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Hearing loss is a highly heterogeneous disorder, with more than 60% of congenital cases caused by genetic factors. This study is
aimed at identifying the genetic cause of congenital hearing loss in a Chinese Han family. Auditory evaluation before and after
cochlear implantation and targeted next-generation sequencing of 140 deafness-related genes were performed for the deaf
proband. Compound heterozygous mutations c.3658_3662del (p. E1221Wfs∗23) and c.6177+1G>T were identified in MYO15A
as the only candidate pathogenic mutations cosegregated with the hearing loss in this family. These two variants were absent in
200 normal-hearing Chinese Hans and were classified as likely pathogenic and pathogenic, respectively, based on the ACMG
guideline. Our study further expanded the mutation spectrum of MYO15A as the c.3658_3662del mutation is novel and
confirmed that deaf patients with recessive MYO15A mutations have a good outcome for cochlear implantation.

1. Introduction

Approximately one in every 1000 newborns is affected by con-
genital hearing loss, and genetic factors account for more than
60% of them [1]. To date, more than 100 deafness-causative
genes have been found. Among them, autosomal recessive
nonsyndromic hearing loss (ARNSHL) accounts for up to
80%of nonsyndromic hearing loss [2], withmore than 70 caus-
ative genes being identified (http://hereditaryhearingloss.org/).

Stereocilia is critical for the development and function of
cochlear hair cells (HCs) [3–5]. The MYO15A gene contains
66 coding exons [6], which encode an unconventional myo-

sin (myosin XVA) expressed at the tips of stereocilia in the
cochlear HCs. Myosin XVA is essential for the mechano-
transduction function of cochlear HCs. Myosin XVA inter-
acts with the PDZ domain of whirlin and then delivers
whirlin to the tips of stereocilia [7]. Myosin XVA-deficient
mouse (shaker-2) shows abnormally short stereocilia bundles
and diminished staircase [8–10]. In humans, mutations in
MYO15A have been found to lead to recessive nonsyndromic
deafness DFNB3 [11]. The prevalence ofMYO15Amutations
varies among different ethnic populations (3%-6.7%) and
appears to be the third or fourth most frequent causes of
ARNSHL [12–15].
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Here, we report a nonconsanguineous Chinese Han fam-
ily with profound ARNSHL, in which compound heterozy-
gous mutations in MYO15A were identified as the probable
cause of the deafness.

2. Materials and Methods

2.1. Subjects. A Chinese Han recessive deafness family
(Figure 1) was enrolled in this study. All family members
underwent clinical evaluation in the Department of
Otolaryngology-Head and Neck Surgery, Xinhua Hospital,
Shanghai Jiao Tong University School of Medicine. The eval-
uation included a detailed clinical interview and physical
examination. As shown in Figure 2(a), the proband had bilat-
eral profound deafness. This study was approved by the eth-
nic committee of Xinhua Hospital. Written informed
consent was obtained for each participant.

2.2. Audiometric Evaluation. Audiometric assessments
included otoscopic examination, pure tone audiometry
(PTA), auditory brainstem response (ABR), and multiple
steady-state responses (ASSR). Hearing level was assessed at
250, 500, 1000, 2000, 4000, and 8000Hz. The hearing thresh-
old was defined as the average of both sides. Inner-ear mal-
formation and dysplasia of the auditory nerve related to the
hearing loss were excluded by temporal bone Computerized
Tomography (CT) scan and cranial Magnetic Resonance
Imaging (MRI).

2.3. Mutation Identification. Blood samples were collected
into an EDTA anticoagulant tube by venipuncture of the
cubital vein. Extraction of genomic DNA was performed
using a blood DNA extraction kit (QIAamp DNA Blood
Mini Kit, Qiagen, Shanghai). As the first step, mutations in
common deafness genes GJB2, SLC26A4, and MT-RNR1
were excluded by Sanger sequencing. Targeted next-
generation sequencing was then performed in the proband
as previously reported [16]. A total of 140 known deafness-
related genes were captured by a customized capture assay
(MyGenostics, Beijing, China) (Supplementary Table 1).
The targeted region included exon, splicing sites, and
flanking intron region. Then, potentially candidate variants
such as missense, nonsense, and indel variants and the
splice site were screened for quality, and variants with
minor allele frequencies (MAFs) below 0.005 were further
studied using public databases including dbSNP, 1000
Genomes Project, and Exome Aggregation Consortium
(EXAC) and in-house data from 200 ethnically matched
normal-hearing controls. Intrafamilial segregation of the
candidate mutations was examined by Sanger sequencing.
The potential pathogenic effects of the candidate mutations
were predicted by computational tools including PolyPhen-
2, SIFT, and PROVEAN and classified following the
American College of Medical Genetics and Genomics
(ACMG) guidelines for the interpretation of sequence
variants in 2015 [17]. Human Splicing Finder (HSF) (http://
www.umd.be/HSF3/) was used to calculate the consensus
values of potential splice sites.

3. Results

3.1. Clinical Characterization. The proband was a 14-year-
old male from Zhejiang Province, China. He had congenital,
bilateral, profound hearing impairment with a threshold
above 95dBHL as revealed by the PTA (Figure 2(a)) and
ABR tests. Hearing levels of this patient and his sister were
normal. Otoacoustic emissions were absent for both ears.
Temporal CT and cranial MRI showed no abnormalities
(Figures 2(b) and 2(c)). No vestibular dysfunction was
complained. No apparent syndromic features were found in
the physical examination. The proband received unilateral
cochlear implantation (Nucleus 5, Cochlear Corporation,
Australia) through a typical round window route unevent-
fully at 12 years old. Hearing was markedly improved after
cochlear implantation (Figure 2(a)).

