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The proinflammatory cytokine TNFα contributes to cell death in central nervous system (CNS) disorders by altering synaptic
neurotransmission. TNFα contributes to excitotoxicity by increasing GluA2-lacking AMPA receptor (AMPAR) trafficking to the
neuronal plasma membrane. In vitro, increased AMPAR on the neuronal surface after TNFα exposure is associated with a rapid
internalization of GABAA receptors (GABAARs), suggesting complex timing and dose dependency of the CNS’s response to TNFα.
However, the effect of TNFα on GABAAR trafficking in vivo remains unclear. We assessed the effect of TNFα nanoinjection on
rapid GABAAR changes in rats (N = 30) using subcellular fractionation, quantitative western blotting, and confocal microscopy.
GABAAR protein levels in membrane fractions of TNFα and vehicle-treated subjects were not significantly different by Western
Blot, yet high-resolution quantitative confocal imaging revealed that TNFα induces GABAAR trafficking to synapses in a dose-
dependent manner by 60 min. TNFα-mediated GABAAR trafficking represents a novel target for CNS excitotoxicity.

1. Introduction

Gamma amino butyric acid type A receptors (GABAARs) are
a major source of fast inhibitory synaptic transmission in
the CNS and thus play a crucial role in regulating neuronal
networks. Altering the number of GABAARs in a synapse
through rapid receptor trafficking therefore can have a major
inhibitory impact on neuronal excitability [1–3]. Trafficking
of GABAARs to and from the plasma membrane has been
shown to depend on neuronal activity [4–7]. GABAAR redis-
tribution is also mediated by a variety of neuromodulatory
substances such as hormones and cytokines. For example,
insulin and PI3 kinase cause rapid insertion of GABAARs

into the plasma membrane increasing the amplitude of
miniature inhibitory postsynaptic currents (mIPSCs) [8, 9].

Tumor necrosis factor alpha (TNFα), a proinflammatory
cytokine that is constitutively expressed following spinal cord
injury (SCI), has been shown to alter receptor trafficking
of GABAARs to and from the cell surface in vitro [10]. In
vivo, TNFα levels are increased as part of the inflammatory
response following SCI and various other nervous system
disorders, contributing to secondary cell death [11–13].
TNFα has been shown to specifically promote trafficking
of glutamate-receptor-2-(GluA2-) lacking AMPA receptors
(AMPARs) to the plasma membrane of spinal neurons
inducing excitotoxicity in vivo [13]. Blocking TNFα action
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pharmacologically reduces AMPAR trafficking and cell death
after SCI, suggesting that modulation of AMPARs is a major
mechanism by which TNFα promotes cell death in CNS
disease [13].

The aim of the current study is to assess in vivo the effect
of TNFα on GABAAR trafficking to the plasma membrane
of spinal neurons. We modeled the inflammatory response
associated with SCI by TNFα nanoinjection into the spinal
cord to establish whether GABAARs are exocytosed onto or
endocytosed from the plasma membrane. By determining
the direction of trafficking, we can then infer whether traf-
ficking of GABAARs is exacerbating or attenuating TNFα-
mediated excitotoxicity. GABAARs were identified and quan-
tified based on the presence of the gamma-2 (γ2) subunit
as studies show that this subunit is critical for postsynaptic
clustering of GABAARs and the vast majority of GABAARs
are composed of subunits α and β combined with γ2 [14, 15].
We used a combination of biochemical fractionation and
laser scanning confocal microscopy followed by iterative de-
convolution and automated image analysis to evaluate
GABAAR levels in the plasma membrane and at synapses
after TNFα nanoinjection into the spinal parenchyma. Whole
membrane fractionation and quantitative western blotting
showed a trend towards increased membrane GABAAR
protein levels within 60 min of TNFα nanoinjection delivery,
but these results did not reach significance. Confocal data
revealed increased GABAARs at synaptic sites following
TNFα nanoinjection, underscoring the subcellular specificity
of GABAAR localization. Confocal image findings also sug-
gest that there is a nonlinear dose-dependent relationship
between TNFα and GABAAR trafficking.

