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Focal brain lesions can alter the morphology and function of remote brain areas. When the damage is inflicted more slowly, the
functional compensation by and structural reshaping of these areas seem to be more effective. It remains unclear, however,
whether the momentum of lesion development also modulates the functional network topology of the remote brain areas. In
this study, we compared resting-state functional connectivity data of patients with a slowly growing low-grade glioma (LGG)
with that of patients with a faster-growing high-grade glioma (HGG). Using graph theory, we examined whether the tumour
growth velocity modulated the functional network topology of remote areas, more specifically of the hemisphere contralateral to
the lesion. We observed that the contralesional network topology characteristics differed between patient groups. Based only on
the connectivity of the hemisphere contralateral to the lesion, patients could be classified in the correct tumour-grade group
with 70% accuracy. Additionally, LGG patients showed smaller contralesional intramodular connectivity, smaller contralesional
ratio between intra- and intermodular connectivity, and larger contralesional intermodular connectivity than HGG patients.
These results suggest that, in the hemisphere contralateral to the lesion, there is a lower capacity for local, specialized
information processing coupled to a higher capacity for distributed information processing in LGG patients. These results
underline the utility of a network perspective in evaluating effects of focal brain injury.

1. Introduction

Focal brain lesions (caused by, e.g., stroke or brain tumour)
can alter the morphology and function of brain regions
remote from the area of structural damage [1, 2]. Several
studies have shown prominent functional changes, in
patients compared to healthy subjects, in regions distant to
the site of damage in situations where the damaged area is
normally recruited [3–5]. These remote effects do not con-
form to a localizationist view but do fit a network perspective
that focuses on connectivity and neural communication
across regions. According to this network perspective, the
effects of focal brain injury should be assessed over entire brain
networks instead of just locally at the site of the structural
damage [6–9].

Evidence for remote changes after focal damage has been
found in different patient populations both at the level of the
strength of functional connectivity (e.g., [7, 10–14]) and at

the global brain organization level (e.g., [15–17]). Impor-
tantly, in several studies, changes in functional connectivity
and changes in network organization after focal damage were
not only found in the ipsilateral hemisphere but also within
the hemisphere contralateral to the lesion (e.g., [18–21]).
This is in line with several modelling studies that showed that
a virtual lesion can result in changes in functional connectiv-
ity and network topology, even of contralesional brain areas
(e.g., [8, 22, 23]).

There is significant clinical and experimental evidence
that the time-course/kinetics of a lesion influences the func-
tional outcome (e.g., [24–26]). Slowly growing brain lesions
generally result in less severe impairments than lesions with
an acute onset [27]. Functional compensation and structural
reshaping therefore seem to be more effective when brain
damage is inflicted over longer periods of time. Several stud-
ies have supported this link between the neuroplastic poten-
tial following focal brain injury and the temporal pattern of
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the acquired damage (or “lesion momentum”) (e.g., [28–31]).
It remains unclear, however, whether and how the growth
rate of the lesion modulates the functional network topology
of the remaining healthy areas. An optimal lens to study this
is provided by patients with glioma. Gliomas are the most
common type of primary brain tumours that are classified
based on their malignancy. Low-grade gliomas (LGG,
WHO grades I-II) tend to grow more slowly and less aggres-
sively with lower degrees of cell infiltration and proliferation
than high-grade gliomas (HGG, WHO grades III-IV). It is
estimated that, on average, LGG go undetected for more than
a decade before becoming clinically manifested (usually with
a seizure; [32]). In contrast, HGG and in particular grade IV
glioblastomas grow much faster. Studies suggest a 10-fold
difference in growth velocity: about 4mm/year for LGG com-
pared to about 3mm/month for HGG [33]. This growth
velocity difference could lead to more extensive plastic effects
before diagnosis [29, 34] and, therefore, more distinct reorga-
nization of the functional networks in remote areas in LGG
compared to HGG patients.

