-
ment, consequently reducing its performance in terms of
the drone control range and electromagnetic susceptibility.

This study presents a new model for estimating the
received signal by modeling the operational environment.
This model considers various attenuations suffered by the
signal owing to large-scale and small-scale fading.

Considering the path loss fading (deterministic method)
as well as the multipath fading and the additional white
Gaussian noise (stochastic method), it allows the genera-
tion of a highly appreciable estimation of the received sig-
nal in the radiated mode. It is crucial to highlight the
model’s limitation due to its reliance on a strong line-of-
sight (LOS) component for accurately modeling the real-
world variability in signal strength across diverse environ-
mental conditions.

The Monte Carlo simulation, integral to our analysis,
indicates that while the model excels in open areas, it also
performs commendably in forest and basement environ-
ments, showing a reasonable degree of accuracy as reflected
by the MAE value. The simulation’s extensive iterations con-
firm the model’s robustness across diverse environmental
conditions, successfully capturing the complex dynamics of
signal attenuation and propagation, including the effects of
small-scale fading.

This estimation can be used to assess the communication
range between the ground control station and drone based
on the transmitter’s emitted power and environmental char-
acteristics. Thus, we can use other parameters such as bit
error rate in order to quantify the effectiveness of the data-
link. Additionally, electromagnetic susceptibility can be
improved by installing active filters according to environ-
mental characteristics.

Finally, several improvements can be made to the model
to improve the accuracy of predicting the radiated signal
based on the conducted measurements and the environment
characteristics.

The model’s performance can be enhanced by incorpo-
rating additional communication configurations between
the drone and the ground station. This includes accounting
for the Doppler effect resulting from the drone’s motion,
the shadowing phenomenon that occurs when objects
obstruct the path between the communication antennas
(transmitter and receiver), and the impact of various noise
sources. These noise sources could include proximity to
high-voltage power lines or operating within urban areas
characterized by a high electromagnetic spectrum density.
By addressing these factors, the model can offer a more accu-
rate and reliable prediction of communication performance
under diverse environmental conditions.

Future research will focus on studying the impact of the
environment on the datalink of a fixed-wing drone in
dynamic flight. We plan to predict the range of the drone
with the datalink in the considered environment. The
research outcomes could contribute to the development of
specific areas within drone communication systems. These
areas include, for example, enhancing the reliability of
communications, analyzing signal propagation under spe-
cific conditions, optimizing communication protocols, and
employing artificial intelligence for improved decision-
making and efficiency.
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