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The flow regime is essential in the photoreactor’s performance in pollutant degradation in the aqueous medium, especially in
fluidized systems. Therefore, this study is focused on determining the fluidization conditions of a granular catalyst based on
TiO2-CuO nanoparticles (1 wt.% CuO) immobilized on beach sand granules using an FBP photoreactor. COMSOL
Multiphysics 6.0 was employed for inlet velocities between 0.1m/s and 1.0m/s, mainly from the Reynolds averaged Navier–
Stokes (RANS) turbulence model and the Stokes drag law. The results indicated that the average velocities in the annular
section are much higher (4 11ut and 5 42ut) than the required particle terminal velocity. Moreover, the pressure contour lines
revealed that these flow velocities do not represent excessive pressures in the concentric cylinders, with maximum gauge
pressures of 740.52 Pa and 1310 Pa for inlet velocities Uo = 0 75 and 1.0m/s, respectively. Finally, it was determined that the
Reynolds number adjusted (Repf ) values lower than or equal to 1 37 × 10−3 allow high fluidization after 2 seconds. This
information makes it possible to adapt and assemble the FBP equipment for future photocatalytic evaluation.

1. Introduction

Commercial computational fluid dynamic (CFD) packages,
such as COMSOL Multiphysics and ANSYS Fluent, have
been successfully used in the simulation of advanced photo-
chemical and nonphotochemical oxidation processes, specif-
ically for the modeling of hydrodynamic [1–6], radiative
[7–11], mass transfer [12–14], and kinetic [4, 15–18] phe-
nomena, establishing the optimal values of typical dimen-
sionless numbers, such as Reynolds (Re), Hatta (Ha),
Schmidt (Sc), and Sherwood (Sh), among others, being help-
ful for the scaling process of this technology. According to

the bibliometric study (2010-2023) carried out in this
work using the Scopus database (http://www.scopus.com/),
Figure 1(a) shows a growing interest of the international scien-
tific community in topics related to the modeling and mathe-
matical simulation of photoreactors used in advanced
oxidation processes (AOPs). Moreover, leading researchers
(Figure 1(b)) in the area were identified, among which Alfano,
O. M.; Satuf, M. L.; Li Puma, G.; Marugán, J.; and Machuca-
Martínez, F. stand out. Further, according to Figure 1(c), the
National Natural Science Foundation of China and the
Universidad Nacional del Litoral (Argentina) are the primary
funding sponsors worldwide for research focused on reactor
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Figure 1: Continued.
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modeling for AOPs, which agrees with the major countries’
top (China, Canada, France, United States, Argentina, and
Spain) and universities/affiliations, depicted in Figures 1(d)
and 1(e), respectively. Besides, the most significant publica-
tions are scientific (85.4%) and review articles (5.9%) in chem-
ical engineering, environmental sciences, and chemistry (see
Figure 1(f)).

Furthermore, a map based on bibliographic data from
Scopus was created in the VOSviewer (Figure 2), a software

tool for constructing and visualizing bibliometric networks.
This map confirmed the wide use of CFD programs and
other modeling and simulation strategies for advanced
oxidation processes, obtaining essential information, such
as velocity and radiation fields, and kinetic models to study
the mass transfer phenomena for both suspended and
immobilized materials in packed and fluidized beds.

For example, Asgharian et al. [19] performed CFD
modeling and validation in the COMSOL software of a

Universidad nacional del litoral
Instituto de desarrollo tecnologico para la industria quimica

Consejo nacional de investigaciones científicas y técnicas
CNRS centre national de la recherche scientifique

Western university
University of nottingham

Ministry of education china
The university of british columbia

Institut des sciences chimiques de rennes
ENSCR ecole nationale supérieure de chimie de rennes

0 10 20 30 40 50 60

Documents by affiliation

(e)

25%

22%
21%

15%

4%

4%

3%
3%

1% 1% 1%

Document by subject area

Chemical engineering
Environmental science
Chemistry
Engineering
Energy
Materials science
Biochemistry, genetics
and molecular biology
Physics and astronomy

(f)

Figure 1: Bibliometric analysis from Scopus: documents by (a) year, (b) author, (c) funding sponsor, (d) country, (e) affiliation, and (f)
subject area. Search equation: (CFD OR “Computational fluid dynamics” OR Model∗ OR Simulation) AND (“Advanced oxidation
processes” OR AOP OR photocatalysis) AND (Reactor OR Photoreactor).