Only few studies have compared the network characteris-
tics in LGG and HGG patients. van Dellen et al. [31] showed
functional network differences when comparing LGG
patients with HGGpatients and healthy controls. No network
topology differences were observed between HGG patients
and healthy controls. In specific networks (e.g., default mode
network andmotor network), however, functional connectiv-
ity was more disrupted in HGG compared to LGG patients
(e.g., [35, 36]). These previous studies examined functional
connectivity and functional network topology for a specific
network only or at the whole-brain level without differentiat-
ing between damaged and undamaged areas. However,
insight into the functional organization of the undamaged
areas is vital since the extend of functional recovery may be
determined by the proportion of the preserved functional
network [37]. Furthermore, the severity of behavioural
impairment following focal neural damage correlates with
the extent of connectivity changes in remote regions [38].

Therefore, in the current study, we examined whether the
functional global organization (defined by resting-state con-
nectivity, rs-fMRI) of the undamaged regions differs between
LGG and HGG patients. Additionally, we investigated
whether specific network topology features of the undam-
aged areas characterize these two different patient groups.
Since the tumour location varied widely across our heteroge-
neous population of glioma patients, only the hemisphere
contralateral to the lesion could be reliably regarded to be
tumour-free. Consequently, all analyses were targeted on this
hemisphere. In a first step, we used multivariate pattern clas-
sification (“machine learning”) to predict the tumour grade
(LGG or HGG) at the individual level on the basis of the
functional connectivity patterns of the hemisphere contralat-
eral to the lesion. This is based on the presumption that
better-than-random classification accuracy can only be
obtained if there are indeed differences in the functional con-
nectivity of the hemisphere contralateral to the lesion
between the LGG and HGG patients [39]. This is exactly
what we found in this study. Therefore, in a second step,
we applied graph theoretical analyses [40] to further

characterise the network topology of the hemisphere contra-
lateral to the lesion in these two patient groups.

2. Methods and Procedure

2.1. Study Population.We conducted a retrospective study on
the resting-state data of patients recruited from the Elisabeth-
TweeSteden Hospital (Tilburg, the Netherlands) from July
2010 to June 2016. Rs-fMRI data was collected as part of a
standard presurgical protocol.

Only patients that were eligible for resective tumour sur-
gery for a unilateral left-hemispheric LGG (grade I or grade
II) or HGG (grade III or grade IV) (as demonstrated by neu-
ropathological examination) were included in this study.
Patients who had undergone a previous tumour resection
were excluded from the analyses.

As indicated by the local medical ethics committee, data
usage was exempted from approval by an independent ethi-
cal committee, since the data were clinically acquired and
anonymously processed.

2.2. MRI Acquisition Procedure. Images were collected with a
3 Tesla Philips Achieva Scanner (Philips Medical Systems,
Best, The Netherlands) using a standard 32-channel radio-
frequency head coil. Whole-brain resting-state fMRI data
were acquired with a 3D-PRESTO pulse sequence with paral-
lel imaging (TR/TE=19/27ms, slice orientation= sagittal,
flip angle = 10 degrees, dynamic scan time=1500ms, voxel
size = 4× 4× 4mm, FOV=160× 256× 256, reconstruction
matrix = 40× 64× 64, number of volumes = 301). High-
resolution whole-brain structural scans were acquired for
all patients as reference for the resting-state maps (3D T1-
weighted sequence: TR/TE=8.40/3.80ms, flip angle = 8
degrees, slice orientation= sagittal, 1× 1× 1mm voxel size,
with varying FOV (158× 254× 254 in 48 patients; 175×
240× 240 in 27 patients; 175× 288× 288 in 4 patients, and
160× 240× 240 in 1 patient)). All subjects were instructed
to relax, but not to sleep, in the scanner while thinking of
nothing in particular.