2. Materials and Methods

2.1. Animals. Female Long-Evans rats, 77- to 87-d-old, were
housed in pairs (N = 30) with ad libitum access to food and
water. All procedures were nonsurvival surgeries performed
under deep anesthesia. All possible steps were taken to
avoid unnecessary suffering. All experimental procedures
followed the National Institutes of Health guidelines and
were approved by the Institutional Animal Care and Use
Committees at The Ohio State University and the University
of California, San Francisco.

2.2. TNFα Nanoinjection. Nanoinjections (35 nl) were deliv-
ered stereotactically into the T9-10 ventral horn as described
in Hermann et al., 2001, by applying compressed air micro-
pressure to pulled glass pipettes (tip diameter, 30 μm; 30◦

bevel; Radnoti). An albumin injection served as a control
due to its similarity in molecular weight to rat recombinant
TNFα (R&D systems). For imaging experiments, subjects
(n = 4) received a dose of TNFα (0.01, 0.1, or 1 μM) and
an injection of albumin on the contralateral ventral horn
to serve as a within-subject control. These doses of TNFα
have been found sufficient to increase glutamate-mediated
excitotoxicity in the spinal cord, but insufficient to cause cell
death [11]. The dye FluoroRuby (Invitrogen) was included in
each injection solution in order to localize injection sites for

high-resolution confocal analyses (Figure 1). Subjects were
sacrificed 60 minutes following nanoinjection by transcar-
diac perfusion with 0.9% saline followed by 4% parafor-
maldehyde. For biochemical experiments, subjects received
four evenly spaced nanoinjections of either TNFα (1 μM) or
albumin along a 750 μm length of spinal cord (TNFα, n = 8;
vehicle, n = 10).

2.3. Subcellular Fractionation by Centrifugation. One hour
after nanoinjection, the spinal cord was extracted under deep
anesthesia; 7.5 mm of the cord was snap-frozen with dry
ice and stored at −80◦C for later processing. Fractionation
procedures were based on prior work with rat spinal cord
[13]. The snap-frozen spinal cord was thawed on ice and
homogenized with 30 passes of a “Type B” pestle in a Dounce
homogenizer (Kontes) with 500 μL of homogenization
buffer (10 mM Tris, 300 mM sucrose, Roche miniComplete
protease inhibitor, pH = 7.5). The resulting suspension
was then passed through a 22 gauge needle five times and
centrifuged at 5,000 RCF for 5 min at 4◦C. The supernatant
(S1) was transferred to a new tube and centrifuged again
at 13,000 RCF for 30 min at 4◦C. The supernatant (S2) was
transferred to a new tube, and the membrane-enriched pellet
(P2) was resuspended in 50 μL of PBS containing protease
inhibitor. P2 fractions were vortexed and sonicated, and all
sample fractions were stored at −80◦C.

2.4. Protein Assay and Immunoblotting. Sample protein con-
centration was assayed using BCA (Pierce) and quantified
with a plate reader (Tecan; GeNios). P2 fractions from each
subject were diluted 1 : 2 with cold Laemmli sample buffer
containing 5% β-mercaptoethanol (BioRad), and 20 μg of
protein per lane was immediately loaded onto a precast 10%
Tris-HCl polyacrylamide gel (BioRad). Sample loading on
the gel was performed so that each subject had their own
lane, loading order was counterbalanced across injection
condition to account for regional variability within the gel,
and the experimenter was blind to subject condition. A
kaleidoscope ladder (3 μL; BioRad) was loaded to confirm
molecular weights. The loaded gel was electrophoresed in
SDS running buffer (BioRad; 25 mM Tris, 192 mM glycine,
0.1% SDS, pH = 8.3) for 1 h at 100 volts. The protein was
then transferred to nitrocellulose membrane in cold tris-
glycine buffer (25 mM Tris, 192 mM glycine, 20% methanol,
pH = 8.3). The membrane was blocked for 1 h in Odyssey
blocking buffer (Li-Cor) containing 0.1% Tween 20 and then
incubated overnight (18 h) in the dark at 4◦C in a primary
antibody solution containing Odyssey blocking buffer, 0.05%
Tween 20, and a rabbit polyclonal anti- GABAA receptor
γ2 primary antibody (1 : 500; Chemicon, AB5559). The
membrane was washed 4 × 5 min with TBS containing 0.1%
Tween 20 (TTBS) then incubated for 1 h in a fluorescently
labeled secondary antibody solution containing Odyssey
blocking buffer, 0.2% Tween 20, and 1 : 30,000 IRDye
680 goat anti-rabbit secondary antibody (Li-Cor) and
subsequently washed 4 × 5 min in TTBS, 1 × 5 min in TBS.
The membrane was immediately scanned for protein bands
using the corresponding 680 nm laser at a scanning intensity
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Figure 1: Overview of in vivo nanoinjection methods for confocal imaging experiments. (1) Subjects (n = 4) received a single TNFα injection
dose (0.01, 0.1, or 1 μM) as well as a contralateral control injection of albumin. (2) Injection sites were 1 mm apart along the rostrocaudal
axis. Injection sites were localized using FluoroRuby (depicted as red regions). (3) Within injection sites, large ventral motor neurons were
selected under wide-field fluorescence in a blinded fashion by using the characteristic pattern of presynaptic synaptophysin outlining the
plasma membrane to identify cells. (4) Confocal z-stacks were deblurred by 3D blind iterative deconvolution (AutoQuant). Panels depict a
z-stack before (left) and after (right) deconvolution. (5) Custom macros designed using MetaMorph software (Molecular Devices) were used
to quantify the number of fluorescently-labeled receptor puncta on the plasma membrane. WM: white matter; GM: gray matter.

