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Proton exchange membrane fuel cell (PEMFC) has a promising future in the power generation and transportation fields.
Recirculation of unused anodic gases is fundamental to achieve a high-performance energy system, and this is usually attained
employing ejectors or pumps. With respect to the latter, ejectors present no moving parts, thus resulting in both higher overall
efficiency of the system and lower maintenance cost. Their main drawback is represented by the narrow optimal operative
range: the entrainment ratio (ER) greatly depends on primary pressure, working pressure, and operative condition in general.
In the last decade, numerous authors focused their efforts on fully comprehending and correctly simulating their working
principles and analyzing how geometrical parameters influence ER and design different geometries to enlarge the operative
range. The aim of this paper is to present in an ordered and clear manner the state of the art of ejector design, both from
simulative (turbulence model, single or multiphase stream, etc.) and empirical (commonly used “rule of thumb”) points of view.

1. Introduction

PEMFC has been proven to be a possible solution for a green
future in both transportation [1] and static power production
[2]. It is a common practice to supply reaction gas with excess
stoichiometric ratio to ensure high performance [3] of the cell
and purge forming water droplets and impurities [4, 5]; thus,
several researchers focused their effort on investigating various
gas management strategies, with the predominant ideas being
dead-end anode [6, 7] and excessive gas recirculation [8, 9]. In
operating with a dead-end configuration, the cell presents
good performance and high hydrogen utilization rate; how-
ever, employing this strategy for a prolonged period led to
accumulation of inert gas and water, hence degrading cell over
time. On the other hand, anodic gas recirculation system
(ARS) requires the design, installation, and maintenance of
an additional component, being it a pump or an ejector.
Pumps have a wide operating range and relatively easy control
but will increase power consumption and overall complexity

of the system [10, 11]. Ejectors present themselves as an inter-
esting option to play that role, given their advantages with
respect to pumps: lower installation and maintenance cost,
no moving parts, and no noise [12, 13].

Figure 1 shows a simplified scheme for an ARS that
employs an ejector. The hydrogen is primarily supplied to
the PEMFC from the high-pressure hydrogen tank; the gas
travels through the serpentine, and then, the exceeding part
is recovered in a secondary circuit. It is worth noting that the
nature of this “recovered” flow, two-phase multispecies,
poses one of the major issues with ejector simulation [14].

The ejector is essentially a device that uses the high pres-
sure of a fluid to pump a low-pressure one.

Figure 2 shows the geometry of a simple ejector. The
motive or primary fluid is the one at high pressure (Pp),
while the secondary fluid resides at low pressure (Ps) are in
a toroidal space. The motive fluid is initially accelerated
through a nozzle (Nα, ND) and thus creates a low-pressure
region nearby its exit; this region is often referred to as
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suction chamber since the low-pressure fluid tends to move
towards the motive fluid due to the pressure gradient. At this
point, fluids start to mix in the mixing chamber (ML, MD)
and finally expand in the divergent section (Dα, DD) to
recover kinetic energy and reach the required working pres-
sure. An experimental schlieren visualization of this process
is presented by Rao and Jagadeesh [15]. All the parameters
shown in Figure 2 (and even more if we consider different
geometries, e.g., convergent-divergent nozzle and multistage
ejector) are fundamental during the design process, since
they play an important role in determining the ER provided
by the ejector, its optimal operative range, and critical condi-
tion. The ER is evaluated through the following formula:

ER = ms
mp

, 1

where ms and mp are the primary and secondary mass flow,
respectively. Another important parameter to characterize
ejectors is the range coefficient (REJE); it indicates the per-
centage of working condition that the designed ejector can
cover with respect to the whole operative range of the sys-
tem. In PEMFC system, it is usually in the range 65-80%
[16]. It is calculated as follows:

REJE =
Pmax − Pmin

Ppeak
, 2

where Pmax and Pmin are the maximum and minimum oper-
ating power and Ppeak is the power peak of the fuel cell stack.

