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In this paper, we show some dynamical and biological mechanisms of the short-term memory (the fixed point attractor) through
the toggle switch in the FitzHugh-Nagumo model (FN). Firstly, we obtain the bistable conditions, show the effect of Gaussian noise
on the toggle switch, and explain the short-term memory’s switch mechanism by mean first passage time (MFPT). Then, we obtain
a Fokker-Planck equation and illustrate the meaning of the monostable and bistable state in the short-term memory. Furthermore,
we study the toggle switch under the interaction of network and noise. Meanwhile, we show that network structure and noise play a
vital role in the toggle switch based on network mean first passage time (NMFPT). And we illustrate that the modest clustering
coefficient and noise are necessary to maintain memories. Finally, the numerical simulation shows that the analytical results
agree with it.

1. Introduction

Short-term memory is a fundamental cognitive function
dependent on persistent activity patterns in populations of
neurons, which attributes to a fixed point attractor [1]. Per-
sistent activity is represented as a fixed point attractor with
multiple stable fixed points [2, 3]. Goldman showed that
short-term memory storage was thought to be maintained
by persistent neuronal activity when the remembered stimu-
lus is removed [4]. Murray et al. applied the population-level
analyses to theoretical neural circuit models to explore
potential mechanisms and found that the network connectiv-
ity properties play an essential role in uncovering stable
population-level working memory representations [5].
Meanwhile, Spaak et al. proposed two mechanisms to under-
pin the observed dynamic-coding profiles and showed that
the primate lateral prefrontal cortex neurons displayed com-
plex dynamics to support stable representations for working
memory [6]. Inagaki et al. elucidated persistent activity
mechanisms through discrete attractor dynamics and found
that perturbations occasionally switched the population

dynamics to the other endpoint [7]. Orhan and Ma tried to
clarify that sequential and nearly persistent solutions are part
of a spectrum [8]. However, some dynamical mechanisms of
short-term memory (the fixed point attractor) in neuron
activity remain unknown.

For different environments, organisms always try to
switch between two states or more, which is vital for the sur-
vival in biological systems [9, 10]. Tian and Burrage proposed
the toggle switch induced by noise and obtained the role of
noise in the genetic toggle switches [11]. Then, Wang et al.
illustrated the physiological mechanism in the network-
organized systems [12]. And Xu et al. investigated the switch
in a genetic toggle system with Lévy noise and showed the
influences of the stability index, skewness parameter, and
noise intensity on the switch [13, 14]. Wilken and colleagues
suggested that neuronal noise was the principal factor that
limits the capacity of short-term visual memory [15, 16].
The FitzHugh-Nagumo model (FN) simplifies the Hodgkin-
Huxley model, which could describe the dynamical behaviors
and phenomena of neurons [17–19]. Meanwhile, noise shows
an essential role in the dynamical and biological mechanisms
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of neurons [20, 21]. Valenti et al. found that the self-
correlation of the colored noise causes a reduction of the suf-
ficient noise intensity by analyzing the dynamics of the FN
model in colored noise [22]. García-Ojalvo et al. explained a
mechanism for sustained signal propagation induced by exter-
nal fluctuations in bistable media of the FN type [23]. And the
coherence resonance of the FitzHugh-Nagumo system under
the influence of white Gaussian noise and Lévy noise was
investigated [24, 25]. A Fokker-Planck equation for both a sin-
gle element and a network of globally coupled components
was derived in the noisy FitzHugh-Nagumo model [26]. But
the toggle switch induced by noise in the network-organized
FN model was seldom investigated to explain the dynamical
mechanisms of short-termmemory (the fixed point attractor).