2.3. MRI Preprocessing. Scan data was analysed using SPM12
(Wellcome Trust Center for Neuroimaging, London, UK).
Preprocessing included realignment, segmentation of the
structural image, spatial normalization of the structural and
functional images to the template MNI brain, resampling to
2× 2× 2mm cubic voxels, functional outlier detection (based
on scrubbing of motion-affected functional volumes), and
smoothing using an 8mm full width at half maximum
(FWHM) Gaussian Kernel.

2.4. Functional Connectivity. To assess the functional con-
nectivity in each patient, preprocessed rs-fMRI data were first
parcellated into 90 regions (45 regions for each hemisphere)
of interest (ROIs) using the automated anatomical label-
ling (AAL) atlas. The representative time series for each
ROI were obtained by averaging the BOLD time series
over the extent of the parcel. Possible sources of spurious
variance were regressed out from the data, including (a)
the realignment and scrubbing parameters, (b) the white
matter signal, (c) the ventricular system signal, and (d)
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the whole-brain signal. Finally, linear detrending and tem-
poral band-pass filtering (0.009 to 0.8Hz) were applied to
reduce the influences of low-frequency drift and high-
frequency physiological noise.

ROI-to-ROI connectivity maps for the hemisphere con-
tralateral to the lesion were generated using the CONN tool-
box [41]. For each subject, this 45× 45 correlation matrix was
created by computing the correlation coefficient between
each pair of 45 ROIs of the hemisphere contralateral to the
lesion, which were then Fisher transformed.

For the multivariate pattern classification, we removed
all 45 diagonal elements and extracted the upper triangle
elements of the connectivity maps as classification features.
The remaining 990 elements (45× (45− 1)/2 = 990) of the
connectivity maps served as the feature space for the mul-
tivariate pattern classification.

More details on the two different methods that we
have used follow below. We will first elaborate on the
multivariate pattern classification approach (A) that is
used to examine whether the functional global organization
of the hemisphere contralateral to the lesion differs between
LGG and HGG patients. Secondly, we will portray the graph
theoretical analyses (B) that are needed to describe the
specific network topology features that characterize our
two different patient groups.

2.4.1. Multivariate Pattern Classification. To automatically
detect the tumour grade at the individual level on the basis
of the contralesional connectivity map, a data-driven method
was adopted. It incorporated three steps: feature selection,
pattern classification, and permutation testing.

(1) Feature Selection. Feature selection can remove noisy or
uninformative features before classification. Reducing the
number of features does not only speed up computation
but can also improve the final classification performance
[42, 43]. To this end, we first selected a small set of features
with the greatest discriminative power [44]. The discrimina-
tive power of a feature can be quantitatively measured by its
relevance to classification [45]. In this study, we used the
Kendall’s tau rank correlation coefficient, which provides a
distribution-free test of independence between two variables
to measure the relevance of each feature to classification. The
discriminative power was defined as the absolute value of the
Kendall tau correlation coefficient (see, e.g., [46–48] for a
similar approach). We subsequently ranked features accord-
ing to their discriminative powers and selected the 200 high-
est ranked features per cross-validation fold (note that
similar analyses with the 50, 100, 150, or 250 highest ranked
features showed very similar results). Since we used a
leave-one-out cross-validation strategy to estimate the gen-
eralization ability of the classifiers (see below) and feature
ranking is based on a slightly different training data set in
each iteration of the cross-validation, the final feature set
differed slightly from iteration to iteration. However, out
of the 200 final features, 139 consensus features appeared
in the final feature set of each cross-validation fold [44].
These consensus features were selected for the subsequent
classification analyses.