3.2. Mutation Analysis. By targeted next-generation sequenc-
ing of 140 deafness-causative genes in the proband, com-
pound heterozygous mutations c.3658_3662del and c.6177
+1>T in MYO15A (NM_016239) were identified as the only
candidate pathogenic mutations consistent with a presum-
ably autosomal recessive inheritance. The mean depth of
sequencing was 364.43X, and 98% of the targeted region
was covered with at least 20X. Cosegregation of these two
mutations with the hearing phenotype was confirmed within
the family members (Figure 3). These two variants were not
seen in public databases dbSNP, 1000 Genomes Project,
and EXAC and the in-house databases of 200 Chinese Han
normal-hearing controls. The frameshifting c.3658_3662del
(p.E1221Wfs∗23) mutation is located in exon 3, and it is
novel and is predicted to result in a truncated protein after
the motor domain (Figure 3). The c.6177+1G>T splice site
mutation was previously reported in another Chinese Han
family [18] and is predicted to result in an in-frame skipping
of exon 26 and a protein product with 17-residue deletion in
the first MyTH4 domain. Following the ACMG guideline in
2015 [17], the c.3658_3662del and c.6177+1>T mutations
were classified as likely pathogenic (PVS2+PM2) and patho-
genic (PVS1+PS1+PM2), respectively.

c.6177+1G>T/ c.3658_3662del c.3658_3662del/+

c.3658_3662del/+ c.6177+1G>T/+

I

II

I-1 I-2

II-1 II-2

Figure 1: Pedigree and genotype of the Chinese Han family with
MYO15A mutations.

2 Neural Plasticity

http://www.umd.be/HSF3/
http://www.umd.be/HSF3/


125 500 1000 2000 4000 8000
0

10
20
30
40
50
60
70
80
90

100
110
120

Frequency in hertz

H
ea

rin
g 

le
ve

l i
n 

dB

II-1 before CI
II-1 after CI (right ear)
II-2

(a)

(b) (c)

Figure 2: (a) Audiogram of the proband (II-1) before and after cochlear implantation and that of his unaffected sister (II-2). (b) Temporal
bone Computerized Tomography (CT) scan of the proband (II-1). (c) Cranial Magnetic Resonance Imaging (MRI) of the proband (II-1).
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Figure 3: Sanger sequencing results of the c.3658_3662del and c.6177+1G>T mutations in the family members.
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4. Discussion

HCs in the cochlea play a critical role in converting mechan-
ical sound waves into neural signals for hearing, and most of
the hearing loss induced by gene mutation, noise, different
ototoxic drugs, inflammation, or aging is caused by the HC
malfunction [19–27]. The association between MYO15A
mutations and recessive deafness DFNB3 was first discov-
ered by Friedman et al. in Bali, Indonesia [28], in which
two missense mutations and one nonsense mutation in
MYO15A, all in a homozygous state, result in congenital,
severe-to-profound hearing loss [11]. To date, more than
100 mutations in MYO15A have been reported, mostly
reported in consanguineous families from the Middle East
[27, 29–35]. In this study, two variants p.E1221Wfs∗23 and
c.6177+1G>T in MYO15A were identified. Like many previ-
ously reported truncating mutations in MYO15A, the
p.E1221Wfs∗23 variant is predicted to result in a truncated
protein product without Motor, IQ, MyTH4, FERM, SH3,
and PDZ domains (Figure 4). The c.6177+1G>T variant
was previously reported in another Chinese Han family by
Chen et al. [18], suggesting that this mutation may be either
a founder mutation or a reoccurrent hot spot. This mutation
resides in the consensus splice acceptor site adjacent to exon
26 and is predicted to lead to an in-frame exon 26 skipping
and a 17-amino acid residue deletion in the first myosin tail
homology 4 (MyTH4) domain of myosin XVA. The MyTH4
domain provides a link between actin-based kinesin and the
microtubule cytoskeleton. Mutation in this domain can dis-
rupt the protein-protein interaction that is important for
mechanotransduction of hearing [7].

Most recessive mutations inMYO15A are associated with
congenital, severe-to-profound deafness [31, 33, 36], except
for mutations affecting the N-terminal domain of MYOXVA

which may result in milder hearing loss with residual hearing
of low frequency [37]. Both variants identified in our study
are located outside of the N-terminal domain, and the associ-
ated profound hearing loss is consistent with the genotype-
phenotype correlation for DFNB3 deafness. Consistent with
the specific role ofMYO15A in the sensory HCs, the proband
in our study had a marked improvement for hearing after
cochlear implantation, showing a good prospective outcome
for a similar procedure in other DFNB3 patients.

5. Conclusion

The p.E1221Wfs∗23 and c.6177+1G>T compound heterozy-
gous mutations in MYO15A are the probable cause of
congenital, profound deafness in the Chinese Han family.
Patients with recessive mutations inMYO15Amay markedly
benefit from cochlear implantation.
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Figure 4: Schematic representation of the reported mutations inMYO15A and the corresponding protein structure. Mutations identified in
this study were marked in red.
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