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This study provides insights into the challenges involved in predicting the Reid vapor pressure (RVP) of gasoline-oxygenate
blends (GOB), which is an important indicator of fuel quality and compliance with environmental and performance standards.
Given the enormous variety of gasoline compositions and ratios available, there is a significant demand for a fast,
straightforward, and cost-effective technique to predict RVP without relying on costly instruments or complicated spectral
measurements that involve numerous input variables. A comparative performance analysis has been performed for different
regression modelling strategies for predicting RVP in GOB, which is valuable for researchers and practitioners in the
petroleum industry for saving time and money. Parametric and nonparametric approaches were compared using partial least
squares regression (PLSR), nonlinear regression (NLR), and nonparametric regression (NPR) models. Locally weighted
scatterplot smoothing (LOWESS) approach was applied to the NPR model. The gasoline’s physical characteristics (distillation
curves and density) formed the basis for the analysis of these models’ performances. Acceptable error metrics have been
reached for root mean square error of calibration and prediction (RMSEC and RMSEP) values, for the PLSR, NLR, and NPR
models, which are 4.790, 6.235, 4.739, 6.149, 3.968, and 6.029, respectively, which are close for those reported in literature. The
NPR model eliminates parametric constraints and allows for a different kind of data structure to emerge. The established
models here demonstrate a sound ability to overcome barriers by omitting the use of inconvenient spectral measurements to
save expense and simplify data calibration, making them a promising approach for RVP detection of GOB. This finding aids in
the development of more accurate RVP prediction models and contributes to the optimization of fuel formulations.

1. Introduction

Gasoline is the main product of petroleum industry, and its
chemical composition might change based on the refining
methods. Gasoline is commonly produced from processes
such as fractional distillation, isomerization, reforming,
cracking, and alkylation, though these processes may not
always work in tandem [1]. Additives such as antiknock
agents, dispersants, detergents, and oxygenates are frequently
used to increase the efficiency of gasoline [2]. Oxygenates are
chemical compounds containing oxygen-containing func-

tional groups and are added to gasoline to improve its prop-
erties and combustion performance by providing the proper
amount of oxygen needed for the combustion of gasoline [3].
Various ethers and alcohols, such as ethanol, methyl tertiary
butyl ether (MTBE), tertiary amyl methyl ether (TAME), ter-
tiary butyl alcohol (TBA), ethyl tertiary butyl ether (ETBE),
di-isopropyl ether (DIPE), and tertiary amyl ethyl ether
(TAEE), are regularly used as oxygenates in gasoline [4].

Reid vapor pressure (RVP) is among few distinctive
parameters that are frequently used for better handling and
controlling of petroleum products during different stages of
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processing, transportation, or storage [5]. Furthermore, for
gasoline, RVP is a key indicator to determine compliance
with environmental and performance standards and regula-
tions like vapor lock, percolation, fuel vaporization, and pol-
lutant emission [6]. RVP testing is routinely used at 37.78°C
(100°F) to determine the vapor pressure characteristic of
gasoline-oxygenate blends (GOB) [7]. Dhamodaran and
Esakkimuthu [8] determined that the uncertainties of differ-
ent instruments used to investigate RVP amount to approx-
imately 1.03% of the RVP that was tested in a given sample.

Measuring the RVP of GOB can be difficult, making it
hard to confirm that anticipated RVP values are correct. Dis-
tillation curves for gasoline are greatly distorted when oxy-
genates with very diverse characteristics are added, which
can cause a substantial change in RVP. It is also challenging
to anticipate the RVP of GOB that contain several oxygen-
ates because the RVP of oxygenates might vary greatly based
on the specific oxygenate being employed. For GOB material
development, when there are many different composition
and ratio possibilities, and for quality assessment purposes,
a fast, simple, and inexpensive method for RVP determina-
tion is still much needed. Industry-standard protocols such
as [9, 10] are now used to measure RVP for GOB. Although
these approaches can be deemed fast, especially for D5191,
however, they are not performing up to par. So, more and
more often, studies are turning to models that can anticipate
future outcomes. Due to the influence of many factors
(model sophistication, lack of data, and uncertainty of input
variables), and the potential for changes in fuel composition
over time, developing a model to reliably predict the RVP of
GOB can be a complex and challenging process. Empirical
and semiempirical methods are used in the creation of these
models. These models can be used to predict RVP of GOB,
including linear regression and multiple linear regression
for gasoline blends containing ethanol, MTBE, and ETBE
or other oxygenates. In order to use semiempirical models
like UNIFAC, UNIQUAC, and SAFT, one must have in-
depth familiarity with the intricate vapor pressure thermody-
namics of the tested GOBs [7]. The RVP of the GOB blends
can be predicted using a UNIFAC-based method that takes
into account the interaction between the blend components
and temperature. Empirical models, including chemometric
methods, are created through mathematical approximation
in order to account for all potential sources of variance in a
dataset [11]. Multivariate calibration, which takes into
account a substance’s spectral or physical properties, is
commonly used in chemometrics. As one of several multi-
variate data analysis tools, regression methods are exten-
sively utilized because of the valuable insight they provide
into a variety of gasoline quality factors with a relatively
small sample size.