Figure 3 is useful to better understand how ER changes
in the working range of the ejector. At fixed Pp and Ps, it is
stable on its maximum value as PB increases since both flows
are chocked. This is the range for which the ejector was orig-
inally designed. As the backpressure surpasses a certain
threshold, only the motive fluid is chocked, and the ER
sharply decreases. If the backpressure continues to rise even
further from the design point, reverse flow mode is reached.
This means that the useful operative range of an ejector is
quite narrow. Several authors investigated through experi-
mental and simulative studies the effects of geometrical
parameters, some even proposed novel ejector concepts
(multinozzle, variable area, and so on). Deciding which
model and thus which rule follow in designing an ejector
for a specific purpose is quite tortuous due to the abundance
of empiric rules that are presented in the literature. In this
paper, the state of the art from both experimental and
simulation point of view is presented and commented with
the aim to provide an overlook on the most commonly
used models.

2. Ejector Simulation

Due to the reciprocal influences of the various geometrical
parameters of an ejector, the optimization of its design could
be a long and expensive process. Proper modelling could be
an invaluable tool to optimize this device and bring down
prototyping costs. The first distinction that has to be made
when talking about ejector modelling is whether to consider
a constant pressure mixing (CPM) or constant area mixing
(CAM) device. The substantial difference lays on the geom-
etry of the designed suction chamber. Figure 4 visualizes
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Figure 1: Scheme of simplified ARS.
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Figure 2: Geometrical scheme of an ejector.
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these design concepts. Their models were early developed by
Keenan et al. [17] and still today represent the basis for ejec-
tor analysis and performance evaluation. CPM ejectors are
considered more favourable for most applications since,
even though they provide lower mass flow rate, they have
the advantages of operating in a wider range of backpres-
sures, thus showing higher working stability [18, 19]. At
present, the two most adopted modelling approaches are
the lumped parameter model (LPM) and computational
fluid dynamics (CFD) model. The former is faster, but its pre-
diction capability strongly depends on the parameter choice
and how those are able to summarize local phenomena. On
the other hand, CFD approach is far more time-consuming,
and it has not a defined methodology. Historically speaking,
density-based (DB) solver was used for its high-speed com-
pressible flow [20], but it requires attention in imposing
Courant-Friedrichs-Lewy (CFL) condition [21]. However,
Van Vu and Kracik [22] compared DB and pressure-based
(PB) solvers with a real gas model, evaluating a 1% discrep-
ancy for ER, but also observing that PB resulted less time-
consuming and more stable. Even more troubling is the
simulation of turbulence inside this device. Reynolds-
averaged Navier-Stokes (RANS) approach is generally used,
but studies presented from different authors show contradic-
tory results over which turbulence model should be adopted:
even though global parameter (e.g., ER) can be similarly
predicted with different turbulence model, the local flow phe-
nomenamay differ [23]. Mazzelli et al. [24] conducted numer-
ical analysis using 4 different turbulence models (k–ε, k–ε
realizable, k–ω SST, and the stress–ω Reynolds Stress), notic-
ing that the best solution varies with the operative condition.
In particular “ε models” are more accurate with low primary
pressure, whereas k–ω SST showed the best overall perfor-
mance. Besagni and Inzoli [25] confirmed that k–ω SST per-
forms better than other models, showing good agreement in
both global and local parameters. However, in the case of fuel
cell ejector, Chen et al. [26] concluded that k–εmodel is more
accurate for low and medium flow rate, while k–ε realizable
shows better agreement with experimental results at large flow
rate. Xiao et al. [27] performed a comparative study varying
solver, turbulence model, near-wall treatment, and spatial dis-
cretization scheme. They concluded that the results from PB
solver are slightly closer to the experimental data with respect