To illustrate the dynamical and biological mechanism of
the fixed point attractor and neurons in short-term memory,
we investigate the FN model’s bistable state with noise and
show how the topology structure and noise play a vital role
in the switch of a bistable state. As we all know that short-
term memory storage relies on persistent neuronal activity,
different kinds of external stimuli always work in the neuro-
nal system, which induces other short-term memory. In this
paper, we try to show the effect of Gaussian noise on the tog-
gle switch and try to explain the dynamical mechanism of
short-term memory by mean first passage time (MFPT).
Then, we illustrate the meaning of the monostable and bis-
table state in the biological mechanisms. Furthermore, we
study the toggle switch under the interaction of network
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Figure 1: The bifurcation about e when a = 2, b = 1:5, and c = 1.
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Figure 2: The stability of system (1) when a = 2, b = 1:5, c = 1, and e = 1. (a) One equilibrium exists. (b) The system (1) is stable under
different initial values.
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and noise in the network-organized system and show the
effect of the external stimulus and topology structure on the
short-term memory by NMFPT. Finally, we try to explain
the biological mechanism of short-term memory and
dynamical mechanism of neurons through the fixed point
attractor.

2. Model Description

In order to investigate the effect of noise on the switch
between rest state ðu0 > 0Þ and firing state ðu0 > 0Þ, we first
consider the dynamical behavior of the following FN model
[18]:

∂u
∂t

= g u, υð Þ,
∂υ
∂t

= f u, υð Þ,
ð1Þ

where u is the membrane potential, ν is a recovery variable,
and

g u, υð Þ = c eu −
u3

3
− υ

� �
,

f u, υð Þ = c au − bυð Þ:
ð2Þ

The Jacobian matrix at ðu0, v0Þ where f ðu0, v0Þ = gðu0,
v0Þ = 0 can be expressed as

A =
ce − cu20 −c

ca −cb

 !
, ð3Þ

and the characteristic equation is

λE − Aj j = λ2 + cb − ce + cu20
� �

λ + cb cu20 − ce
� �

+ ac2 = 0:
ð4Þ

Based on the Hurwitz criterion, the system (1) is stable
when cb − ce + cu20 > 0 and cbðcu20 − ceÞ + ac2 > 0, namely,

u20 > max e − b,
be − a
b

� �
: ð5Þ

As we all know, e plays an important role in the stabil-
ity of system (1), u20 = 0 oru20 = 3ðe − ða/bÞÞ, and pitchfork
bifurcation occurs when e = a/b (Figure 1). And there is
an equilibrium point (Figure 2(a)) when 0 < e < a/b,
namely, the system (1) is monostable (Figure 2(b)), and
the neurons are in a resting state all the time without
external stimulus. In general, short-term memory attri-
butes to a fixed point attractor [1]. The short-term mem-
ory activities occur and eventually approach steady state
when an external stimulus inputs into neurons
(Figure 2(b)), which can be treated as the whole process
of short-term memory and is consistent with previous
results [1, 4]. But resting state and firing state of neurons
exist in the neural network. Therefore, we should consider
the bistable case in the FN model to investigate some
dynamical and biological mechanisms of short-term mem-
ory. There are three equilibrium points (Figure 3(a)) when
e > a/b, namely, the system (1) is bistable and the equilib-
rium point (0, 0) can be treated as a critical value of the
occurrence of short-term memory (Figure 3(b)). Also, all
neurons are in a resting or firing state all the time without
external stimulus. Namely, no memory activities occur
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Figure 3: The stability of system (1) when a = 2, b = 1:5, c = 1, and e = 2. (a) Three equilibriums exist. (b) The system (1) is bistable under
different initial values.
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when the system is in a resting state or firing state
(Figure 3(b)), because short-term memory storage was
thought to be maintained by persistent neuronal activity
when the remembered stimulus is removed [4] and
short-term memories are affected by a stable attractor [5,
8]. Here, the bistable system represents two short-term
memory points that may exist at the same time when
there are different kinds of external input (Figure 3).

3. Switch Induced by α-Stable Noise

It is well known that a short-term memory occurs when a
remembered stimulus inputs into neurons, and short-term
memory is maintained by neurons’ activity. Here, we treat
the remembered stimulus as Gaussian noise and try to
uncover Gaussian noise’s role in the short-term memory.