Several linear and nonlinear multivariate regression
techniques, including partial least squares regression (PLS),
artificial neural network (ANN), support vector machine
(SVM), and principal components regression (PCR)
[12–15], have been used to successfully predict the RVP of
gasoline based on data from spectral analysis or physical
properties. Although these studies predict the RVP of gaso-
line by the regression calibration methods, using either spec-

troscopic analysis or physical properties has reached good
standard error values, but still, it is required to explore other
regression methods to overcome the difficulties that might
arise due to various processes, adulteration, and blending
causing tremendous variability of gasoline types. Sophisti-
cated regression methods might serve to predict the RVP
in complicated cases. Therefore, it may be helpful to use
more advanced regression approaches to generate trustwor-
thy predictive models for a crucial parameter like the RVP
for gasoline.

In light of the fact that gasoline formulations are so com-
plicated, it is hard to expect a simple correlation between the
fuel’s physical properties and its RVP. Therefore, linear
regression models may not be enough for predicting gasoline
attributes in the presence of more complicated and nonlin-
ear interactions [16]. Thus, nonlinear and nonparametric
regression approaches can be considered as a potential alter-
native strategy for RVP prediction in gasoline. Most of cur-
rent developed regression models of RVP determination in
gasoline in the literature depend on linear approaches like
partial least square regression (PLSR) and multiple linear
regression (MLR), in which they assume a linear formula
for dependent variable correlation with independent vari-
ables. Even while nonlinear regression (NLR) models may
improve prediction performance a little better, nonparamet-
ric regression (NPR) models can be more useful when deal-
ing with relations that are hard to visualize or nonlinearity
cases [17, 18].

This research is aimed at comparing the predictive per-
formance of PLSR, NLR, and NPR, for NPL locally
weighted scatterplot smoothing (LOWESS) regression that
has been used, methods in order to gain a better under-
standing of the advantages and disadvantages of each
method when used to develop a multivariate calibration
approach for establishing a regression model to predict
RVP of gasoline based on its physical properties. Density
(S-Dens) at 15°C, initial boiling point (IBP), and final boil-
ing point (FBP) are utilized as explanatory, independent
variables in conjunction with distillation curves boiling tem-
peratures at quantities of 10%, 50%, and 90% of recovered
condensate (T10, T50, and T90, respectively). The chemo-
metrics’ use of machine learning algorithms to predict
RVP in gasoline has not yet integrated NLR and NPR into
multivariate calibration regression. As a result, the devel-
oped predictive models supply new chemometrics tools that
address the need for streamlining the analytical scheme
using physical properties to overcome difficulties of anoma-
lous conditions generated from various gasoline types and
compositions, and those are not previously included in cal-
ibration sets of existing prediction models.

2. Materials and Methods

2.1. Sampling, Measurements, and Instrumentations. The
current study has been conducted using 913 commercial
gasoline samples, of both premium and regular. The samples
were taken from a number of gas stations in northern Iraq;
the gasoline is produced in oil refineries both inside and out-
side of Iraq using a variety of crude oil sources. Oxygenates,
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which include methanol, ethanol, TAME, MTBE, and ETBE,
are in a varied range of quantities among GOB samples as
stated in Table 1. Densities were measured using a portable
automatic density tester, distillation curves were measured
utilizing an automatic distillation analyzer, and RVP was
determined utilizing a portable RVP tester. According to
the standard test method [19], the collected samples were
kept in sealed polyethylene containers at a temperature of
less than 8°C.

To obtain the temperatures along the distillation curve
(IBP, T10, T50, T90, and FBP), an automated microdistilla-
tion analyzer (Model: PMD 110: PACLP, USA) has been
employed in accordance with ASTM standard test method
[20] that correlates precisely with the ASTM standard test
method [21]. Samples of cooled liquid gasoline, 100ml in
size, were first introduced to the apparatus. Under ambient
pressure, the boiling points of the collected condensate were
determined. To ensure the accuracy of the automated distil-
lation process, 10 randomly selected samples of gasoline
were tested using a manual distiller designed in accordance
with the standard test procedure [21] where there was not
a noticeable dissimilarity in both cases.

The Reid vapor pressure (RVP) was measured as air-
saturated total vapor pressure using a portable automated
RVP tester (Model: ERAVAP: eralytics GmbH, Austria) of
mini method (single expansion method) according the stan-
dard test method of [10].