to the ones from DB. The standard k–ε model resulted very
sensitive to the near-wall treatment; thus, the k–ω SST and
the k–ε realizable (with standard wall function or enhanced
wall treatment) are recommended. A different concern in sim-
ulating these devices lays on whether to consider a 2D axisym-
metric or 3D domain. Both Pianthong et al. [28] and Gagan
et al. [29] compared a 2D and 3D ejector model, concluding
that, even though the 3-dimensional approach led to better
accuracy, the axisymmetric assumption had a marginal influ-
ence on the model prediction capabilities, since it just slightly
influenced axial velocity and pressure in the divergent region.
However, Mazzelli et al. [24] noted that this effect may lead to
large errors when operating in the off-design zone. It is worth
noting that, when considering rectangular ejector cross-sec-
tion, using the 2D or 3D approachmay cause big discrepancies
[30, 31]. One last concern regards the nature of the recirculat-
ing fluid, since it presents water vapor and thus condensation
may occur inside the component. A commonly made assump-
tion neglects the effect of this state-shift phenomenon, or even
neglects the presence of water vapor at all, considering a dry
hydrogen flux due to the complexity of this multiphase prob-
lem. However, both Wang et al. [32] and Ariafar et al. [33]
confirmed that the wet steam model is able to better capture
flow patterns inside the ejector. Han et al. [14, 34] performed
two-phase simulations to weigh the effect of liquid water on
the ejector efficiency. In [14], results showed an increase in
temperature (due to latent heat of vaporization), lower veloc-
ity, and higher pressure of the gas phase due to condensation,
resulting in a lower entrainment performance and better
agreement with experimental results. In [34], the authors took
into account both the homogeneous and the heterogeneous
condensation. The two crucial factors that seem to influence
the most droplet size were residence time and subcooling
degree. Condensation process led to a mean efficiency reduc-
tion of 1.42%. From the experimental point of view, some
studies have been conducted to visualize flow morphology
and droplet distribution [35–37]; however, these studies often
offer only a qualitative analysis of the phenomenon due to
both visualization difficulties and hydrogen safety hazard.

3. Literature Review

Defining the optimal nozzle geometry is a fundamental step
since it affects both entrainment ratio and critical backpres-
sure. Metin et al. [38] used ANSYS Fluent to model an ejec-
tor under the single-phase axisymmetric flow assumption,
concluding that the ER of the ejector could be increased up
to 6% varying the primary nozzle position. It is worth noting
that they also observed a critical point where while increas-
ing NXP, the ER starts decreasing. Chen et al. [39] proposed
an annular mixing layer theory: the idea is that the primary
and secondary flow mix in an annular layer that grows as
flow moves towards the ejector axis. The developed model
is in good agreement with the experimental data and con-
firmed that the optimal nozzle exit position depends on
the expansion ratio, thus on the working condition. Poirier
[40] performed an extensive experimental campaign to ver-
ify the effect of working condition on nozzle optimal posi-
tion. In one of the analyzed cases, the critical entrainment
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Figure 3: Ejector characteristic curve.
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ratio improved by 34% just by moving the nozzle. Moreover,
he also observed multiple “optimal” NX value, up to four
peaks. Also, Rand et al. [41] experimentally and numerically
investigated the presence of these suboptimal nozzle position
points using the compound choking indicator: for a given
operative point, this criterion highlights the location where
the secondary flow is choked and allows to individuate the
variation of choking position for several values of NX . How-
ever, also the mixing chamber layout plays an important role
in the ejector’s overall performance. As a matter of fact, Pei
et al. [42] proposed a CFD single-phase ideal gas model to
perform a parametric study on the measures of interest of
an ejector. In particular, they determined an optimal range
for the ratio between mixing chamber and nozzle out diam-
eter (MD/ND = 3 00 – 3 54) and between mixing chamber
length and diameter (ML/MD = 1 – 3). Ma et al. [43] per-
formed a 3D CFD simulation and, at set operative conditions,
considered 4 geometrical parameters to be optimized with a
user-defined priority: nozzle diameter, nozzle position, sec-
ondary inlet diameter, and mixing chamber diameter. It is
clear by now that the design geometry strongly depends on
the defined criterion; therefore, more complex and compre-
hensive optimization algorithms [44–50] are needed.

Table 1 reports a summary of the type of study per-
formed, modelling adopted, and key findings for several
literature papers.

4. Alternative Geometries

From the literature review presented in Table 1, it is clear
that simulation and optimization led to an increase in ejector
performance, but the narrow operational range issue still
remains. Therefore, some researchers focused their efforts
on investigating novel approach on ejector design: multi-
stage, multinozzle, moving nozzle, nested nozzle, bypass
circuit, and other solutions are hereby presented.