Firstly, we consider the effect of noise on the switch of
the steady state through the following equation:

du
dt

= f u, υð Þ + ξ tð Þ,
dυ
dt

= g u, υð Þ,
ð6Þ

where ξðtÞ is the Gaussian noise and the characteristic
function is expressed as

ϕ tð Þ = e−γ
α tj jα 1−iβ sign tð Þ tan πα/2ð Þ½ �+iδt , α ≠ 1,

e−γ tj j 1−iβ sign tð Þ 2/πð Þ log tj j½ �+iδt , α = 1,

(
ð7Þ

where α ∈ ð0, 2� (Gaussian noise α = 2) is the characteristic

0 200 400 600 800 1000
t

–2.5

–2

–1.5

–1

–0.5

u

v

(a)

–2

–3

–1

0

1

2

3

0 200 400 600 800 1000
t

u

v

(b)

–2

–3

–1

0

1

2

3

0 200 400 600 800 1000
t

u

v

(c)

–2

–3

–1

0

1

2

3

0 200 400 600 800 1000
t

u

v

(d)

Figure 4: The steady state of system (21) when a = 2, b = 1:5, c = 1, e = 2, α = 2, β = 0, δ = 0, and d = γα: (a) the steady state when γ = 0:1; (b)
the steady state when γ = 0:2; (c) the steady state when γ = 0:3; (d) the steady state when γ = 0:4.
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exponent. β ∈ ½−1, 1� is the skewness, the distribution is
right-ðβ > 0Þ or left-ðβ > 0Þ skewed. Other two parameters
are the scale, γ > 0, and the location δ ∈ R.

Events are often triggered when a stochastic process first
encounters a threshold, and the time to occurrence of an
event is the mean first passage time (MFPT); we adopt the
definition from Ref. [27]. As we know that memory occurs
when the external stimulus meets a threshold, the weaker
stimulation cannot induce any memories. In this paper, a
switch occurs from the resting state to the firing state, which
means a short-term memory is maintained (loses). A switch
occurs from the firing state to the resting state, which also
means a short-term memory is lost (or is maintained). To
consider the effect of the external stimulus (noise) on MFPT,
we consider the backward FPK equation with the region S
and the boundaryR and assume

P y, t ∣ x, 0ð Þ = 0, x ∈ S,

G x, tð Þ =
ð
R
dyP y, t ∣ x, 0ð Þ:

ð8Þ

Gðx, tÞ is the probability that the particle remains in R at t
Then,

LP T ≥ tð Þ =
ð
R
dyP y, t ∣ x, 0ð Þ, ð9Þ

where LP is the probability that the particle leaves R. The
backward FPK equation can be described as

∂tP x, tð Þ = ΣiFi∂iP + 1
2
Σi,jgij∂i∂jP, ð10Þ

where

F =
f u, υð Þ
g u, υð Þ

 !
, g =

d 0

0 0

 !
, ð11Þ

where d = γα.

For Gðx, tÞ, we have

∂tG x, tð Þ = ΣiFi∂iG x, tð Þ + 1
2
Σi,jgij∂i∂jG x, tð Þ, ð12Þ

where the initial condition is

G x, 0ð Þ =
1, x ∈ R,

0, x ∈ Rc,

(
ð13Þ

and the boundary condition is

G x, tð Þ = 0, x ∈ S: ð14Þ

Finally, MFPT can be defined as

T xð Þ =
ð∞
0
G x, tð Þdt: ð15Þ

According to the formula between the FPK equation and
stochastic differential equation [27], we obtain

∂tP = −Σi∂i FiPð Þ + 1
2
Σi,j∂i∂j GijP

� �
, ð16Þ

where

F =
f u, υð Þ
g u, υð Þ

 !
,

G
d 0

0 0

 !
:

ð17Þ

As we all know, neurons’ state will vary (like a switch
occurs) when a short-term memory occurs. From Figure 4,
the steady-state switch does not occur (a short-term mem-
ory occurs and is not lost) when the noise strength is
small (Figure 4(a)). Namely, a weaker remembered stimu-
lus can induce a short-term memory because of the persis-
tent neuronal activity near a stable attractor [4, 5, 8]. And
the switch occurs (a short-term memory is lost and
another one memory occurs) (Figure 4(b)) when the noise
intensity increases. With the noise strength increasing, the
switch frequency becomes faster and faster (Figure 4(c)),
and even retention time tends to zero (Figure 4(d)).
Namely, the stronger the external stimulus, the shorter
the short-term memory, consisting of the actual situation
in life. The above phenomenon also means that an appro-
priate stimulus is necessary to switch neurons to maintain
a short-term memory.