The portable tester (Model: ERAVAP: eralytics GmbH,
Austria) equipped with a built-in high precision density
meter was used to measure the density (S-Dens) of gasoline
samples, according to ASTM standard test methods [22].
The tested samples were placed in clean, dry testing con-
tainers connected to the apparatus; the results were then
converted to the density of gasoline at 15°C.

Testing devices utilized in this study are reliable since
they adhere to the standard technique [23] followed by the
Garmian Directorate of Oil and Minerals/Ministry of Natu-
ral Resources in the Kurdistan Region of Iraq, the laboratory
where the testers were placed. In order to assess the repeat-
ability and reproducibility of the testers utilized, a normal
procedure called for random 10 gasoline samples to be
examined seven times by three separate personnel [24].
The prediction accuracy of the RVP model was evaluated
by comparing the repeatability and reproducibility values
obtained from the analysis of three randomly selected sam-
ples by three different individuals with ten replicates per
sample to the repeatability and reproducibility values
obtained from the reference method [25].

2.2. Regression Analysis and Model Development. The stan-
dardized geometrical distance to the PLS model in the
explanatory variables (X variables) and the RVP dependent
variable (y variable), abbreviated DModX and DModY,
respectively, was used to perform an outlier analysis on the
dataset of 913 gasoline samples with 95% confidence level,
where the samples lie outside of the tolerance volume
around the model, beyond the data range of the model, as
determined by the critical distance (Dcrit) corresponding to
the 0.05 probability level [26]. As reported by Silva et al.

[27], the DModX value for each sample was determined
using Equation (1). The DModX was standardized by divid-
ing it by the Dcrit x value for x variables, as shown in Equa-
tion (2).

DModX =
∑k

k=1 xj,k − xmodel,j,k
2

K − A
, 1

StandarizedDModX =
DModX
Dcrit x

, 2

where k represents an X variable, K is the total number of X
variables, j is for latent variable, and A is the number of
latent variables in the PLS model. The DModY for the
dependent variable y was calculated in the same way as the
DModX.

Regression models were created for the independent y
variable (RVP) and the explanatory X variable (physical
characteristics), with PLSR, NLR, and NPR as the underlying
regression approaches. Following the Kennard-Stone algo-
rithm [28], the gathered gasoline samples were first divided
into two primary groups: calibration (609) and prediction
(304) for PLSR and NLR. Calibration (571), validation (38),
and prediction (304) are the three primary categories into
which NPL’s samples were divided.

Multiple linear regression (MLR) has the potential for
producing collinearity, which can raise standard errors and
call into question the reliability of the model’s coefficients.
Partial least squares regression (PLSR) and other regression
techniques are used to reduce the number of highly corre-
lated independent (physical properties) variables and
thereby eliminate the collinearity problem [29].

Separate matrices X of computed physical properties and
a vector y of measured RVP were used for multiple linear
regression in PLSR model development. According to Equa-
tions (3) and (4), the variables X and y are transformed into
“loading” matrices consisting of scores, crucial data about
gasoline samples, and the original variables as stated by
Geladi and Kowalski [30] and Issa [31].

X = TP′ + E, 3

y = Uq′ + f 4

E and f are the nonmodulated part of calibration dataset.
Then, RVP for new samples (ypr) can be predicted with a
regression coefficient of bPLS by using PLS regression to con-
struct a linear relation model between X and y. The relative
loading weight of these variables can be measured using
Equation (5) [31, 32]

ypr = bPLSX 5

When modelling a correlation condition that is too com-
plex for linear models, nonlinear regression is often
employed [33]. Due to the nonlinear nature of the correla-
tions between the variables comprising gasoline’s physical
properties and RVP, estimating the RVP is a challenging
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task. The nonlinear regression process is known for its abil-
ity to determine the parameter values of a selected model in
order to get the most appropriate fit with the observed data
[34]. Nonetheless, when comparing nonlinear models with
the goal of producing the least root mean square (RMS)
error [35], multiple nonlinear regression (NLR) revealed
that the exponential (power law) model provides more fair
representation, but still not enough when compared with
more complicated methods, of the nonlinear system. Equa-
tion (6) shows that the employed power model of the six
nonlinear physical property components is necessary to pre-
dict the RVP. The power law regression model is advanta-
geous due to its capacity to accurately capture and depict
long-tailed distributions in data, making it especially pre-
ferred for systems defined by irregular yet significant data
[36]. Equation (6) represents the power law regression
model, which shows a proportionate relationship between
the value of response variable and the values of explanatory
variables raised to certain power values.