VOSviewer

Figure 2: Map based on bibliometric data from VOSviewer 1.6.19.
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stirred tank photoreactor for photocatalytic tetracycline
degradation using rGO/ZnO/Cu as a photocatalyst. For
hydrodynamic modeling (pressure field: 4.44-0.06 Pa, veloc-
ity field: 0-0.16m/s), the Reynolds-averaged Navier-Stokes
turbulence model (RANS) and the continuity equation were
used, while the phenomenon of mass transfer with a chemi-
cal reaction (concentration: 0.019-0.0225mol/m3) was stud-

ied using the mass conservation equation for each species
and Fick’s first diffusion law; on the other hand, for the radi-
ation model (2.32-1.95 kW/m2), the radiation transport
equation (RTE) was considered. In a similar study, Ahmed
et al. successfully modeled and validated (R2 = 0 998) phenol
degradation of waste and stormwater on a flat plate photo-
catalytic reactor with TiO2 on a glass slide using the CFD

(a)

di

do

(b)

(c) (d)

Figure 3: Fluidized bed annular photoreactor: (a) overview, (b) annular cross-section view, (c) borosilicate inner tube, and (d) UV-C lamp
and power supply.

1. Governing equations

Laminar flow (500<Re<2100):
Laminar hydrodynamic model

Turbulent flow (2100<Re<11000):
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(RANS) turbulence modeling

Time-averaged continuity equation:
∇ . (Ū) = 0

Momentum conservation:
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Where, �ūū is the apparent stress gradients.
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Physic:
Particle tracking for fluid flow

Multiphysics : Fluid/particle
interaction

7. Validation
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Figure 4: Methodological process for hydrodynamic modeling of fluidized bed annular photoreactor [1, 3, 4, 12, 24].
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code FLUENT in 3D. Also, Khataee et al. [20] reported pho-
tocatalytic ozonation for the anthelmintic drug degradation
using ceramic-coated TiO2 NPs through CFD simulation
coupled with kinetic mechanisms.

This study represents a stage before the photocatalytic
activity evaluation of the granular catalysts based on TiO2-
CuO immobilized on beach sand granules, whose objective

is to determine the fluidization conditions in an annular
photoreactor using the CFD software of COMSOL Multi-
physics 6.0. The required flow regime analysis for fluidiza-
tion represents an essential step in the concentric cylinder
photoreactor’s assembly before the photocatalytic evalua-
tion of the granular catalyst with potential easy separation,
reuse, and toxicological effect inhibition associated with

Table 1: Granular catalyst’s physical properties and the dimensions and specifications of the fluidized bed annular photoreactor.

Granular photocatalyst

Composition: TiO2-CuO (1wt.% CuO) immobilized on beach
sand granules (0.04 g of catalyst/g of sand)

Granular size distribution:
0.212mm-0.355mm

Apparent density (ρapparent):
1450 kg/m3

Fluidized bed annular photoreactor

Dimensions:
Length (40 cm)
Internal diameter (3.8 cm)
Outer diameter (10 cm)
Nozzle’s internal diameter (1.905 cm)

Materials: carbon steel/stainless steel
alloy thickness (3mm)

Borosilicate tube thickness (2mm)

UV-C lamp
Length (43 cm)
Power (15W)

Wavelength (253.7 nm)

Modeling parameters

Turbulent flow (k − ε):
Reference values: Pref = 1 atm, Tref = 293 15K
Turbulence model parameters: Cε1 = 1 44, Cε2 = 1 92, Cμ = 0 09,
σk = 1, σε = 1 3, kV = 0 41, and B = 5 2

Particle tracking for fluid flow:
bidirectionally coupled particle path:

d mpv /dt = Ft
Maximum number of secondary

particles: 10000

Fluid-particle interaction:

∂Fv/∂t = − ∑
Nt

j=1
f relFDδ r − qj
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Figure 5: Velocity field (plane YZ) in the fluidized bed annular photoreactor for different Uo: (a) 0.1m/s, (b) 0.5m/s, (c) 0.75m/s, and (d)
1.0m/s.
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nanomaterials remaining. Also, this research represents a
prestudy to the photocatalytic degradation of metformin
using TiO2-CuO heterojunctions synthesized by green chem-
istry and immobilized on beach sand granules in a fluidized
bed annular photoreactor. Moreover, these conditions have
allowed the composite material fluidization to favor its dis-
persion and photoactivation throughout the entire flow reac-
tion system through the annular section. Therefore, the
experimental design for drug degradation in an aqueous
medium has considered this flow rate range.