MFPT is an important measurement tool to determine
whether a short-term memory occurs. The intensity of exter-
nal stimulus could explain how easy it (a short-term memory
occurs) will be. From our simulation (Figure 5), the MFPT
decreases with the increase of the noise strength. Namely,
the more intense the stimulus, the easier the short-term
memory switch, and MFPT is the retention of short-term
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memory. Finally, the probability density function is given
(Figures 6 and 7). As the parameter e varies, the monostable
state (Figures 6(a) and 6(b)) or bistable state (Figures 7(a)
and 7(b)) exists in the system. Meanwhile, a short-term
memory relies on the idea of a fixed point attractor [5, 8],
namely, the existence of a short-term memory or two
short-term memories is possible in the brain, and a stable
attractor means a short-term memory point. In general, a
short-term memory should be kept for a while, rather than
quickly disappear, which means that an appropriate stimulus
is necessary to maintain a short-term memory. And a switch
for a neuron means a short-term memory loses, and another
short-term memory occurs.

4. The Network-Organized FNModel with Noise

As we all know, the nervous system consists of neural net-
works, and a switch occurs (a short-term memory is lost
and another one short-term memory occurs) when an

external stimulus is involved. A general network-
organized Fitzhugh-Nagumo model with noise can be
written as

dui
dt

= f ui, υið Þ + d1ΣjLijui + ξi tð Þ, ð18Þ

dυi/dt = gðui, υiÞ + d2ΣjLijυi,where L is the Laplacian
matrix of the nearest-neighbor coupled network [28], d1,
d2 are the coupling strength, and ξiðtÞði = 1,⋯,NÞ is the
Gaussian noise.

In order to investigate the MFPT in the network-
organized FNmodel, we define the networkMFPT (NMFPT)
as the following [13]:

τ =min τ highð Þ, τ lowð Þf g, ð19Þ
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where

τ highð Þ = inf t : ui tð Þ > uhigh
� 	

,

τ lowð Þ = inf t : ui tð Þ > uhigh
� 	

:

NMFPT = E τ½ �:
ð20Þ

First, we consider the effect of network on the stability of
the network-organized FN model, namely,

dui
dt

= f ui, υið Þ + d1ΣjLijui, ð21Þ

dυi/dt = gðui, υiÞ + d2ΣjLijui:
The clustering coefficient is a critical evaluation index of

the nearest-neighbor coupled network, which shows the cur-
rent connectivity and network’s main characteristic. Because
the system is bistable and the initial value is different, the sys-
tem will tend towards the other steady state (Figure 8(a))
when the clustering coefficient cc = 0. And the switch occurs
(Figure 8(b)) when the clustering coefficient increases, and
the occurrence of a switch is different (Figures 8(b)–8(d))
because of the clustering coefficient. Assume a node repre-
sents a neuron; the persistent activity of a neuron means
memory is maintained. A short-term memory is lost when
the neuron is back to the other state. A short-term memory
sometimes requires multiple neurons to work together, such
as 100 short-term memories in 100 neurons (Figure 8(a)), 5
short-term memories in 100 neurons (Figure 8(b)), 3 short-
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Figure 8: The distribution of firing about the clustering coefficient (cc): (a) cc = 0; (b) cc = 0:6923; (c) cc = 0:7105; (d) cc = 0:7286.
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term memories in 100 neurons (Figure 8(c)), 1 short-term
memory in 100 neurons (Figure 8(d)). Namely, some neu-
rons are necessary to maintain short-term memory, rather
than a neuron. And the number of neurons to keep a short-
term memory is different, which is related to the clustering
coefficient. Namely, the number of neurons for everyone to
maintain a short-term memory may be different. Meanwhile,
the number of switch cases is different according to the clus-
tering coefficient (Figure 9). Namely, memories have some-
thing to do with the character of the neuronal network
under some initial conditions. Also, the modest clustering
coefficient is necessary for the maintaining of memories.