ypr = b0 ∗ Xbi
i 6

ypr represents predicted RVP values, both b0 and bi are
model’s coefficients, and Xi represents explanatory variables
in the NLR model. Assuming a model (Equation (7)) that
eliminates the parametric constraints on the regression
curve, nonparametric regression (NPR) makes place for a
different kind of structure to emerge, one in which the x var-
iables do not have a fixed form but are built instead using the
data. Here, the response variable is related to the covariates
xi by [37, 38]

ypr =m xi + ϵi 7

ϵi is the error, or sometimes, it is called random devia-
tion term, and m xi is the regression function term; if it is
smooth enough, a particular parametric form can be deter-
mined. Nonparametric regression (NPR) models the

expected (conditional) value E ypr ∣ x1 ⋯ xk of ypr depend-
ing on the covariates xi. As a result, the response value that is
expected is a function of the variables, E ypr ∣ x1 ⋯ , xk =
f x1 ⋯ , xk . Assuming that the Xi values of the explanatory
variables for the ith sample at any part of the dataset are rep-
resented by an average of y values corresponding to X values
in a region close to those particular values of X, by treating
the Xi values as random and m Xi is then interpreted as a
mean of ypr conditional on Xi = xi,m xi = E ypr ∣ Xi = xi ,
which will lead to good predictions of RVP, rather than esti-
mating the RVP from the given physical property dataset
using probable different regression models (linear, quadratic,
or polynomial) [39], those we are not sure about. The uti-
lized NPR, LOWESS method in this work, gives a consider-
able effective prediction approach and solves the problem of
dispersion of experimental dataset [40], which renders any
normal parametric regression method ineffective, because
the new model that is constructed numerically for each
observation is obtained. The used algorithm here, locally
weighted scatterplot smoothing (LOWESS), was originally
developed by Cleveland and Devlin [41] in depending on
an original work of Cleveland in [42], which proposed to
deal with noisy and dispersed datasets. The procedure pre-
sumes that it is possible to successfully fit smooth curves
using a statistical procedure called “local regression,” which
makes no assumptions on the shape or form of the curve
being smoothed [43]. The LOWESS technique fits a regres-
sion model on the k nearest samples using moving nonpara-
metric regression [44].

The explored simple PLSR, NLR, and NPR regression
models with easy to obtain physical explanatory variables
have been selected for their cost-effectiveness and time-
saving characteristics, as opposed to the sophisticated and
costly spectral and ANN methods. Their capability for
RVP prediction was evaluated by employing realistic error
metrics (Equations (8)–(10)).

Root mean square error of calibration (RMSEC) and pre-
diction (RMSEP) [31, 45] were used to assess the precision of

Table 1: Descriptive statistics of 913 GOB samples used for RVP prediction using PLS, NLR, and NPR regression models.

Parameter Min. Max. 1st quartile Median 3rd quartile Mean Standard deviation (n − 1) Sample counts

RVP (kPa @ 37°C) 38.70 75.30 51.70 56.40 61.60 56.62 6.47 913

S-Dens (g/cm3 @ 15°C) 0.71 0.76 0.73 0.73 0.74 0.73 0.01 913

IBP (°C) 28.70 64.10 35.50 36.90 38.60 39.28 7.25 913

T10 (°C) 20.80 60.80 44.90 46.40 47.80 44.64 6.12 913

T50 (°C) 34.90 111.30 86.40 89.70 93.10 86.38 13.00 913

T90 (°C) 134.40 191.40 152.50 155.40 161.60 158.15 9.29 913

FBP (°C) 163.40 212.60 184.20 187.90 190.40 186.28 7.42 913

MTBE (Vol.%) 0.13 23.5 1.780 4.34 7.130 5.541 4.399 445

ETBE (Vol.%) 0.95 9.85 1.050 1.07 1.100 1.362 1.428 186

TAME (Vol.%) 0.8 7.63 1.058 1.33 2.003 1.725 1.316 28

Methanol (Vol.%) 0.32 25.1 1.283 4.95 10.648 7.366 7.849 82

Ethanol (Vol.%) 0.6 24.1 3.080 3.42 4.150 3.544 1.233 467

Oxygenates (Vol.%) 1.26 29.9 3.150 4.55 5.520 5.585 4.455 913
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the utilized regression methods in comparison to the average
error estimate of the true RVP in gasoline samples (Equa-
tions (8) and (9). The root mean square error of cross-
validation (RMSECV), as reported by Kehimkar et al. [46]
and Issa [31] as shown in Equation (10), was employed
using the leave-one-out (LOO) and k-fold cross-validation
approaches to compare the performance of PLSR, NLR,
and NPR approaches, with and without outliers. The LOO
technique extrapolates the results for a left-out sample by fit-
ting calibration model to the number (n − 1) of all the data-
sets, while k-fold technique divides the dataset into a
number of folds. The model’s performance was assessed
using cross-validation on the dataset following the exclusion
of one sample and the model’s training on the remaining
training samples (n − 1). Once all samples have been elimi-
nated once, the process is iterated. In general, the estimation
of the cross-validation error is achieved by calculating the
average of the observed error for each sample.