2. Methodology

2.1. Velocity Profiles in the Annular Region and Particle
Trajectory. Hydrodynamic modeling was performed in the
finite element analysis and resolution software COMSOL
6.0 (licensed through the University of Cartagena), follow-
ing the stages described by Memon et al. [21]. Figure 3
describes each stage for generating the velocity profiles

and estimating the trajectory of the particles dragged by
the fluid flow from the physical model shown in Figure 4.
The apparent density (ρapparent) of the granular photocata-
lyst was determined by the graduated cylinder method using
the following equation [22]:

ρapparent =
mtot
Vapp

, 1

where mtot is the total mass of the granular catalyst and
Vapp is the apparent volume including solids and internal
pores. Besides, an intermediate size range was selected after
the sieving process in an Orto Alresa machine (Model:
VIBRO), corresponding to the fine sand type. Moreover,
Table 1 summarizes the granular catalyst’s physical proper-
ties, dimensions, and specifications of the fluidized bed
annular photoreactor, and parameters considered in the flu-
idization conditions of the granular catalyst, which are
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Figure 6: (a) Velocity field (plane ZX), (b) streamlines (YZ), and (c) streamlines (XY , bottom) in the annular photoreactor for Uo: 1.0m/s.
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indispensable for hydrodynamic modeling. Furthermore,
the immobilization process was performed using the two-
step method of immersion/heat treatment, reported in a
recent publication by our research group, which focuses
on the optical, morphological, and structural characteriza-
tion of TiO2-CuO heterojunction nanoparticles synthesized
by green chemistry supported on beach sand granules [23].

3. Results and Discussion

3.1. Velocity Field. The velocity fields (u) were modeled with
up-flow for four input velocities (Uo = 0 1, 0.5, 0.75, and
1.0m/s). These velocity profiles (plane YZ) are illustrated
in Figures 5(a)–5(d). For all cases, maximum speeds are
appreciated in the area where the four inlet nozzles direct
the flow towards a direct impact with the external wall (see
Figure 6(c)) of the borosilicate tube allowing the passage of
UV radiation from the lamp. Furthermore, the continuity of
the flow lines is observed, up to approximately half of the

photoreactor for subsequent stabilization (see Figure 6(b)) with
a piston-type flow regime in the annular region at the top of
the photoreactor (see plane ZX for Uo: 1.0m/s in Figure 6(a)).

The average velocity (v, m/s) was calculated by applying
the continuity equation; the flow regime was also determined.
The values obtained were compared with the estimated data
(see Table 2) from COMSOLCFD software using the standard
deviation of the residuals (prediction errors) by root mean
square deviation (RMSD, Equation (2)) and the average abso-
lute deviation (AAD, Equation (3)) [25].

RMSD v = 〠
N

i=1

vCFDi − vCali
2

N
, 2

ADD v = 1
N
〠
N

i=1
vCFDi − vCali 3

Table 3: Photoreactors’ CFD modeling data for similar geometries from recent literature.

Photoreactor type/
CFD software

Specifications Flow regime Velocity profile∗ Ref

Cylindrical UV-LED
photoreactor/
ANSYS –Fluent

Aluminum/radius (3.67 cm), length (30 cm)
Turbulent (maximum
velocity: 0.31m/s)

[37]

Annular
photoreactor/
ANSYS -Fluent

External radius (5 cm), internal radius (2 cm), length
(50 cm), wall thickness (0.5 cm), inlet tube diameter (2 cm),

and exit tube diameter (3 cm)

Turbulent (maximum
velocity: 0.5m/s)

[5,
38]

Annular pilot plant
reactor/OpenFOAM
(R)

External radius (15 cm), internal radius (7 cm), length
(50 cm), wall thickness (2.0 cm), inlet/outlet tube diameter

(3 cm)

Laminar (maximum
velocity: 0.05m/s)

[39]

∗The authors of this work illustrated the velocity profiles in COMSOL 6.0 from the reference report.