of 4 on the Odyssey Infrared Imaging System (Li-Cor). The
membrane was then reblocked and reincubated in a primary
antibody solution containing 1 : 800 mouse anti-N-Cadherin
primary antibody (BD Biosciences, 610920). The membrane
was washed and reincubated in a secondary antibody
solution containing 1 : 30,000 IRDye 800 goat anti-mouse
secondary antibody (Li-Cor). The membrane was washed
again and rescanned for protein bands in the 800 nm channel
at a scanning intensity of 3.

2.5. Quantitative Fluorescence Western Blotting. Although
traditional Western Blot analysis using chemiluminescence
and densitometry measurements is considered to be merely
semiquantitative, we used an established near-infrared label-
ing and detection technique (Odyssey Infrared Imaging
System, Li-Cor) to definitively quantify the intensity of fluo-
rescently labeled protein bands. To ensure that our intensity
measurements were truly quantitative, we generated linear
ranges for each antibody by plotting band intensity mea-
surement relative to the concentration of protein loaded for
a protein dilution curve. Laser scanning intensities for each
antibody were selected by determining the laser intensity
which yielded the highest linear range, R2, of protein band

fluorescent intensity from a protein dilution curve of a
control sample (Figures 2(a) and 2(b)). The intensity of each
fluorescently labeled protein band was quantified using
the Odyssey Application Software Version 3.0 (Li-Cor).
Background fluorescence was assessed and corrected for
using Odyssey Software which determined median pixel
densities above and below each protein band and normalized
these bands of interest accordingly.

Prior experiments have used the plasma membrane pro-
tein N-Cadherin (NCad) to characterize the degree of mem-
brane enrichment in each fraction generated by spinal cord
subcellular fractionation [13, 16]. In these studies, western
blotting revealed that subcellular fractionation generates P2
samples with a modest enrichment of the plasma membrane
as evidenced by the presence of NCad. Neither NCad (P =
0.883) nor actin (P = 0.610) intensity varied between
conditions. We therefore used NCad as a control both for
variability in protein loading and in plasma membrane
enrichment through subcellular fractionation [16]. GABAAR
band intensities from each sample were normalized with
respect to NCad by dividing GABAAR intensity by NCad
intensity. All biochemistry was performed in a blinded,
counterbalanced fashion. Two independent replications were
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Figure 2: Quantitative Western Blot linear ranges for each protein. (a) GABAAR protein band fluorescent intensity corresponding to a
protein dilution curve, 680 nm laser at a scanning intensity of 4 (R2 = 0.9916). (b) NCad protein band fluorescent intensity corresponding
to a protein dilution curve, 800 nm laser at a scanning intensity of 3 (R2 = 0.9957).

performed, and the normalized densitometry results were
averaged across runs.