More error metrics, such as root mean square error for
total data set (RMSE), mean absolute percentage error
(MAPE) which is equal to average absolute error (AAD)
when deviation is around the mean, and mean absolute
deviation (MAD), taken from [47], have been employed
to compare with prior investigations and validate RVP
prediction models in this work for the tested GOB samples
(Equations (11)–(13)).

RMSEC =
∑n

i=1 ymeas,i − ycal,i
2

n
, 8

RMSEP =
∑n

i=1 ymeas,i − ypred,i
2

n
, 9

RMSECV =
∑N

i=1 ymeas,i − yCV,i
2

N
, 10

RMSE =
∑N

i=1 ymeas,i − ypre,i
2

N
,

11

MAPE =
1
N

〠
N

1

ymeas,i − ypred,i
ymeas,i

∗ 100%, 12

MAD = 〠
N

i=1

ymeas,i − ypred,i
N

13

For ith observation, ymeas is the measured y value, ycal
is the calibrated y value calculated using the derived
models in the calibration set, ypred is the predicted y value,
yCV is the cross-validated y value, n is the number of y
values of the concerning dataset, and N is the total num-
ber of y values. To validate the data readjustment of the
calibration and prediction sets, the regression coefficient
(R2) was determined between the actual and predicted
values. ISO criteria [24] were used to the chosen model
to assess its repeatability and reproducibility.

Using Equation (14) as reported by Guan et al. [48] for
the calculation of predicted residual error sum of squares
(PRESS) value for internal validation, the leave-one-out with
cross-validation approach was applied to determine the
number of LV assumed for the PLSR model. By fitting cali-
bration models with different LV to n-1 of the data, it was
possible to infer findings for the missing sample. All of the
data set samples in the calibration set went through this pro-
cess. The “leave-one-out” method was used while the num-
ber of latent variables was selected based on the lowest
PRESS value.

PRESS = 〠
n

i=1
yi − ŷi

2 14

3. Results and Discussion

Table 1 shows some descriptive statistics for the 913 gasoline
samples dataset. Since several different gasoline kinds and
grades were used, the boiling temperatures of the samples
used in this investigation vary greatly, the T50 boiling tem-
perature of 50% evaporated gasoline ranges from 34.9°C to
111.3°C. Therefore, T50 becomes greatly dispersed around
the mean with a high standard deviation. Similarly, the tem-
perature range between the upper and lower limits of T10
and IBP reveals significant diversity in sample grades.
RON and MON values in this investigation ranged from
89 to 120.1 and 84 to 97.8, respectively.

The outlier analyses DModX and DModY for detecting
outliers are applied to the results to identify samples that
are fairly far from the mean of the dataset by calculating
critical distance (Dcrit) at a 95% confidence interval. The
Dcrit values were 2.0718 and 2.3398 for X and y variables,
respectively. As seen in Figure 1, for a significance level
(alpha value) of 5%, using DModX and DModY analyses,
9 outliers have been detected for both y and X variables,
and they are subsequently excluded in the study’s subse-
quent calculations.

For the purpose of evaluating the prediction perfor-
mance of the models, PLSR, NLR, and NPR, and their scores
to reflect significant variance from the physical property
measurements, the statistical indices DModX and DModY
are utilized. These indices are defined in Equation (1) and
represent the residuals of the developed models. These indi-
ces can be utilized to assess the accuracy of predictions and
identify instances where the input variables deviate from
the norm [49]. They aid to find outliers or unexpected
behavior by measuring the distance between the observed
data of GOB’s explanatory physical characteristics and the
RVP predictions. This allows to detect when the process is
operating outside of the expected RVP range and take
appropriate corrective actions. DModX and DModY help
identify the measurements that cause variance from the
model and assist in evaluating prediction performance at
an identified level of confidence of 95%. The standardized
DModX and DModY that are concerned in evaluating the
distance from an accepted range of response variable RVP
can be calculated using Equation (2).
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Figure 2 illustrates the impact of removing outliers on
the various regression models examined here. For all data-
sets, preprocessing by removing outliers used the leave-
one-out method of root mean square error for cross-
validation (RMSECV), which builds a model with a cali-
bration set and prediction set. For NPR, the calibration,
validation, and prediction sets were used.

The RVP regression models were constructed using the
dataset without outlier samples because, as Figure 2 illus-
trates, removing outliers reduced the RMSECV for the PLSR,
NLR, and NPR models. Figure 2 shows that when two pro-
cedures of LOO and k-fold (here, 10-fold was utilized) of
cross-validation assessment are applied to predict RVP for

the analyzed physical qualities, the NPR technique performs
marginally better than the PLSR and NLR. Eliminating out-
lying data has enhanced the performance of all three models,
but NPR is slightly higher. There was a close assessment
between the two cross-validation techniques.

