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Purpose. The study was aimed at elucidating the molecular mechanism underlying neuropathic pain induced by spared nerve injury
(SNI). Methods. The microarray data of GSE30691 were downloaded from the Gene Expression Omnibus database, including
sciatic nerve lesion samples at 3, 7, 21, and 40 days after SNI and sham control samples at 3, 7, and 21 days. Differential analysis
along with Mfuzz clustering analysis was performed to screen crucial clusters and cluster genes. Subsequently, comprehensive
bioinformatic analyses were performed, including functional enrichment analysis, protein-protein interaction (PPI) network and
module analysis, and transcription factor- (TF-) gene and miRNA-target interaction predictions. Moreover, the screened
differentially expressed genes (DEGs) were corroborated using two other microarray datasets. Results. Three clusters with
different change trends over time after SNI were obtained. Protein kinase CAMP-activated catalytic subunit beta (Prkacb),
complement C3 (C3), and activating transcription factor 3 (Atf3) were hub nodes in the PPI network, and fibroblast growth
factor 9 (Fgf9) was found to interact with more TFs. Prkacb and Fgf9 were significantly enriched in the MAPK signaling
pathway. Moreover, rno-miR-3583-5p was targeted by Fgf9, and rno-miR-1912-3p was targeted by neuregulin 1 (Nrg1). Key
genes like Nrg1 and Fgf9 in cluster 1, Timp1 in cluster 2, and Atf3 and C3 in cluster 3 were screened out after corroborating
microarray data with other microarray data. Conclusions. Key pathways like the MAPK signaling pathway and crucial genes like
Prkacb, Nrg1, Fgf9, Timp1, C3, and Atf3 may contribute to SNI-induced neuropathic pain development in rats.

1. Introduction

Neuropathic pain refers to chronic pain originating from
neurological pathology, and it affects approximately 7–10%
of the global population [1, 2]. It is characterized by sponta-
neous hyperalgesia, dysesthesia, and allodynia [3, 4]. Neuro-
pathic pain can negatively affect quality of life, and most
neuropathic pain patients may suffer from negative moods
like depression and anxiety disorders [3, 5, 6]. Despite great
progress in understanding the pathogenesis of neuropathic
pain and patient prognosis, little is known about the genetic
basis and mechanism underlying this disease, and many
patients respond poorly to current therapies. A better under-
standing of the molecular mechanism of neuropathic pain
will be important for further effective therapies.

The pathogenesis of neuropathic pain is complex, and
elucidation of specific molecular alterations helps understand
the mechanisms involved in neuropathic pain development.
Several biological alterations like ion channel or inflamma-
tory mediator expression, extracellular proteins, and epige-
netic influences have been implicated in neuropathic pain
[7]. In recent years, microarray data have been widely used
to globally assess gene expression signatures that provide
new insights into disease pathophysiology [8]. Spared nerve
injury (SNI) is a robust neuropathic pain model [9]. Since
the development of bioinformatics, massive microarray data
have been used to extensively investigate the candidate mol-
ecules associated with SNI-induced neuropathic pain and
help identify potential targets for disease diagnosis and treat-
ment. For instance, crucial genes like C-X-C motif

Hindawi
Neural Plasticity
Volume 2020, Article ID 8822001, 12 pages
https://doi.org/10.1155/2020/8822001

https://orcid.org/0000-0002-8878-8220
https://orcid.org/0000-0002-1308-4915
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8822001


chemokine receptor 2 protein coding (CXCR2) and G
protein-coupled receptor kinase 1 (GRK1) and miRNAs like
miR-208a-5p and miR-135a-2-3p are differentially expressed
in SNI based on microarray data, suggesting a possible role in
neuropathic pain [10]. In addition to genes and miRNAs,
several pathways like focal adhesion are also revealed to be
involved in neuropathic pain development [11]. However,
the possible mechanism underlying neuropathic pain
remains incompletely understood, and reliable biomarkers
for diagnosis and treatment are lacking.