(2) Pattern Classification. Linear kernel support vector
machine (SVM) classifiers were used to solve the binary clas-
sification problem. SVM algorithms allow classifying individ-
uals based on an underlying multivariate statistical analysis
of the data. Based on the training data, the SVM classifier
searches for a hyperplane in a high-dimensional space that
optimally distinguishes between categories and assigns new,
previously unseen data (test data) into the categories based
on that optimal hyperplane [49]. To test the ability of the
classifier to reliably distinguish between LGG and HGG
patients, leave-one-out cross-validation was performed,
which gives the most unbiased estimate of the test error
[50]. During this cross-validation, each sample is designated
the test sample in turns while remaining samples are used to
train the SVM classifier. Note that a ten-fold cross-validation,
in which the samples are divided into ten sets and in which
each set is designated the test set in turns while the remaining
sets are used to train the SVM classifier, showed very similar
classification performance.

Specificity was defined as the classification accuracy for
LGG patients whereas sensitivity was defined as the classifi-
cation accuracy for HGG patients. The overall classification
accuracy was the mean value of specificity and sensitivity.

(3) Permutation Testing. We determined the statistical sig-
nificance of the overall classification accuracy by permuta-
tion testing [51, 52]. This involved constructing the null
distribution of the classification accuracy by performing
10,000 random permutations of the training category
labels and running the classification process including
leave-one-out cross-validation on each of these iterations.
The p value was derived from the number of permutations
achieving higher classification accuracy than when the true
category labels were used.

2.4.2. Describing Network Topology: Graph-Theoretic
Analyses. To investigate the properties of the brain functional
networks, each individual’s correlation matrix was thre-
sholded into a weighted, undirected graph (i.e., network).
Graphs are defined as a set of nodes (ROIs from the correla-
tion matrix which represent brain regions) connected by a
number of edges (correlation values above a threshold which
represent undirected connections). Given the controversies
in the treatment of negative correlations in resting-state
studies [53–55], we followed the traditional approach and
ignored all negative correlations (e.g., [56–58]). Since the
choice of the threshold has a critical effect on the number
of edges of the resulting brain networks and thereby influ-
ences the topological properties, we estimated and integrated
the graph metrics of the brain functional networks over a
wide sparsity (defined as the fraction of total possible edges
that is present in the graph) ranging from 10% to 50%
(in steps of 5%). By using a sparsity-specific instead of a cor-
relation value threshold, we equated the number of edges or
wiring cost across subjects [59]. The chosen range is widely
accepted since it maintains highly interconnected graphs
while they still separate from random topology [60, 61].

The network metrics in this study were selected based on
their ability to quantify global network characteristics and
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were computed with the brain connectivity toolbox [58] and
are detailed in Figure 1.

(1) Global Efficiency. The global efficiency of a network is
defined as the average of the inverse of the shortest path
length between all nodes (i.e., number of minimum connec-
tions that should be passed to join two nodes; [59, 62]).
The advantage of global efficiency over the characteristic path
length is that only the former can be meaningfully computed
on disconnected networks. Global efficiency is thought to
represent integration of network-wide communication.

(2) Local Efficiency. Contrary to global efficiency, local effi-
ciency is measured on a nodal basis using information
about the path length between the neighbours of a single
node. It assesses the efficiency of communication between
the first neighbours of a node when the node is deleted.
High local efficiency indicates that a node is embedded
in a richly connected environment. Low local efficiency,
by contrast, means that the neighbours of the node are
sparsely connected to one another [63]. The local effi-
ciency averaged across all the nodes of a network repre-
sents the network’s potential for local information
transfer [64, 65].

To evaluate the global and local efficiency, these graph
metrics have to be normalized because basic low level net-
work properties (such as number of nodes and connection
density) influence these measures. Therefore, we bench-
marked these metrics to 1000 random reference networks
that were randomly rewired to destroy the low level prop-
erties but preserved the weight distribution of the entire
network [66].

(3) Modularity. Modularity quantifies the degree to which a
network can be subdivided into separable, nonoverlapping
subnetworks or modules in which nodes within the same
module are densely interconnected but only have sparse con-
nections with nodes from other modules [67]. The extent of
modular organization is assessed by the weighted modularity
metric Q [68].