2.6. Histological Processing. The 30 mm length of spinal cord
centered on the injection site was isolated and postfixed
overnight (<18 h) in 4% paraformaldehyde followed by
cryoprotection of the tissue in 30% sucrose for 2d. The
tissue was then cut into 10 mm blocks, flash-frozen on dry
ice, embedded in OCT, and sectioned into 20 μm thick
horizontal slices.

2.7. Immunohistochemistry. Fixed tissue sections from a
full set of experimental conditions were antibody-labeled
using a high-throughput staining station (Sequenza; Thermo
Scientific). Tissue was blocked and permeabilized with
5% normal goat serum and 0.3% Triton X-100 for 1 h.
Sections were incubated in a solution consisting of mouse
monoclonal antibody against presynaptic synaptophysin
(1 : 200; Millipore MAB5258-50UG) and rabbit polyclonal
antibody against GABAA receptor γ2 primary antibody
(1 : 200; Chemicon, AB5559) overnight at room temperature.
Slides were washed with 2 mL PBS then incubated for 1 h
at room temperature in a solution containing 1 : 100 Alexa
488 goat anti-rabbit and 1 : 100 Alexa 633 goat anti-mouse
secondary antibodies. After washing with 2 mL PBS, slides
were coverslipped with Vectashield containing DAPI (4′,
6-diamidino-2-phenylindole; Vector Laboratories). Negative
immunolabel control conditions consisted of no primary
antibody, and each individual primary with the incorrect
secondary. Confocal microscopy of the negative control
slides showed no detectable label exceeding threshold.

2.8. Confocal Microscopy Sampling and Deconvolution. Large
ventral motor neurons (characterized by a diameter >40 μm)
were selected using wide-field fluorescence based on the
distinctive synaptophysin outline surrounding the plasma
membrane (Figure 1). One motor neuron was sampled

every 100 μm following the rostrocaudal axis of each ventral
horn centered around the FluoroRuby-labeled injection sites.
This sampling procedure was performed through horizontal
sections of the spinal cord up to 600 μm rostral and caudal
to the center of each injection site. In a sampling region
of multiple motor neurons, a single motor neuron was
chosen at random. A Zeiss 510 META laser scanning confocal
microscope (63x objective; NA = 1.4; 2x zoom) was used to
generate confocal stacks for large motor neurons. Control
tissue was used to optimize filter and laser settings, which
were then held constant throughout the experiment. These
settings allowed for virtually complete distinction between
immunolabels GABAARs (Alexa 488), synaptophysin (Alexa
633), and FluoroRuby (Texas Red). Confocal z-stacks con-
sisted of 1 μm slices which were oversampled at 0.5 μm
z-intervals. AutoQuant software was used to deblur these
confocal stacks through the process of 3D blind iterative
deconvolution. An iteration number of 3 was determined for
GABAAR labeling based on a random subset of images and
held constant during the experiment. Performing deconvolu-
tion on confocal image stacks allowed for greater resolution
of receptor puncta than was possible with either technique
alone.

2.9. Confocal Image Analysis. Images underwent automated
image analysis to quantify the number of fluorescently la-
beled receptor puncta on the plasma membrane exceeding a
predetermined pixel threshold based on control tissue. Auto-
mated image analysis was performed using custom designed
MetaMorph (Molecular Devices) macros. One macro was
designed to measure the amount of total GABAAR receptor
pixels (intra- and extracellular puncta) as well as colocal-
ization of synaptophysin and GABAAR pixels (synaptically
localized GABAAR puncta) in each field of the z-stack. This
macro allowed for measurement of GABAAR puncta at the
level of the neuropil. Another macro quantified fluorescently
labeled GABAAR puncta on the plasma membrane of motor
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Figure 3: Quantitative western blotting reveals a nonsignificant trend towards an increase in plasma membrane GABAAR. (a) Representative
examples of Western Blots of membrane-enriched homogenate fractions from an albumin subject and a TNFα subject that were run on the
same gel. GABAAR (red) and plasma membrane protein N-Cadherin (NCad; green) bands were visualized and quantified using the Odyssey
IR Imaging System (Li-Cor). (b) Linear intensity quantification of Western Blots of the P2 fraction yields a trend suggesting an increase in
GABAAR : NCad ratio following TNFα injection (P = 0.315, n = 10 albumin subjects, n = 8 TNFα subjects). Bars represent group intensity
means averaged across 2 Western Blots. Error bars indicate SEM.