A simple solution is the introduction of amoving needle in
the nozzle, allowing for operation with variable nozzle diame-
ter and with the possibility to better control motive flow direc-

tion as it enters the suction chamber (see Figure 5). This
solution needs a control strategy that properly set the correct
nozzle effective area with respect to operative condition consid-
ered, but it is able to enlarge the range coefficient of the ejector
[63–66]. However, the sealing, manufacturing costs, precise
control, and long-time reliability are significant challenges.

Another conceptually simple solution is the usage of
multiple ejectors [67–70], and the ad hoc control strategy
realized by Chen et al. [71] for a 70 kW PEMFC using two
identical ejectors was able to cover the stack’s minimum
8% to maximum 100% power output.

Other authors investigated deeper change in ejector
geometry. Chen et al. [72] observed a low-pressure zone in
between mixing and diffuser section and proposed a motive
fluid bypass to enlarge ER. The proposed solution (see
Figure 6) showed good performance when compared to the
original design: larger ER and lower critical backpressure.

Song et al. [73] simulated and experimentally investi-
gated the performance of a twin-nozzle ejector, compared
to the traditional one that improved the hydrogen recircula-
tion under low load condition. The geometry proposed by
Xue et al. [74] also employs a modified version of a nozzle
which was divided into four small nozzles, as per Figure 7.
The total mass flow rate passing through the novel nozzles
is equal to the original one. In choosing the number, they
had to consider the fact that, even though more nozzles lead
to more flow rate step, it may also lead to malfunctioning in
the single node operational mode. Simulation results con-
firmed that the multinozzle ejector expands the operating
range by switching the working condition with different
coactive nozzle strategies, thus effectively increasing the
range coefficient. Another study [75] introduced a nested
nozzle (see Figure 8), in which geometry was optimized
through CFD in order to cover the whole operative range,
from idle condition to full power. On a similar note, Du
et al. [76] and Han et al. [77] investigated the performance
of a coaxial nozzle, confirming the extension of operative
range with respect to the default one. A different take on
multistage ejectors is the one offered by Wang et al. [78]
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Figure 4: (a) CPM and (b) CAM (adapted from [18]).
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Table 1: Literature survey on ejector simulation and geometric optimization.

Ref. Year Type More details Key findings

[38] 2019 Numerical
ANSYS Fluent, 2D axisymmetric steady flow, k–ω SST,

1-phase 1-species
Increasing NX raises ER, after a certain value
performance deteriorates

[39] 2020 Numerical Thermodynamic model, annular mixing layer Optimal NX depends on working condition

[40] 2022 Experimental
Ejectors with different nozzle and area ratios tested

over wide ranges of operating conditions
Up to 4 “optimal” NX observed; these values were
affected by both working condition and area ratios

[41] 2022 Mix

Experimental testing and validation of proposed
model, ANSYS Fluent, 2D axisymmetric steady flow,
k–ω SST, 1-phase 1-species, compound choking

criterion

Compound choking allowed to determine variation in
secondary flow choking position under several
suboptimal NX

[42] 2019 Numerical
ANSYS Fluent, 2D steady flow, k–ε; model coupled
with anodic pressure drop formula, 1-phase 2-species

Optimal range for MD/ND (3.00–3.54) and ML/MD
(1–3)

[43] 2021 Numerical 3D steady flow, RNG k–ε, 1-phase 2-species ND is the first geometrical parameter to be optimized

[51] 2014 Numerical
Thermodynamic model of ejector coupled with

semiempirical stack model
Definition of two dimensionless parameters to guide
ejector design

[52] 2017 Experimental
Ejector designed and tested at constant load and in fast

transient condition

Anode gas recirculation rate ranging from 40% fuel
utilization per pass at 25A stack current to 64% fuel
utilization per pass at 160A stack current

[53] 2022 Numerical
ANSYS Fluent, 2D steady flow, k–ω SST, 1-phase

2-species

Determined order of influence of geometrical
parameter:
(i) Low current (110A)

MD >Nα >NL
∗ >NX >ML

(ii) Middle current (275A)
MD >Nα >NL

∗ >ML >NX
(iii) High current (412.5 A)

MD >NX >ML >NL
∗ >Nα

∗Nozzle throat length

[54] 2013 Numerical Thermodynamic model
Inlet primary flow temperature affects ejector
entrainment ratio and component efficiency