(4) Intramodular Connectivity. The intramodular connectiv-
ity is the sum of all edge weights within a module [69] and
reflects the level of local processing within modules.

(5) Intermodular Connectivity. The intermodular connectiv-
ity is the sum of edge weights between the nodes of different
modules [69] and reflects the level of distributed processing
between modules.

To avoid differences in these modularity metrics between
groups that are merely attributable to global differences in
correlation magnitudes across individuals, we divided these
modularity metrics by the average connection weights. Addi-
tionally, we computed the ratio between the intra- and inter-
modular connectivity.

Permutation testing [61] was used to determine whether
the network properties differed between the LGG and HGG
patient groups. First, we calculated the between-group differ-
ences for each network metric. To test the null hypothesis
that the observed group difference could occur by chance,
for each network metric, the group to which each patient
belongs was randomly exchanged and the difference between
the network metric of the two random groups was computed.
This randomization procedure was repeated 10,000 times,
resulting in a sampled between-group difference null

Modules

Intramodular 
connection

Intermodular 
connection

Shortest path

Figure 1: The panel shows an example of a graph, which is a mathematical description of a network, consisting of a collection of nodes and
edges. The dots represent nodes, and the lines represent edges connecting the nodes. There are three modules in the graph in which
connections within modules (intramodular connections) are much denser than the connections between modules (intermodular
connections). The shortest path length describes the minimum number of connections that should be passed to travel between two nodes
and is inversely related to the global efficiency.
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distribution for each network metric. Finally, for each metric,
the observed difference between the LGG and HGG patient
groups was assigned with a p value by computing the total
number of entries from the permutation that exceeded the
empirically measured group difference. A significance
threshold of α = 0 05 was used. The false discovery rate
(FDR) correction was applied for multiple comparisons.

Since permutation analyses do not allow for the correc-
tion for covariates, we additionally tested group differences
in network properties using ANOVAs with age and tumour
diameter as covariates. Tumour diameter was defined as the
maximum tumour diameter in any dimension, measured
digitally on the basis of visually defined signal abnormalities
on T1-weighted or FLAIR images.

3. Results

3.1. Patient Characteristics. From the 84 eligible patients,
three subjects were excluded due to conversion problems of
the rs-fMRI data. One additional subject was excluded
because of the low quality of the rs-fMRI data (temporal
signal-to-noise ratio below threshold of 45, which is the lower
boundary to reliably detect small (<0.5%) fluctuations, given
the number of timepoints used; see [70]). In the analyses,
40 LGG patients (all grade II) and 40 HGG patients (13 grade
III; 27 grade IV) were included.

There was no significant difference in gender (Chi square
test) or tumour diameter (independent samples t-test;
t(78) = 1.77, p > 08) between the LGG and HGG group
(Table 1). However, there was a significant difference in age
between the two groups (independent samples t-test;
t(78) = 4.66, p < 001): LGG patients were significantly youn-
ger than HGG patients, as is well-known from the literature
(e.g., [71]).

3.2. Multivariate Pattern Classification. The classification
results indicate that the linear SVM classifier achieved an

accuracy of 70% using the 139 consensus features of the
hemisphere contralateral to the lesion (70% for LGG
patients, 70% for HGG patients). The distribution of the
overall classification accuracy for the permuted training data
(Figure 2) indicates that the SVM classifier learned the rela-
tionship between the data and the group labels with a proba-
bility of being wrong lower than .005 (p < 005).

3.3. Graph-Theoretic Analyses. Both groups showed similar
global efficiency and no differences in modularity Q
(Table 2). In contrast, the intramodular connectivity and
intermodular connectivity did differ between LGG and
HGG patients: LGG patients showed a larger intermodular
connectivity and a smaller intramodular connectivity com-
pared to HGG patients. Furthermore, also the ratio between
intra- and intermodular connectivity differed significantly
between the two patient groups. Local efficiency was larger
in HGG patients than in LGG patients, but this difference
did not survive multiple comparison correction.