neurons. First, the macro identified the plane in the z-series
with the highest amount of GABAAR/synaptophysin colocal-
ization. A blinded researcher supervised the automated plane
selection to prevent selection based on staining artifacts.
Once a single plane was selected, a blinded researcher
identified the plasma membrane of the motor neuron by
tracing the synaptophysin-labeled outline of the cell. A
2 μm-thick “image-based subcellular fraction” was produced
containing the plasma membrane of the cell from the single
plane. From the plasma membrane subcellular image frac-
tion, MetaMorph quantified GABAAR pixels (extrasynaptic
receptors) and colocalized GABAAR/synaptophysin pixels
(synaptic receptors).

2.10. Data Analysis. Quantitative Western Blot data were
analyzed using an analysis of variance (ANOVA). Immun-
ofluorescence data were analyzed using ANOVA, and the
experiment was a mixed design (injection side and dis-
tance from injection site served as within-subject vari-
ables). When appropriate, Tukey’s post hoc analyses were
used to determine significant differences amongst multiple
outcomes within a variable. Total GABAAR protein levels
were accounted for by ANCOVA, which allowed for the
distinction between receptor trafficking versus an increase
in total GABAAR puncta as a result of receptor synthesis.
Significance was established as P < 0.05.

3. Results

3.1. Quantitative Western Blot Detects a Nonsignificant Trend
of Increased GABAAR in Total Membrane Fractions. Quan-
titative western blotting was used to generate normal-
ized GABAAR intensity ratios (GABAAR : NCad) for the
membrane-enriched fraction of spinal cord homogenate
(Figure 3(a)). These ratios for each subject were generated

by running all subjects across two counterbalanced gels.
ANOVA revealed no significant difference in total mem-
brane GABAAR between injection condition (P = 0.315),
yet group means reflect a nonsignificant trend towards a
higher concentration of GABAARs in TNFα-treated subjects
(Figure 3(b)). A crude subcellular fractionation of samples,
which in the past has been sufficient to reveal changed
receptor levels from TNFα-mediated trafficking of AMPARs
[13], did not show a significant distinction in GABAAR
between injection conditions perhaps due to a lack of
membrane resolution. Therefore, the high-resolution, low-
throughput method of quantitative confocal microscopy was
used to elucidate changes in localized receptor trafficking.

3.2. Quantitative Confocal Microscopy Reveals That TNFα
Increases Synaptic and Total GABAAR in the Neuropil. Auto-
mated image analysis of the 3-dimensional neuropil (defined
as the entire set of pixels in a confocal z-stack) revealed a
dose-dependent increase in synaptic GABAAR (colocalized
GABAAR and synaptophysin pixels) 60 minutes following
TNFα nanoinjection (P < 0.001). Total GABAAR in the neu-
ropil increased in a dose-dependent manner (P < 0.001) as
well (Figure 4). Additionally, there was a significant increase
in total GABAAR puncta from the middle to the lowest TNFα
dose (P < 0.02) (Figures 4(i) and 4(j)). Studies have shown
that GABAARs can undergo rapid activity-dependent ubiq-
uitination and lysosomal degradation to maintain homeo-
static levels of the receptor [15, 17], which could explain the
significant decrease in GABAAR associated with the middle
dose of TNFα relative to the lowest dose. It is possible
that the low dose of TNFα elicited a modest increase in
GABAAR undetectable to regulatory systems within the neu-
ron, whereas a middle dose of TNFα sufficiently increased
GABAARs to the point where they would be downregulated.

An ANCOVA was used to statistically account for the
TNFα-mediated increase in total GABAAR protein in the
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Figure 4: Increased synaptic GABAAR expression in the neuropil 60 min after TNFα injection. (a)–(h) Three-dimensional representative
images of motor neurons demonstrating a dose-dependent increase in synaptic GABAARs in the neuropil after TNFα injection. (i)
Quantification of confocal stacks shows a significant increase in total GABAARs following the highest dose of TNFα (∗P < 0.001 from
middle and lowest doses). An increase in total GABAARs was also observed in the lowest dose relative to the middle dose (†P = 0.015). (j)
An increase in synaptic GABAARs occurred following the highest dose of TNFα (∗P < 0.001 from middle and lowest doses). Bars represent
group means across >800 confocal image stacks (12 subjects, n = 4 subjects per group). Error bars reflect SEM. Scale bar, 30 μm.