In previous studies, the microarray data GSE30691 devel-
oped by Costigan et al. [12] has been used to identify novel
pain-related genes by mining expression profiling data in
three rodent neuropathic pain models using an iteratively
reweighted least squares outlier-resistant regression method
and weighted gene coexpression network analysis, followed
by analysis of the associations between polymorphisms in
the gene and pain phenotypes in human cohorts by a combi-
nation of bioinformatic analysis of transcriptional changes in
rodent models and human gene polymorphism association
studies. As a result, a neuropathic potassium channel modu-
latory subunit (also called Kv9.1) was downregulated in all
three neuropathic pain models, and a common amino acid-
altering KCNS1 polymorphism is associated with the pain
phenotype in five of six independent cohorts [12]. Moreover,
the microarray data GSE30691 are used to screen candidate
genes associated with neuropathic pain using functional
and weighted coexpression modular analysis [13] or differen-
tial analysis with a random walk with restart [14]. In contrast
to these previous studies, we also downloaded the microarray
data GSE30691 from the NCBI Gene Expression Omnibus
(GEO) [15] and reanalyzed by other bioinformatic methods,
aiming to find more neuropathic pain-related genes and
pathways. In detail, differential analysis along with Mfuzz
clustering analysis was utilized to screen crucial clusters
and cluster genes. Subsequently, comprehensive bioinfor-
matic analyses were performed, including functional enrich-
ment analysis, protein-protein interaction (PPI) network and
module analysis, and transcription factor- (TF-) gene and
miRNA-target interaction predictions. Moreover, the
screened DEGs were corroborated using two other microar-
ray datasets. Our findings will help to elucidate key molecular
mechanisms associated with neuropathic pain and discover
new potential targets for disease therapies.

2. Materials and Methods

2.1. Data Sources. The microarray data GSE30691 deposited
in the NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/) data-
base by Costigan et al. [12], which were generated on the
GPL85 [RG_U34A] Affymetrix Rat Genome U34 Array plat-
form, was downloaded. This dataset contained adult rat L4
and L5 dorsal root ganglion (DRG) ipsilateral samples from
different sciatic nerve lesions, including SNI, spinal nerve
ligation, and chronic constriction injury. Expression profiling
of sciatic nerve lesion samples at 3, 7, 21, and 40 days after
SNI and 3, 7, and 21 days of sham control samples (n = 3
per time point; total = 24) were extracted. The data were
downloaded in May 2020.

2.2. Differential Expression Analysis. The differential expres-
sion of probes between SNI samples and sham controls was
analyzed at time points of 3, 7, and 21 days post-SNI using
the online tool GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r/). The probes that did not map to gene symbols, or
probes mapping to different genes were removed. The
threshold value was set to p value < 0.05 and ∣log ðfold
changeÞ ∣ >0:585. The number of differentially expressed
probes and genes was counted. The unions of DEGs that
had the same expression change tendency at three time
points were collected for further analysis.

2.3. Mfuzz Clustering Analysis. To study the expression pat-
tern of DEGs with the time-course injury, the expression
values of DEGs in 0, 7, 21, and 40 days of SNI samples were
extracted before using clustering analysis with Mfuzz (ver-
sion 2.42.0, http://bioconductor.org/packages/release/bioc/
html/Mfuzz.html) [16] in the R environment. In the cluster-
ing analysis, the optimal cluster number was calculated using
default parameters. Meanwhile, the min score (membership)
threshold was set to 0.6. For a given cluster, if the member-
ship of two genes was higher, their expression trend was
more similar, representing the importance of the gene in
the cluster to a certain extent. Clusters with different change
trends of genes over time were used for subsequent analysis.
Cluster genes in each cluster were obtained using the online
tool Metascape (http://metascape.org) [17].