After correcting for age and tumour diameter differences,
the group differences remained significant, except for the
intramodular connectivity.

4. Discussion

Previous studies have shown that focal lesions can have wide-
spread effects andmight lead to functional changes in remote,
undamaged areas, even in the hemisphere contralateral to the
lesion. These functional changes seem to depend on the tem-
poral pattern of the lesion inflicted to the brain, but up until
now, it was unclear whether and how this lesion momentum
also modulates the global network organization of the
undamaged areas. In the present study, we wanted to exam-
ine the possible effects of the growth velocity of a tumour
on the functional network topology of the hemisphere con-
tralateral to the lesion, since this was the only brain part that
could be reliably regarded to be tumour-free in all our

Table 1

Characteristics LGG patients (n = 40) HGG patients (n = 40) t or χ2 value p value

Sex (M/F) 24/16 23/17 χ2(1) = .052 .82

Age in years (SD) 38.79 (10.77) 51.28 (13.10) t(78) = 4.66 <.001
Tumour location

(i) Frontal 14 (+1 BG) 13

(ii) Temporal 5 12

(iii) Parietal 1 5

(iv) Insular 1 (+1 BG) 0

(v) Occipital 0 1

(vi) Fronto-parietal 3 1

(vii) Fronto-insular 7 (+1 BG) 1

(viii) Fronto-temporo-insular 3 (+1 BG) 2

(ix) Temporo-insular 2 2

(x) Temporo-occipital 0 2

(xi) Parieto-insular 0 1

Tumour diameter in mm (SD) 55 (19) 48 (16) t(78) = 1.77 .081

Patient characteristics. SD = standard deviation; BG = basal ganglia.
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patients. Therefore, we compared the resting-state functional
connectivity data of patients with a low-grade and a high-
grade glioma, which have a different tumour momentum.

The present results show that there is indeed a difference
between patients with a slowly growing low-grade glioma
and patients with a faster-growing high-grade glioma in the
functional global organization of the hemisphere contralat-
eral to the lesion. First of all, we were able to classify tumour
patients with better-than-random accuracy (70%) in the
correct tumour grade group (low-grade versus high-grade
glioma) only based on the functional connectivity patterns
of the hemisphere contralateral to the lesion. Second, LGG
patients showed smaller intramodular connectivity, smaller

ratio between intra- and intermodular connectivity, and
larger intermodular connectivity of the hemisphere contra-
lateral to the lesion than HGG patients. This pattern of
results suggests that LGG patients show a lower capacity for
local, specialized information processing within modules
but a higher capacity for distributed information processing
between modules in the hemisphere contralateral to the
lesion than HGG patients. The ability for specialized process-
ing within functionally related brain regions arranged in
modules is generally referred to as “segregation,” whereas
the capacity of the network to rapidly combine and integrate
distributed information is referred to as “integration” [72].
The hemisphere contralateral to the lesion of LGG patients

Table 2

Graph-analytic metric
LGG (n = 40)
mean (SD)

HGG (n = 40)
mean (SD)

p value (perm) F-statistic df = (1,79) η2 p value (ANOVA)

Global efficiency .85 (.04) .85 (.04) .368 .60 .008 .441

Local efficiency 1.25 (.16) 1.33 (.20) .044 4.11 .051 .046

Modularity Q .30 (.06) .32 (.05) .148 2.59 .033 .112

Intramodular connectivity 1.08 (.03) 1.10 (.03) .009∗ 3.48 .044 .066

Intermodular connectivity .87 (.04) .85 (.05) .023∗ 6.77 .082 .011∗

Ratio intra/intermodular connectivity 1.24 (.08) 1.29 (.10) .008∗ 6.92 .083 .010∗

ANOVAs were corrected for age and tumour. In none of the models, the effect of diameter or age reached significance. SD = standard deviation. As a measure of
effect size, eta squared is reported. ∗ = significant after FDR correction.
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Figure 2: Permutation test results for assessing classifier performance when selecting the 200 most discriminative features. Labels were
randomly reshuffled 10,000 times to generate the distribution of the estimate. The red asterisk indicates the overall accuracy obtained by
the classifier trained on the real category labels (OA0 = 70%).
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is thus characterized by lower segregation and higher integra-
tion compared to that of HGG patients. The smaller local effi-
ciency in LGG patients compared to HGG patients, that did
not survive multiple comparison correction, is in line with
this interpretation.