neuropil, thus isolating the dose-dependent changes in
synaptic GABAAR attributable to receptor trafficking. After
correcting for changes in total GABAAR protein, the dose-
dependent effect of TNFα on synaptic GABAARs in the
neuropil was robustly maintained (P < 0.001) indicating that
the dose-dependent increase in synaptic GABAAR does not
depend solely on wholesale protein changes but also relies on
receptor trafficking to the synapse. Correcting for variance
in total GABAAR protein in the neuropil with ANCOVA,
revealed no significant interaction of dose by side for synaptic
GABAAR (P = 0.325). Overall, results reveal that TNFα
dose significantly influenced GABAAR receptor trafficking to

synaptic sites within the neuropil containing spinal motor
neurons.

3.3. Analysis of Confocal Microscopic Images Reveals That
TNFα Increases Extrasynaptic and Synaptic GABAAR on the
Plasma Membrane of Ventral Motor Neurons. Image analysis
of the plasma membrane also revealed a dose-dependent
increase in synaptic and extrasynaptic GABAAR 60 minutes
after TNFα injection (Figures 5(g) and 5(h)) (P < 0.001).
There was significantly more extrasynaptic GABAARs associ-
ated with the lowest TNFα dose relative to the middle dose
(P < 0.003). After statistically correcting for TNFα-mediated
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Figure 6: Two-way interactions of drug dose and injection side. ((a)–(d)) There was a significant effect of dose across all outcomes (P <
0.001). High doses of TNFα had a widespread effect extending onto the contralateral side of the cord such that there was no effect of injection
side across any outcome (P > 0.05). ((a)–(c)) A 2-factor mixed ANOVA revealed that there was not a significant interaction between dose
and side on total GABAAR on the neuropil, synaptic GABAAR on the neuropil, or plasma membrane (P > 0.05); yet there was a significant
effect of interaction for extrasynaptic GABAAR on the plasma membrane ((d) P = 0.037).

changes in total GABAAR level with ANCOVA, there
remained a significant dose-dependent effect of TNFα on
synaptic GABAAR indicating that TNFα increases receptor
trafficking to synapses on the motor neurons’ somatic surface
in addition to increasing extrasynaptic receptors (P < 0.05).
The effect of TNFα was widespread and extended onto the
contralateral side of the spinal cord (the site of vehicle
injection) eliciting a dose-dependent increase in synaptic and
total GABAARs at the level of the plasma membrane and the
neuropil, which spanned both sides of the cord (all measures,
P < 0.001). The extensive effect of TNFα on spinal tissue
is also evidenced by the fact that there was no main effect
of side of the cord in synaptic, nor total GABAAR measures
(Figure 6) (all measures, P > 0.05). There was an interaction
of dose by side for extrasynaptic GABAAR on the plasma

membrane (P = 0.037), but there was not a significant
interaction for any other GABAAR measures (P > 0.05)
(Figure 6). Accounting for changes in total extrasynaptic
GABAAR in the plasma membrane with ANCOVA showed
no higher order interactions between dose and side for
synaptic GABAAR (P > 0.05). Taken together, results indicate
that there is a significant effect of TNFα dose that is driving
GABAAR trafficking to synapses on the plasma membrane
and that this effect was widespread throughout the tissue.

4. Discussion

Our present findings suggest that there is an increase in
synaptic GABAAR that occurs in spinal cord neurons in
response to TNFα. TNFα nanoinjection in vivo allowed
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us to model rapid changes in synaptic efficacy that result
from the inflammatory response following SCI. Biochemical
fractionation methods that have previously been shown to
be sufficient to measure rapid trafficking of the excitatory
AMPA receptors [13, 16] did not appear to have sufficient
resolution to detect changes in inhibitory GABAARs. How-
ever, quantitative high-resolution confocal microscopy on
morphologically preserved tissue sections revealed signifi-
cant changes in GABAARs 60 minutes after TNFα injection.
Analysis of the total neuropil in confocal z-series revealed
significant increases in GABAAR positive puncta. By statis-
tically correcting confocal images for total GABAAR puncta,
we were able to isolate the effect of TNFα on synaptic
GABAAR trafficking, revealing a specific increase in synaptic
GABAAR levels in the neuropil. By applying algorithmic
postprocessing of confocal images, we were able to generate
image-based subcellular fractionation, isolating the plasma
membrane of large ventral motor neurons. Analysis of this
confocal subcellular fraction revealed a U-shaped TNFα
dose-response effect on GABAAR levels at both extrasynaptic
and synaptic sites on the motor neuron plasma membrane.