Table 2: CFD and calculated velocities for different inlet velocities.

Inlet velocity, Uo (m/s) vCFDi /vCali (m/s) f = vCFDi /u∗t Re number RMSD/ADD

0.1 0.020/0.017 0.657 1029

0.0029/0.0025
0.5 0.085/0.084 2.793 2573

0.75 0.125/0.127 4.107 7719

1.0 0.165/0.169 5.421 10292
∗The terminal velocity (ut = 0 030m/s) was calculated for the maximum particle size (0.355mm).
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Both statistical indicators have values close to 0 (<0.003),
which indicates that the CFD hydrodynamic model ade-
quately predicts the velocity field. Table 3 presents a compila-
tion of information relevant to the velocity profile obtained by
CFD modeling for three tubular photoreactors reported in
recent research. However, CFD modeling has been developed
for other photocatalytic reactors, such as the raceway pond
reactor [26], stirred tank [20], packing bed [27], compound
parabolic collector [28, 29], parallel-channel microreactor
[16], curved channel [30], photo impinging streams cyclone
[31], cross-flow [32], flat plate [33], baffled flat-plate [34],
and static mixer [35], among others. In other work, Liu et al.
[36] have developed a CFDmodeling in gas-liquid-solid mini-
fluidized beds. However, the dragging of solid particles was
caused by the air distribution at the photoreactor’s bottom.
The research in Table 3 corresponds to photoreactors’ CFD
modeling with similar geometries as the FBP proposed in this
study without including solid particles’ fluidization through
the drag phenomenon.

3.2. Pressure Profile. The pressure’s contour lines were mod-
eled with up-flow for four input velocities (Uo = 0 1, 0.5,
0.75, and 1.0m/s). These pressure profiles (plane YZ) are
illustrated in Figures 7(a)–7(d). In these contour lines, max-

imum gauge pressures of 14.75 Pa, 331.12 Pa, 740.52 Pa, and
1310Pa were identified at the bottom of the fluidized bed
annular photoreactor for inlet velocities, Uo = 0 1, 0.5, 0.75,
and 1.0m/s, respectively; while the lowest pressures are in
the discharge nozzles.

Most CFD studies of photoreactors do not report on
pressure profiles; despite this, three recent publications were
found that included this variable in their CFD analysis, as is
the case of Asgharian et al. [19], who obtained the contour
lines for pressure gauge inside a stirred tank photoreactor
equipped with 8-blade backswept impeller for tetracycline
degradation. These authors informed that after 0.5min, the
pressure increased and eventually reached about 4Pa. Also,
the pressure was negative behind the mixer blades and pos-
itive in front of them.

The research in Table 4 corresponds to the photoreac-
tors’ pressure profile obtained by CFD modeling with similar
geometries but with a different orientation (horizontal) to
the proposal in this study (vertical).

3.3. Particle’s Trajectory. This section shows the particle tra-
jectory results in the fluidized bed annular photoreactor for
the four study velocities (Uo = 0 1, 0.5, 0.75, and 1.0m/s),
corresponding to 0 66ut , 2 79ut , 4 11ut , and 5 42ut ,
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Figure 7: Pressure’s contour lines in the fluidized bed annular photoreactor for different Uo: (a) 0.1m/s, (b) 0.5m/s, (c) 0.75m/s, and (d)
1.0m/s.
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Figure 9: Particle trajectory of granular catalyst in the fluidized bed annular photoreactor: (a) 0.8 seconds and (b) 2 seconds for Uo = 0 5m/s
(2 79ut).

Table 4: Photoreactors’ pressure profile data obtained by CFD modeling for similar geometries.