The current results extent the findings of earlier studies in
several ways. A first series of studies compared the whole-
brain functional network characteristics of LGG patients
and healthy controls, but did not compare LGG and HGG
patients as we did here. Across these studies, however, the
findings on segregation and integration were inconsistent;
whereas initial magnetoencephalography (MEG) studies
showed lower segregation and higher integration, particu-
larly in high frequencies, in LGG patients compared to
healthy controls [15, 18], a recent fMRI study showed lower
functional network integration in LGG patients and no dif-
ference between LGG patients and healthy controls on net-
work segregation [17]. A second series of studies did
compare LGG and HGG patients, but did not examine the
functional global organization of the undamaged areas like
we did. van Dellen et al. [31] showed lower functional net-
work integration in combination with lower network segre-
gation in high frequencies and higher network segregation
in low frequencies in LGG patients compared to HGG
patients. Harris et al. [35] and Mallela et al. [36], by contrast,
did not take a whole-brain approach but examined specific
networks (the default mode network and the motor network,
resp.) and found more disrupted functional connectivity in
HGG compared to LGG patients.

One might argue that the observed differences between
the LGG and HGG patients in our study are unrelated to
their difference in tumour momentum and that they are
merely due to the age difference between the two patient
groups.This argument couldpossiblyhold for themultivariate
pattern classification results. Previous studies (e.g., [73, 74])
have shown that functional connectivity changes with age,
thus better-than-random classification accuracy could have
been obtained even if the classifier has only captured an
age-related difference in functional connectivity between
the patients. For the graph-theoretic results, however, we
are confident that the differences between LGG and HGG
patients cannot be explained by differences in age between
the two groups. First of all, the differences between LGG
and HGG patients in intermodular connectivity and in the
ratio between intra- and intermodular connectivity remained
significant after correcting for age differences in the statistical
analyses. Second, the pattern of results we observed is in the
opposite direction as would be expected based on age differ-
ences between the two groups. In our study, the younger
LGG patients showed lower segregation compared to the
older HGG patients whereas a number of recent studies
examining age effects on functional connectivity showed
decreased segregation with increasing age (e.g., [75–77]).
Furthermore, Geerligs et al. [78] compared healthy popula-
tions of young and old participants and reported decreased
intramodular connectivity in combination with increased
intermodular connectivity with increasing age. Again, the
opposite result pattern was found in our study, suggesting
that the differences we observed between the two patient

groups are not merely caused by age differences between
the groups but are, indeed, related to the difference in tumour
momentum between LGG and HGG patients.

Although our study provides important new insights on
the effects of tumour momentum on the functional global
organization of undamaged areas in glioma patients, several
questions remain unanswered. The most critical question is
whether the differences between the LGG and HGG patients
reflect lesion-induced functional abnormalities, compensa-
tory changes, or a combination of both. Because of the
absence of longitudinal measures and of a healthy control
group, we cannot distinguish between these possibilities in
the current study. One possible although highly speculative
explanation for the differences between our two patient
groups could be that the increased functional integration
in LGG patients is due to higher myelination in the hemi-
sphere contralateral to the lesion compared to the HGG
patients [44]. This elaboration of the myelin sheath, which
increases the efficiency of signal propagation, may be
important for efficient information transfer, and, conse-
quently, for the functional integration between areas of
different modules [79].