The present results contribute to a more complete under-
standing of TNFα-mediated, dynamic receptor changes
at synapses following the inflammatory response in SCI.
TNFα tissue levels have been shown to peak 60 minutes
after SCI [18]. This increase in TNFα has potential to
contribute to excitotoxic cell death in the spinal cord [11].
In vivo studies have shown that TNFα causes GluA2-lacking
AMPARs to be trafficked to synapses of spinal neurons [13],
thereby contributing to excitotoxicity by increasing neural
permeability to Ca++. Inhibitory synaptic strength is directly
correlated to the number of synaptic GABAARs, thus any
mechanism that controls the quantity of synaptic GABAARs
can have a profound effect on neuronal excitability [1–3].
Given this, our study suggests that GABAAR trafficking to the
synapse may serve as a homeostatic mechanism that combats
the excitotoxic effect of TNFα following SCI in vivo. An
increase in extrasynaptic GABAAR as well as total GABAAR
is consistent with research showing that GABAAR are first
exocytosed onto the plasma membrane before trafficking
laterally to synapses [7, 19]. An upregulation of extrasynaptic
GABAAR may be necessary in order to ensure a sufficient
availability of GABAARs for trafficking to synaptic sites.
Increased GABAAR synthesis may occur in this system to
meet the demands placed on intracellular receptor stores
imposed by trafficking.

An unexpected finding was that extrasynaptic and total
GABAARs decreased following the middle dose of TNFα.
This phenomenon could be due to a compensatory homeo-
static degradation of GABAAR at the middle TNFα dose. At a
low dose, GABAAR synthesis could increase to maintain cel-
lular reserves of the receptor for trafficking to the membrane,
yet an increase in GABAAR at a low dose could be slight
enough to go undetected by regulatory mechanisms that
would otherwise decrease GABAAR accumulation [15, 17].
However, at the medium TNFα dose, GABAAR synthesis
could increase to a level that would elicit a rapid homeostatic
degradation or ubiquitination of these receptors so that there
is a drop in total GABAAR protein following the middle dose.

A large and rapid GABAAR accumulation following a high
dose of TNFα could conceivably overwhelm homeostatic
compensatory degradation of GABAAR resulting in a global
increase in the protein.

Results also showed that at high doses of TNFα, there
was a widespread effect of synaptic and total GABAAR
protein that extended onto the contralateral side of the
spinal cord into the region of albumin nanoinjection, as
previously reported for AMPAR receptor trafficking effects
[13]. At a high dose, there was not a significant difference
between GABAAR measures on the TNFα-injected side and
the contralateral albumin side. Yet, at lower doses, TNFα
does not influence GABAAR measures at the site of albumin
injection. Our results demonstrate that the TNFα-affected
area increases with the size of the dose. This result could
be explained by evidence that TNFα promotes a heightened
inflammatory response, which causes an increase in glial
activation leading to the release of a variety of inflammatory
cytokines including TNFα [20–22]. Therefore, higher doses
of TNFα could elicit a greater immune response leading to
further release of TNFα through a positive feedback loop,
which has been demonstrated in vitro [23, 24]. Additionally,
at higher doses, TNFα elicits a higher excitatory effect
in the neural circuitry at the injection site that could
be transmitted across the midline of the spinal cord by
commissural fibers [25, 26]. Higher doses of TNFα also
are known to elicit a greater localized excitation which is
propagated further relative to lower doses of TNFα [13].
Our results suggest that GABAAR trafficking may counteract
this TNFα-induced excitotoxicity, so increasing the radius of
excitation would likewise increase the tissue area affected by
GABAAR trafficking.