Finally, we consider the network-organized FN model
(18) with noise, and we mainly think about the effect of noise
strength and the clustering coefficient on the switch of the
steady state in the following. Although noise can induce the
toggle switch [13, 27], how the noise affects the switch on
the network remains to be solved. Now, we consider the
switch of the steady state under different conditions. The
switch does not occur when the noise strength is small
(Figure 10(a)). The switch between the firing state and the
resting state begins when the noise strength is larger
(Figure 10(b)). Meanwhile, the switching frequency becomes
faster and faster with the increase of noise strength
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Figure 10: The switch of steady state under different conditions when cc = 0: (a) γ = 0:1; (b) γ = 0:4; (c) γ = 0:6; (d) γ = 0:9.
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Figure 11: The switch of steady state under different conditions when cc = 0:6923; (a) γ = 0:1; (b) γ = 0:4; (c) γ = 0:6; (d) γ = 0:9.
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(Figures 10(c) and 10(d)), which is the same with the FN
model without network. Also, the clustering coefficient plays
a vital role in the type of the switch (Figures 11–13). From
Figure 11, the four regions always keep in a same state when
y = 0:1 (Figure 11(a)), which represents four short-term
memories that exist simultaneously. And the short-term
memories may be disturbed when external stimulus increases
(Figures 11(b)–11(d)). Namely, the higher clustering coeffi-
cient could induce the greater impact of noise on the neuron
and make memories hazy (Figure 12); even a short-term
memory never occurs (or memory disorder) (Figure 13).
From Figure 13, the neurons remain in the firing state
(Figure 13(a)) or resting state (Figure 13(b)) when the exter-

nal stimulus is weak. Although a short-term memory occurs
when the external stimulus is stronger, the short-term mem-
ory is weaker (Figure 13(c)) or hazy (Figure 13(d)). Also, we
obtain the NMFPT about noise strength and the clustering
coefficient (Figures 14 and 15). From Figure 14, the NMFPT
increases firstly and decreases later when cc is small
(Figure 14(a)), and the NMFPT decreases with noise strength
when cc is larger than a critical value (Figures 14(b)–14(d)).
Namely, noise strength and the clustering coefficient are
employed together in the range of NMFPT (Figure 14).
Meanwhile, the NMFPT is different due to cc (Figure 15),
which means the clustering coefficient and the noise strength
should have their own rangeability.
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Figure 12: The switch of steady state under different conditions when cc = 0:7105: (a) γ = 0:1; (b) γ = 0:4; (c) γ = 0:6; (d) γ = 0:9.
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5. Conclusion

Although short-term memory attributes to a fixed point
attractor, the role of a fixed point attractor was seldom
investigated. In this paper, we investigate the role of both
external stimulus and the clustering coefficient in short-
term memory and show the role of a fixed point attractor.
Firstly, we find neurons keep their steady state (resting or
firing state) without external stimulus. Namely, no short-
term memory activities occur when the system is always
in a fixed point attractor (the resting state or firing state).
Then, we study the effect of noise on the switch of the
steady state in the bistable FN model and show that the
MFPT is an important measurement tool to determine
whether a short-term memory is lost or another one
short-term memory occurs. Meanwhile, we find that the
more intense the stimulus, the easier the short-term mem-
ory switch, and MFPT is the retention of short-term mem-
ory. These above results mean a fixed point attractor is a
specific storage area for the short-term memory.

In general, a short-term memory should be kept for a
while, rather than quickly disappear, which means that an
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Figure 14: The network MFPT (NMFPT) about γ: (a) cc = 0; (b) cc = 0:6923; (c)cc = 0:7105; (d) cc = 0:7286.
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Figure 15: The network MFPT (NMFPT) about the clustering
coefficient (cc) and noise strength.
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appropriate stimulus is necessary to maintain a short-term
memory. Furthermore, we find that the existence of a
short-term memory or two short-term memories is possible
in the brain. And we illustrate that the modest clustering
coefficient and noise are necessary to maintain memories,
and obtain NMFPT about the clustering coefficient and the
noise strength. Finally, we find that the switching frequency
becomes faster and faster with the increase of noise strength,
and the higher clustering coefficient could induce the greater
impact of noise on the neurons and make memories hazy.
Namely, the modest clustering coefficient and noise strength
are necessary for the maintaining of short-term memories.
Also, it is found that some neurons are necessary to maintain
short-term memory, rather than a neuron.

Data Availability

All the data used to support the findings of this study are
found within the article.
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