Before going any further, it is possible to use the Pearson
correlation analysis and the linear correlation coefficient (R),
to check the correlation between the RVP and the physical
property variables (x) in the dataset [50]. The correlation
coefficients (R) range from -1 to 1, indicating, respectively,
negative and positive linear relationships between the two
variables in question. The correlation analysis for the physi-
cal property variables used in this study is shown in Table 2,
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Figure 1: Results of for outlier analysis at a confidence level of 95% for 913 gasoline samples: (a) DModX and (b) DModY.
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and it can be seen that the correlation coefficients with RVP
are weak, with R values ranging from -0.651 to 0.157 and R2

values between 0.424 and 0.025, suggesting that there is a
nonlinear relationship between the RVP and the x variables.

3.1. Partial Least Squares Regression (PLSR). In this work,
the popular linear PLSR method served as a starting point
due to its adaptability and ease of implementation [51].
Given that this is the case for RVP prediction using gaso-
line’s physical properties, the high dimensionality and irreg-
ularity of the dataset makes it difficult to PLSR for
developing a highly reliable regression model. Moreover,
nonlinear or polynomial PLSR algorithms were not included
in this investigation to investigate the linear PLSR perfor-
mance when the dataset is highly irregular [52]. The selected
technique is preferred to be both successful and easy to use,
so as to avoid the need to develop a time-consuming and dif-
ficult approach to achieving the desired results.

Based on the minimum PRESS value employing leave-
one-out internal cross-validation to select an appropriate

number of latent variables (LVs) [53], the PLSR model was
built using two LVs to predict the changes in the response
variable RVP from the variance of independent variables of
physical properties of gasoline (density and distillation curve
temperatures). The results and discussion may be presented
separately, or in one combined section, and may optionally
be divided into headed subsections.

Figure 3 shows the results of PLSR, where the value of
coefficient of determination (R2) for the calibration set is
0.438, using two LVs. From Figure 3(a), the plotted pre-
dicted RVP values against reference RVP values give an indi-
cation of a high nonlinearity of the dataset for both
calibration and prediction sets. As a fitted regression line,
Figure 3(a) shows that the R2 of the PLSR model is uncon-
vincing. Figure 3(b) indicates that applying PLSR results
with prediction error value of residual standard error
(RSE) of calibration set equals 4.805, rendering the approach
can achieve reasonable prediction. The residual plot in
Figure 3(b), generated using the PLSR model, provides an
evaluation of prediction errors. It demonstrates that relying
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Figure 2: Error internal validation using RMSECV value comparison of the three used regression methods (PLSR, NLR, and NPR) for two
different dataset cases: with outliers and without outliers using leave-one-out (LOO) and k-fold cross-validation.

Table 2: Correlation matrix for RVP and physical properties of GOB samples.

Variable S-Dens IBP T10 T50 T90 FBP RVP

S-Dens 1.000 -0.362 0.527 0.571 -0.096 0.458 -0.651

IBP -0.362 1.000 -0.860 -0.921 0.718 -0.835 0.336

T10 0.527 -0.860 1.000 0.948 -0.775 0.755 -0.462

T50 0.571 -0.921 0.948 1.000 -0.688 0.855 -0.462

T90 -0.096 0.718 -0.775 -0.688 1.000 -0.448 0.157

FBP 0.458 -0.835 0.755 0.855 -0.448 1.000 -0.409

RVP -0.651 0.336 -0.462 -0.462 0.157 -0.409 1.000
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on R2 as the sole determinant factor for assessing model per-
formance in prediction results is inaccurate. It agrees with
the proposition that the implementation of R2 has several
limitations in assessing model fit when dealing with complex
models and multiple outlier cases [54, 55].

The PLSR model’s inspection of the residuals’ normality
distribution, which was developed from the RVP prediction,
is shown in Figure 4. The histogram of generated residuals is
displayed in Figure 4(a). The residual distribution is nearly

symmetrical and has minimal skewing to the right, indicat-
ing that the residuals are primarily normally distributed.
The results for the probability plot of the residuals in
Figure 4(b), which show that the close line-up of ordered
residuals on the normality recognizing line confirms the
residuals’ normal distribution, provide support for this
finding.