At first glance, our results seem to contradict the in
vitro findings of Stellwagen et al. that TNFα decreases
surface GABAARs through endocytosis while simultane-
ously increasing surface GluA2-lacking AMPARs [10]. Taken
together with our prior publications, we have now found
in vivo that GABAARs and AMPARs are both trafficked to
the membrane after TNF nanoinjection (Figures 4–6) [13].
Although we found an increase in synaptic GABAAR fol-
lowing the highest TNFα dose, our experiment also showed
that TNFα elicited a nonlinear dose-response effect on
GABAAR levels (total GABAAR in neuropil and extrasynaptic
GABAAR). An interesting finding was that the middle dose
of TNFα used in our study elicited a lower amount of
total GABAAR relative to our highest and lowest drug doses
(Figure 7). This complex, nonlinear dose-dependent rela-
tionship of TNFα on GABAAR trafficking, actually replicates
the finding of Stellwagen et al. when examined in the context
of the study by Ferguson et al. [13], which demonstrated that,
at 0.1 μM TNFα, the very same intermediate dose used in
our experiment, there was an increase in extrasynaptic GluA1
coinciding with our decrease in GABAAR (Figure 7). Our
experiment expands upon these in vitro findings, recontex-
tualizing them in vivo and revealing a potentially nonlinear
dependence of GABAAR trafficking on TNFα. An in vivo
account of TNFα-mediated GABAAR trafficking simulates
the microenvironmental tissue changes following injury.
While cell culture enables greater control over experimental
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Figure 7: Graphical representation of combined findings from current research, Ferguson et al., 2008 [13], and Stellwagen et al., 2005
[10]. (a) Depiction of current findings that TNF causes a U-shaped response in total GABAAR in vivo. (b) Representation of findings from
Ferguson et al. [13] that TNF causes an increase in total GluA1 in vivo. Green arrows represent the findings of Stellwagen et al., 2005 [10]
that a particular dose of TNF elicits an increase in GluA1 and a decrease in GABAAR in vitro.

variables and outcomes, a limitation of in vitro studies is
their inability to replicate the compensatory homeostatic
mechanisms present in a whole organism. In analyzing the
effect of a range of TNFα doses on GABAAR trafficking,
we can glean time-emergent effects following injury since
TNFα is constitutively expressed following SCI [18]. Thus,
there appear to be both dose and time components to TNFα
receptor trafficking in vivo.

Further studies are necessary in order to corroborate
our current findings and determine their functional conse-
quences. It has been shown that mIPSC strength is directly
correlated with the number of postsynaptic GABAARs indi-
cating that trafficking receptors to the synapse greatly affects
neuronal excitability [15]. Electrophysiological studies are
critical in order to determine whether TNFα-mediated
GABAAR trafficking translates into differences in synaptic
current transmission. Aside from GABAAR trafficking, other
modulatory mechanisms regulate receptor functionality and
distribution including changes in GABAAR phosphoryla-
tion, half-life, ubiquitination, lysosomal degradation, and
interactions with other glutamate receptor subtypes such
as the NMDA receptor [6, 7, 17, 27, 28]. An additional
physiological variable to consider is that, under certain
conditions, GABAergic synapses can be excitatory. GABAARs
are permeable to both Cl− and HCO3− and these currents
have reversal potentials (EGABA) close to the neuronal resting
potential. Physiological conditions that cause the membrane
potential to become more negative than EGABA reverse the
direction of ion flow through GABAARs [29]. For example, a
heightened level of neuronal activity has been shown to tran-
siently alter EGABA in hippocampal CA1 pyramidal cells in
vitro. GABAergic synapses become depolarizing after a high-
frequency train of stimulation causing an accumulation of
Cl− inside the cell and high K+ outside, in the interstitial fluid
[30, 31]. In the spinal cord, excitatory effects of GABAARs

have been implicated in pathological pain conditions and
maladaptive spinal plasticity [32–34]. In light of these
caveats, it is essential to determine the electrophysiological
consequences of TNFα-mediated GABAAR trafficking. A
better understanding of the link between TNFα-induced
synaptic GABAAR trafficking and neural excitability is a
clear target for further research that may lead to a novel
therapeutic target for combating the spread of excitotoxicity
after SCI and other CNS diseases.
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