A limitation of the current study is that we have opera-
tionalized the tumour momentum of a fairly heterogeneous
population of tumours solely based on histological features,
as defined in the 2007 CNS WHO classification [80]. How-
ever, tumour grade alone may not be the best proxy for
tumour momentum. Although low-grade gliomas generally
grow much slower compared to high-grade gliomas [33],
tumour velocity can also vary within the tumour grade
according to the molecular profile [81]. In fact, molecular
parameters are increasingly used as predictors for treatment
and prognosis [82]. In the update of the CNS WHO classifi-
cation [83], the WHO introduced, for the first time, a molec-
ular genetic approach for the classification of CNS tumour
entities. This integration of phenotypic and genotypic
parameters is now common practice in neuro-oncological
centers (e.g., [84, 85]). We can assume that the observed
effects of tumour momentum on the functional network
topology of the hemisphere contralateral to the lesion would
even be larger if this momentum would be operationalized on
the basis of these combined markers. Unfortunately, to date,
the molecular profile is not available for a large part of the
included patients. This information will become available
for all our patients in the near future.

In the current study, we examined network topology dif-
ferences between LGG and HGG patients in the hemisphere
contralateral to the lesion based on functional connectivity.
In future studies, it would also be beneficial to look at differ-
ences in the structural network organization between these
two groups. The nature of the relationship between the
structural and functional network remains a fundamental
question [86, 87]. Although, there seems to be no one-
to-one correspondence between functional and structural
connections and network topologies [88], Meier et al. [89]
showed that functional connectivity of the brain can be
described by a combination of the underlying structural
connections. It remains, however, unclear, whether and
how this link might break down due to disease or lesion
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[90, 91]. To date, only Yu et al. (2016) have examined the
structural network changes in brain tumour patients. They
observed no differences between a heterogeneous sample of
tumour patients and healthy controls on measures of integra-
tion and segregation. However, tumour patients showed
increased normalized clustering and small worldness, sug-
gesting that the network efficiency of these patients is
enhanced compared to the healthy controls.

We have focussed on remote, undamaged areas in the
current study because these areas are important for functional
recovery [37] and because connectivity changes in these areas
seem to determine the severity of behavioural impairment
[38]. Several resting-state studies (e.g., [15, 21, 31, 92]) have
also reported a similar link between the functional network
topology and cognitive functioning. van den Heuvel et al.
[93], for instance, showed a strong positive association
between the global efficiency of functional networks and
intellectual performance in healthy people. Xu et al. [17]
showed a similar relationship in low-grade glioma patients:
in their study, decreased whole-brain global efficiency was
correlated with lower IQ test scores. All studies with brain
tumour patients (for a review, see [94]) looked at whole-
brain functional networks. Consequently, future studies are
needed to examine whether the link between network prop-
erties and cognitive functioning only holds at a whole-brain
level, is primarily (or exclusively) present for the network
topology of the ipsilesional hemisphere, or can also be
observed for the hemisphere contralateral to the lesion.
These results may reveal potential biomarkers underlying
functional recovery.

5. Conclusion

In the present study, we examined whether the growth veloc-
ity of a tumour modulates the functional network topology of
remote brain areas, more specifically of the hemisphere con-
tralateral to the lesion, which plays a crucial role in the func-
tional recovery of brain tumour patients. We therefore
compared the resting-state functional connectivity data of
patients with a slowly growing low-grade glioma with that
of patients with a faster-growing high-grade glioma and
observed that the network topology characteristics of the
hemisphere contralateral to the lesion differed between these
two patient groups. We conclude that the hemisphere contra-
lateral to the lesion of LGG patients is characterized by lower
segregation and higher integration compared to that of HGG
patients. These results underline the importance of taking a
network perspective on the effects of a focal brain injury.
Additional research with regard to the underlying mecha-
nisms causing these differences and the possible link between
the functional network characteristics of the hemisphere
contralateral to the lesion and the cognitive functioning of
the patients is warranted.
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