Figure 4(c) shows the relationships for the first and
second latent variables (LV1 and LV2) and between the
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Figure 3: Prediction performance using PLSR: (a) experimental RVP values against predicted RVP values in calibration and prediction sets
and (b) the residual of predicted RVP for calibration set.
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response variable (RVP) and density, and distillation curve
temperatures of the GOBs that were studied in the PLSR
model. There is a robust positive enriched relation between
RVP and IBP and T90 with positive loading, and the first
latent variable (LV1) accounts for 26.03% of the total vari-
ance. A negative and statistically significant loading exists
between RVP, S-Dens, T10, T50, and FBP. The negative cor-
relation between FBP and RVP is slightly less. S-Dens, IBP,
and T90 have negative loading with RVP for the second
latent variable (LV2), while FBP, T50, and T10 of the inde-
pendent variables are positively associated with RVP. The
correlation between T90 and RVP for LV2 is slightly lower.
16.83% of the total variation is explained by LV2.

3.2. Nonlinear Regression (NLR). Here, another model was
developed utilizing the NLR calibration method, and its
performance is shown in Figure 5; this model predicts
RVP based on 904 data and six independently observable
gasoline physical parameters. As shown in Figure 5(a), the
fitting method has not been realistically improved, but the
R2 value is 0.452. The residual errors in NLR model predic-
tions are displayed in Figure 5(b), with the RSE value drop-
ping to 4.747.

Figure 6 shows the results of verifying the normality dis
tribution of the residuals produced by the NLR model for
RVP prediction. Figure 6(a) displays the analyzed histogram
of the generated residuals. The distribution of the residuals is
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nearly symmetrical, with a relative skew to the right, indicat-
ing that the residuals mostly follow a normal distribution.
The results shown in Figure 6(b) for the probability plot of
the residuals corroborate this finding. It is clear that the nor-
mal distribution of the ordered residuals is generally aligned
with the normality matching line.

3.3. Nonparametric Regression (NPR). The NPR calibration
method is used to establish a model for the response variable
RVP, using the same observations and independent variable
as the PLSR and NLR methods. Figure 7 displays the results
of the NPR (LOWESS) regression model’s fitting and resid-
ual evaluation. As shown in Figure 7(a), the R2 value has
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Figure 5: Prediction performance using NLR: (a) experimental RVP values against predicted RVP values in calibration and prediction sets
and (b) the residual of predicted RVP for calibration set.
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increased to 0.612, indicating that the fitting process has
been enhanced as the model partially overcomes the diffi-
culty of dataset dispersion and reduces the impact of out-
liers. In Figure 7(b), we can see that the RSE value for the
predictions made by the NLR model at the calibration set
has decreased to 3.971, from a previous value of 4.805 made
by PLSR.

Figure 8 illustrates the check-up of normality distribu-
tion of residuals generated from RVP prediction using the
NPR model. Figure 8(a) shows the examined histogram of
generated residuals, where as it can be seen the residuals,
and distribution is close to be symmetrical with relative
skewing to the right, suggesting that residuals are generally
normally distributed. This outcome is supported with the
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results presented in Figure 8(b) for probability plot of resid-
uals, and it can be observed that the normal distribution of
ordered residuals is mostly lined up on normality recogniz-
ing line, except minor diversion and the ends.

3.4. Comparison of Calibration Techniques. A comparison
between the developed models, PLSR, NLR, and NPR, pro-
vides information about model performance on unseen data.
To accomplish this purpose, various error detection criteria
of calibration (RMSEC) and prediction (RMSEP) were used
on calibration and prediction sets for testing their prediction
capacity. The results of RMSEC are 4.790, 4.739, and 3.968
and for RMSEP are 6.235, 6.149, and 6.029 for PLSR, NLR,
and NPR, respectively. The NPR model has lower prediction
errors, in calibration and in prediction sets.

The density of gasoline is generally correlated with the
molecular size of the mixture. However, other factors, such
as temperature, pressure, and the presence of oxygenates,
can also alter the density of a hydrocarbon mixture, so the
relationship between the two is not always straightforward.
In addition, the volatility of a GOB, which is typically corre-
lated to the intensity of the intermolecular interactions
within the mixture and which can be represented by the
parameters of the distillation curve (IBP, T10, T50, T90,
and FBP), is greatly diverted by the impacts of oxygenates.
As a result, there are restrictions on what can be accom-
plished when attempting to predict RVP using linear regres-
sion, PLSR, or even NLR. The results of a comparison of the
PLSR, NLR, and NPR models under study make this quite
obvious.

Table 3 provides a summary of the outcomes of the used,
PLSR, NLR, and NPR (LOWESS) regression models in
terms of prediction performance and error evaluation.

Results were compared with those of prior studies found in
the literature to get a clearer picture of the efficacy of the
approaches used. In order to achieve a significant RVP
detection of GOB mixtures, as shown in Table 3, comparing
with previous works [7, 14, 56–61] for RVP of gasoline con-
taining oxygenates, the used prediction techniques demon-
strate reasonable ability to overcome the described barriers
despite the fact that just elementary input variables are
employed and a higher degree of credibility due to the large
number of samples used. In the case of extremely dispersed
and scattered data, the results show that the R2 value is not
a determining factor for prediction evaluation.