2.4. Functional Enrichment Analysis. To investigate the func-
tion of cluster genes in each cluster, Gene Ontology (GO)
[18] biological process (BP) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [19] pathway enrichment anal-
yses were performed, which are widely used for the func-
tional annotation of large-scale data. The species was set as
Rattus norvegicus, and the parameters were default, including
min overlap: 3, p value cutoff: 0.01, and min enrichment: 1.5.
After obtaining the terms conforming to the above parame-
ters, further term clustering was performed based on the sim-
ilarity of genes enriched in each term > 0:3, and the term with
the greatest statistical significance (p value minimum) was
selected to represent the term cluster. The top 20 term clus-
ters with the most significance were displayed. In addition,
the interaction network of terms was constructed to further
capture the relationship between terms in term clusters.
The selection criteria for terms in this network were as fol-
lows: the terms with the best p value in each cluster of the
top 20 clusters were selected, there were ≤15 terms in each
cluster, ≤250 terms in total, and similarity of >0.3. After
obtaining the interaction relations of terms, the interactive
network of terms was established and visualized using Cytos-
cape (version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/)
[20].

2.5. PPI Network Construction and Module Analysis. The
Search Tool for the Retrieval of Interacting Genes (STRING)
database [21] was used to analyze interactions between the
gene coding proteins. The PPI pairs between cluster genes
were analyzed using a medium confidence of 0.4. The species
was rat. The PPI network was constructed using Cytoscape
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software. The degree centrality of nodes was excavated using
the CytoNCA plugin (version 2.1.6, http://apps.cytoscape
.org/apps/cytonca) [22] without weighting, and the hub
nodes were identified by ranking the node degree. In addi-
tion, the modules of the PPI network with nodes > 3 were
screened out using the Molecular Complex Detection
(MCODE) (version 1.5.1, http://apps.cytoscape.org/apps/
mcode) [23] plugin. The parameters were set to default,
including Degree Cutoff = 2, Node Score Cutoff = 0:2, k‐
core = 2, and max depth = 100. KEGG pathway enrichment
analysis for DEGs in modules were conducted using cluster-
Profiler (version:3.8.1,http://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html) [24]. The p value
was adjusted using the Benjamini and Hochberg (BH)
approach [25], and p adjust < 0.05 was defined as significant.

2.6. TF-Gene Interaction Prediction. TFs that could interact
with cluster genes were predicted using Overrepresentation
Enrichment Analysis (ORA) with the online tool WebGestalt
(version WebGestalt 2019, http://www.webgestalt.org/) [26].
The species was Rattus norvegicus. The threshold values were
set as follows: enriched genes > 5 and false discovery rate ð
FDRÞ < 0:05. The TF-target network was established by
Cytoscape.

2.7. miRNA-Target Interaction Prediction. We used miR-
Walk2.0 (http://zmf.umm.uniheidelberg.de/apps/zmf/
mirwalk2/generetsys-self.html) [27] to predict the upstream
miRNAs that could target cluster genes. The species was
rat. Meanwhile, the miRNA-target pairs should be simulta-
neously presented in miRWalk, miRanda, miRmap, RNAhy-
brid, and TargetScan databases. The miRNA-target
regulatory network was visualized using Cytoscape.

2.8. DEG Corroboration with More Microarray Data. The
microarray data GSE15041 deposited by Vega-Avelaira
et al. [28] and GSE18803 deposited by Costigan et al. [29],
which were developed on the [Rat230_2] Affymetrix Rat
Genome 230 2.0 Array and GPL341 [RAE230A] Affymetrix
Rat Expression 230A Array platforms, respectively, were also
downloaded from NCBI GEO. The GSE15041 dataset con-
tained 16 neonates (P10) or adult (8-12wk) rat L4 and L5