Photoreactor type/CFD
software

Specifications
Max/min gauge
pressure (Pa)

Velocity profile∗ Ref

Rotating annular
VUV reactor/ANSYS

External radius (5 cm), internal radius (2 cm), length
(50 cm), wall thickness (0.5 cm), inlet tube diameter (2 cm),

and exit tube diameter (3 cm)
12.40/5.20

(Horizontal)

[40]

Bubble slurry
photoreactor/COMSOL

Rectangle with a width of 5 cm and a length of 11 cm.
Spargers with a 1mm pore diameter are implemented at the

reactor’s bottom
1030/0.01

0 cm
(1030 Pa)

5 cm
(0.66 Pa)

11 cm
(0.01 Pa)

(Vertical)

[41]

∗The authors of this work illustrated the pressure profiles from the reference report.
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respectively. In the case of Uo = 0 1m/s (0 66ut), the parti-
cles do not leave the bottom (see Figure 8) because the fluid’s
velocity is lower than the terminal velocity (ut = 0 030m/s).
This phenomenon was reported by Picabea et al. [42], who
found negligible fluidization for velocities below 0.021m/s
in a liquid-solid fluidized bed (LSFB) system with calcium
alginate spheres. However, for velocities higher than termi-
nal velocity (2 79ut , 4 11ut , and 5 42ut), considerable fluidi-
zation is achieved due to drag, as shown in Figures 9–11,
respectively. In a similar study, Abdulrahman et al. [43]
demonstrated the influence of diameter (0.003m, 0.004m,
and 0.006m with a density of 2500 kg/m3) of glass spheres
and fluid velocity on fluidization velocity in a liquid-solid
fluidized bed system; from results, authors informed that
the expansion ratio is proportional to the liquid velocity
and inversely proportional to the diameter of the beads.

Other research has also analyzed fluidized systems such as
bubbling [44], droplet injection [45], and gas-liquid-solid flow
[46]. Still, studies have not been focused on photocatalytic
applications in vertical concentric cylindrical equipment.

To ensure the granular catalyst’s fluidization, a poten-
tial scaling-up was found through dimensional analysis-
Buckingham π theorem, a Reynolds number adjusted (Repf )
(Equation (4)) to a liquid-solid fluidized system, which relates
the particle’s Reynolds number (Repf ) [15] with the flow devel-
oped Reynolds number (Ref ) in the annular region for the

average velocity (vCFDi ).

Repf =
d2p ρp − ρ /18μ dp

4U0d
2
boqi/d2o − d2i do − di

4

Besides, it is proposed to select the Repf values (see
Figure 12) that allow exceeding half the reactor’s length after
two seconds (2 s) since rapid fluidization of the heterogeneous
photocatalytic system is required. This analysis indicates that
the velocities are Uo = 0 75m/s (4 11ut) and Uo = 1 0m/s
(5 42ut), i.e., a velocity field with an average value greater than
4.11 times the particle’s terminal velocity.

4. Conclusions

In this research, the fluidized bed annular photoreactor’s
hydrodynamics was successfullymodeled before the adaptation
and assembly process for the photocatalytic evaluation of the
granular photocatalyst based on TiO2-CuO heterojunctions
immobilized on beach sand granules. The results indicate
that inlet velocities of Uo = 0 75m/s and Uo = 1 0m/s are
required, generating average velocities in the annular section
much higher than the particle terminal velocity, correspond-
ing to 4 11ut and 5 42ut , respectively. Moreover, contour
lines were obtained for the gauge pressure in the concentric
cylinders, with maximum gauge pressures of 14.75Pa,
331.12Pa, 740.52Pa, and 1310Pa at the photoreactor’s bottom
for inlet velocities Uo = 0 1, 0.5, 0.75, and 1.0m/s, respectively.
Finally, it was determined that Reynolds number adjusted
(Repf ) values lower than or equal to 1 37 × 10−3 allow high flu-

idization after 2 seconds, corresponding to a short time frame
to ensure fluidization from the beginning of the pilot scale
photoreactor operation. This information makes it possible
to adapt and assemble the FBP equipment for the photocata-
lytic evaluation of the granular catalyst. Finally, the findings
facilitated the identification of the best photoreactor configu-
ration, the inlet velocities range to guarantee the fluidized
regime, as well as the proposal of an adjusted dimensionless
number for replication in studies operating conditions stan-
dardization in fluidized photoreactors for wastewater treat-
ment by heterogeneous photocatalysis with reusable granular
catalysts.
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