Model performance on the identified data can be
obtained by comparing the developed PLSR, NLR, and
NPR models against existing studies in literature. To validate
the results of the generated models, a number of error detec-
tion metrics, including RMSE, MAPE, and MAD, were
applied to total data sets. Significant and realistic RVP pre-
diction potentials are shown by the outcome values for PLSR,
NLR, and NPR in Table 3. When compared to prior results,
the constructed models, particularly the LOWESS model,
are able to produce predictions that are on par with or better
than those found in the literature in terms of error metrics.
Despite the fact that some of the selected studies were con-
ducted on gasoline without oxygenates, those of ANN and
SVM methods, the results can still reach reasonable predic-
tions when evaluating the performance even though there is
a great deal of complexity and difficulty associated with
gasoline-oxygenate blends. The constructed models can be
considered simple and dependable when considering the
simplicity of the input data. Rather than relying on complex
spectrum, activity group, and chemical composition input
data, which are necessary for the predictions, this is proven

Table 3: Accuracy of PLSR, NLR, and NPR models for predicting gasoline RVP and comparison with previous studies.

Investigation approach MAPE (%) MAD (kPa) RMSE (kPa) No. of samples No. of input variables

PLSR (this work) 7.752 4.131 5.321 904 6

NLR (this work) 7.661 4.096 5.253 904 6

NPR (LOWESS) (this work) 7.020 3.933 5.163 904 6

PC-SAFTa 4.030 7 80

PSRKa 7.610 7 80

Wilson Eq.-LSb 5.640 24 24

Wilson Eq.-LIb 4.410 24 24

UNIFACc 1.0–10.0 5 16

LSSVMd (without oxygenates) 9.231 362 23

ANNe (without oxygenates) 2.280 362 27

SAFT-γ EoSf 4.36-10.59 7 18

CPAg 5.500 4 226
aPC-SAFT is perturbed-chain statistical associating fluid theory, and PSRK is predictive Soave-Redlich-Kwong equation adopted from Vella and Marshall
[56], and they used data of gasoline and methanol blend taken from the experimental work of Andersen et al. [57]; bLI is Lagrange interpolating
polynomial statistical method, and LS is least squares statistical fitting method adopted from Pumphrey et al. [58] for gasoline and isopropanol blend
samples; cUNIFAC is universal quasichemical functional group activity coefficients adopted from Hatzioannidis et al. [59] for gasoline containing MTBE,
methanol, ethanol, and isopropanol blends; dLSSVM is least squares support vector machine adopted from Kamari et al. [14] (considered for gasoline
only); eANN is artificial neural network adopted from Albahri et al. [60] and considered for gasoline only; fSAFT-γ EoS is statistical associating fluid
theory–Mie model equation of state adopted from Landera et al. [61]; gCPA is cubic plus association model adopted from Gaspar et al. [7].
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by the use of straightforward physical properties. The larger
size of dataset used in this study lends more credence to the
proposed models.

4. Conclusions

Comparative analysis of regression models for predicting
RVP in gasoline-oxygenate blends has been made in this
study using PLSR, NLR, and NPR models. The regression
models showed promising results and provide a cheap and
straightforward alternative for RVP prediction. NPR model
showed more accurate results as it overcame dataset disper-
sion by reducing the impact of outliers, eliminating para-
metric constraints, and allowing for a new data structure.
The research compared the PLSR, NLR, and NPR models
for forecasting RVP of GOB from a parametric and non-
parametric perspective. DModX and DModY analyses were
used to remove anomalies from the data set. The statistical
analysis and error detection indicators such as residual
quantification RSE, RMSEC, and RMSEP were used to com-
pare the three models’ performance and prediction capabil-
ity. The NPR (LOWESS) regression model showed slightly
more accurate results in predicting RVP, as it overcame
the difficulty of dataset dispersion. Parametric limitations
are removed in the NPR (LOWESS) regression model,
allowing for a new structure to form for X variables that
are derived from the data. The limitation faced in con-
ducting this work is briefed by high dimensionality and
irregularity of the gasoline compositions and ratio dataset,
which is difficult to any model for developing a viable regres-
sion and generalizing of the findings. The outlooks developed
here suggest that the established models, slightly higher for
NPR, can be a useful choice for consistently predicting RVP
in gasoline-oxygenate blends by giving a cheap and straight-
forward alternative to the existing complex approaches, since
a minimal set of inputs is required for more credible findings
in highly irregular datasets. Further investigation into the use
of other algorithms is needed to improve the prediction accu-
racy of RVP in GOB and explore other regression modelling
strategies that can handle high-dimensional and irregular
datasets to develop comprehensive and more accurate pre-
diction models by implementing other modelling strategies
and assumptions on the potential limitations and underlying
data structure.
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