[55] 2019 Mix
ANSYS Fluent, 2D axisymmetric steady flow,
comparison between RNG k–ε and k–ω SST

RNG model shows higher accuracy than SST; optimal
Dα = 11 – 13° and MD = 5 9mm when stack works at
its rated power

[56] 2020 Numerical
ANSYS Fluent, 2D axisymmetric steady flow, k–ω SST,
coupled with a pressure drop through anode model

ER can be influenced by anode inlet temperature,
relative humidity, and differential pressure

[57] 2020 Numerical
OpenFOAM, 3D transient flow, RNG k – ε, 2-phase

3-species

Dynamic responses during power variations results
from velocity differences between the primary and the
secondary flow; increase of nitrogen mass fraction
promotes total ER, while it reduces hydrogen ER

[58] 2020 Numerical
COMSOL, 3D steady flow, coupled with MATLAB/

Simulink hydrogen recovery system model

A lower ejector temperature is disadvantageous in
removing the moisture content of the recirculated
hydrogen gas, thus in practical applications; the
hydrogen inlet temperature/pressure must be carefully
controlled

[59] 2022 Numerical Thermodynamic model of a 2-phase CPM ejector
ER increase from 0.47 to 1.14 as mixing area ratios
range from 1.0 to 1.2 under the given conditions

[60] 2015 Numerical
Integrated lumped parameter-CFD approach, ANSYS

Fluent, 2D axisymmetric steady flow, k–ω SST

The model can be used for studying off-design
conditions, where ejector component efficiencies are
not constant

[61] 2016 Numerical
ANSYS Fluent, 2D axisymmetric steady flow, RNG k–ε
, 2-phase 1-species, optimization through genetic and

evolutionary algorithm
MD is the crucial parameter in ejector performance

[62] 2021 Numerical
ANSYS Fluent, 2D steady flow, RNG k–ε, 1-phase

2-species

Humidity and temperature of the secondary flow have
a noticeable influence on the performance of the
ejector

[44] 2017 Numerical Thermodynamic model, hybrid fish swarm algorithm
Optimization efficiency increased with respect to
genetic algorithm
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Table 1: Continued.

Ref. Year Type More details Key findings

[45] 2018 Numerical
Multiobjective evolutionary algorithm coupled with a

surrogate model based on CFD simulations

ND and MD are the most important geometrical
variable; entrainment ratio can be increased up to
110% and 35%, for air and CO2, respectively

[46] 2023 Numerical
ANSYS Fluent, 2D axisymmetric steady flow, response

surface methodology
Priority order in optimizing ejector geometry:
MD >ML >NX

[47] 2014 Numerical
2D axisymmetric steady flow, RNG k–ε, 1-phase
2-species, artificial neural network and genetic

algorithm to obtain optimal geometry

Optimal ML/MD = 6; optimal NX = 0 52 ×MD;
optimal Dα = 2 5 – 3°; optimal DD = 24 ×MD

[48] 2021 Numerical
Automated CFD workflow, ANSYS Fluent, RNG k–ε,

2-phase 1-species, Gaussian process regression
machine learning model

The algorithm can be used to efficiently explore ejector
designs with mean average errors between 0.07 and 0.1

[49] 2022 Numerical
ANSYS Fluent, 2D steady flow, realizable k–ε,

optimization via adjoint method
ER increased by around 37%

[50] 2022 Numerical
MATLAB and experimental dataset of a steam-

centered ejector are applied to train the ANN model of
a steam ejector using three different algorithms

LM model yielded the best agreement; the effect of the
outlet area ratio is less important with respect to throat
area ratio
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Figure 5: Scheme of variable geometry ejector (adapted from [63]).
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Figure 6: Scheme of ejector with bypass (adapted from [72]).

Figure 7: CAD of multinozzle layout (adapted from [74]).
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and shown in Figure 9: it is a geometry not as compact as the
one shown in Figure 8 but still offers an increase in ER of
around 30%.

5. System Integration and Control

Other than the ejector itself, the whole PEMFC energy sys-
tem must be considered when designing this component
[16]. First, the anodic side usually requires the presence of
a gas-water separator in order to remove most of the humid-
ity from the recirculating circuit. The three mainly used sep-
arator types are presented in Figure 10. Even though cyclone
and filter separator are characterized by a high-phase separa-
tion efficiency, they also cause larger pressure drop with
respect to baffle one; regardless from the selected ARS, a
lower recirculating pressure implies overall worst operative
condition for the system. Han et al. [79] focused their efforts
on optimizing a baffle separator through CFD simulations.
In particular, three different structures were developed for
a 75 kW PEMFC and analyzed both experimentally and
numerically. For a comparable pressure drop, the optimum
geometry ensures better separation efficiency.

On a different note, Ma et al. [80] designed a novel
cyclone water separator system for a 40 kW PEMFC and
investigated the flow field characteristics through CFD sim-
ulations. The new concept was designed with a volute inlet
to boost the swirling effect, leading to enhanced centrifugal
effect and steadier performance throughout the flow rate
range. However, even in the presence of this component, a
suitable purging phase has to be carefully chosen to fulfil
two main functions: it removes inert gases that may accumu-
late in the anode due to membrane permeability and elimi-
nates impure hydrogen [81]. Nitrogen may cross from
cathode to anode through membrane due to the concentra-
tion gradient, and its accumulation negatively impacts the
ER [62]. At the same time, a high purging frequency
increases hydrogen consumption and leads to pressure fluc-
tuations that may damage the membrane [82, 83]: keeping
the pressure difference within the threshold with fast tran-
sient responses is a crucial issue for the safe operation of
PEM fuel cell system [84]. For what regards ejector integra-
tion in the overall energy system, as shown in the previous
chapter, different geometries have been proposed through
years since the simple design suffers of low range coefficient.
In [69], a comparative study was performed between single-

and dual-ejector layouts, with the latter being able to cover
the whole PEMFC-operating range. However, the authors
noted that during the switching phase, pressure oscillations
may undermine the lifetime of the membrane; thus, ade-
quate control strategies are required. Thompson et al. [85]
performed an analysis cost for an 80 kW light duty vehicle.
They considered dual static ejectors (and relative control
valves) for the ARS; nevertheless, they hinted to the fact that,
according to their model, a single pulsed ejector may repre-
sent a valid solution: it shows the lower volume, lower power
request, and lower production cost. Singer et al. [86]
designed and performed numerical and experimental inves-
tigations on a pulsed injector-ejector unit. Ejectors are usu-
ally designed to work at full load, but the pulsed one is a
very promising approach to cover the highly dynamic load
of the automotive market. A solenoid valve just before the
ejector nozzle can be opened for a desired period and fre-
quency, ensuring proper stoichiometric value at anode inlet
even at low load.

In this context, control strategies are of fundamental
importance [87, 88]. As a matter of fact, the needle position
in a variable area nozzle, the activation in a multiejector lay-
out, and the opening in a multinozzle ejector all require an
ad hoc control to cover low to medium system load. Qin
et al. [89] proposed a classic PID to control the hydrogen
mass flow by regulating a proportional valve just before the
ejector body; the study reported a regulating time below
4.5 seconds under several load conditions. In [63], a variable
geometry ejector is responsible for recirculating hydrogen in
the cell, a stepper motor-leadscrew-based linear actuator
control needle positioning, thus changing the effective noz-
zle diameter. Experiments suggested that the implemented
PID algorithm produced considerable unnecessary motion
of the needle. To overcome this issue, the derivative part of
the controller was removed and a dead-band was added to
the calculated pressure error. The new PI controller was able
to provide the required hydrogen stoichiometry. Moreover,
the ejector showed a good tolerance to liquid water,
experiencing only momentary pressure drops. In [90], a
common rail hydrogen injection+ejector system is imple-
mented, and a Mamdani fuzzy controller is designed to reg-
ulate the hydrogen pressure. The controller evaluates the
error between the hydrogen pressure setpoint and its actual
value and also the error change rate, giving as output the
change of the pulse width of the injection phase. Sankar

Secondary fow

Primary fow 1

Primary fow 2

Figure 8: Schematic of nested nozzle concept (adapted from [76]).
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and Jana [91] proposed a multi-input multioutput (MIMO)
sliding mode controller with the aim of maximizing mem-
brane lifetime. Selected inputs were anode source pressure,
compressor motor voltage, and cooling water flow; mea-
sured outputs were output cell voltage, compressor airflow,
and system temperature. An adaptive supertwisting (ASTW)
sliding mode algorithm is developed for the cooperative con-
trol of fuel and air feeding in PEMFC by Yin et al. [92].
Hydrogen excess ratio was aimed to a constant 1.5, while
optimal oxygen excess ratio was taken from the literature
table, given the current. It is worth noting that, since the
air compressor has to dynamically adjust to the controller
request, the membrane may suffer efficiency/useful life loss;
thus, this value has to be monitored with caution. Reported
results show an improved regulation time and smaller over-
shoot for an ASTW controller with respect to a conventional
PID one.

6. Summary

Fuel cell systems can represent a step forward in the direc-
tion of cleaner and greener future, but the technology itself
is still not mature. The design of an effective and efficient

ARS could help its spread. In this work, a literature review
on ejector modelling, geometry optimization, and possible
alternative configurations is presented. The following con-
clusions can be drawn:

(i) There are lots of papers that investigate the optimiza-
tion of ejector geometrical features with different
modelling approaches (thermodynamic model, CFD
2D axisymmetric/3D, etc.) and different optimization
rules (single-object, multiobject, adjoint method,
etc.), but the reported results show sometimes contra-
dictory findings. The reason of this inconsistency is
due to the great influence that both working fluid
and working conditions have on the optimal geome-
try. A robust workflow for ejector simulation is still
to be developed. As a matter of fact, the chosen turbu-
lence model influences the simulation behavior in the
region near the jet core and there is no defined rec-
ommended model. Moreover, most of the reported
literature focused their efforts on simulating the
simple ejector geometry; thus, it is recommended to
perform those simulations also for alternative geome-
tries and/or different ARS layouts

Primary flow 2

Primary flow 1

Secondary flow

NXP 1

NXP 2

Mixing chamber 1

Diffuser 1
Mixing chamber 2

Outflow

Diffuser 2

Figure 9: Scheme of a two-stage ejector (adapted from [78]).
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Figure 10: Schematic of the most common gas-liquid separator (adapted from [79]).
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(ii) Flow condensation phenomena inside the ejector
are usually neglected, but some studies have been
conducted both from experimental and numerical
points of view; given the lack of a sturdy work-
flow, it is recommended to conduct numerical
simulations of this two-phase flow varying the
adopted turbulence model. This may give some
insight on what could be the best way to simulate
ejectors

(iii) Even though there are some differences in the
adopted methodology, researchers seem to agree
that the dimensionless ratios MD/NN and ML/MD,
the nozzle diameter ND, and its position NX are
the most important geometrical parameters in the
ejector design. Some studies even reported the
presence of multiple suboptimal nozzle position;
thus, it is of focal importance to correctly chose
this value

(iv) Some alternative geometries and control strategy
are reported in the last part of the paper. It is worth
noting that the simplicity of the ejector was one of
its best “selling point”; however, its implementation
in real working system requires some tweaks; the
sealing and manufacturing cost for a variable ejector
nozzle, or the proper control of pressure oscillation
during switching phase for a twin ejector layout, are
still significant challenges

Acronyms

ARS: Anodic gas recirculation system
ASTW: Adaptive supertwisting
CAM: Constant pressure mixing
CFD: Computational fluid dynamics
CFL: Courant-Friedrichs-Lewy
CPM: Constant area mixing
DB: Density based
ER: Entrainment ratio
LPM: Lumped parameter model
MIMO: Multi-input multioutput
PB: Pressure based
PEMFC: Proton exchange membrane fuel cell
RANS: Reynolds-averaged Navier-Stokes.

Symbols

Pp: Primary/motive pressure
Ps: Secondary pressure
PB: Outlet pressure
Nα: Nozzle angle
ND: Nozzle outlet diameter
NX : Nozzle X position
ML: Mixing chamber length
MD: Mixing chamber diameter
Dα: Divergent angle
DD: Divergent outlet diameter
ms: Secondary mass flow
mp: Primary mass flow.
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