DRG ipsilateral or contralateral seven days post-SNI/sham
control samples. GSE18803 contained 24 neonates (P10) or
adult (8-12wk) rat DRG ipsilateral seven days post-SNI/-
sham control samples. The expression profiling data of three
adult rat L4/L5 DRG ipsilateral SNI samples and three sham
controls in the GSE15041 dataset and the expression profil-
ing data of six adult rat DRG ipsilateral SNI samples and
six sham controls in the GSE18803 dataset were selected to
ensure sample source and age consistency. The data were
downloaded in May 2020. The expression data of three adult
rat L4/L5 DRG ipsilateral SNI samples and three sham con-
trols in the GSE15041 dataset have been used to analyze the
key genes associated with neuropathic pain in several studies
[28, 30]. Similarly, the expression profiling data of six adult
rat DRG ipsilateral SNI samples and six sham controls in
the GSE18803 dataset have also been utilized to identify cru-
cial genes involved in neuropathic pain development [29, 31–
33]. We thus selected the two microarray data for DEG cor-
roboration. In this study, the differential expression of probes
between SNI samples and sham controls in the GSE15041
and GSE18803 databases were also analyzed using this
method. The intersection of cluster genes obtained from the
GSE30691 dataset and DEGs obtained from the GSE15041
and GSE18803 datasets were acquired to corroborate the dif-
ferential expression of key cluster genes.

3. Results

3.1. DEG Analysis. GSE30691 dataset analysis using the
GEO2R online tool screened out 180 (109 up- and 71 down-
regulated genes), 230 (133 up- and 97 downregulated genes),
and 153 (124 up- and 29 downregulated genes) DEGs
between SNI samples and sham controls at the time points
of 3, 7, and 21 days post-SNI. The unions of DEGs that had
the same expression change tendency at three time points
were analyzed, and a total of 306 DEGs were obtained for
subsequent analysis.

3.2. Mfuzz Clustering Analysis. The expression trends of 306
DEGs at 0, 3, 7, 21, and 40 days post-SNI were analyzed using
Mfuzz clustering analysis, and three clusters with different
change trends over time were screened out (Figure 1). Cluster
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Figure 1: The results of Mfuzz clustering analysis. Three clusters with different change trends over time were screened out. The horizontal
axis represents the days after spared nerve injury (SNI), and the vertical axis represents the relative expression value of cluster genes. The
color from blue to red indicates that the membership value of this gene increases, which represents the gene’s importance in the cluster to
some extent.
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Figure 2: The significantly enriched cluster terms. (a) The top 20 enriched cluster terms by cluster genes in three clusters. The darker the
color, the smaller the p value. (b) The term interaction network constructed by important terms in clusters. The color of different nodes
represents different clusters, and the connection line represents the genetic similarity between terms.
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Figure 3: Continued.
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1 contained 77 DEGs and presented a trend of decreasing
before increasing. The expression value reached the lowest
level from three to seven days, and the overall expression of
the SNI group was decreased compared to the control group
(0 days after injury). Cluster 2 contained 13 DEGs and pre-
sented a trend of increasing before decreasing. The expres-
sion level rose to the highest level on the third day before
gradually declining, and the overall SNI group expression
was higher than that of the control group. Cluster 3 con-
tained 49 DEGs and presented a trend of increasing before
leveling off. The expression level rose to the highest level on
day three before gradually declining, and the overall SNI
group expression was higher than that of the control group.

3.3. Functional Enrichment Analysis. We performed GO BP
and KEGG pathway analyses for cluster genes in three clus-
ters. In total, 344 GO BP and 33 KEGG pathway terms were
significantly enriched by cluster genes in cluster 1, one GO
BP and no KEGG pathway term was enriched by cluster
genes in cluster 2, and 187 GO BP and 20 KEGG pathway
terms were enriched by cluster genes in cluster 3. The top
20 enriched cluster terms are shown in Figure 2(a). More-

over, several terms were simultaneously enriched by cluster
genes in different clusters like GO:0009611: response to
wounding, GO:0043408: regulation of MAPK cascade, and
rno04010:MAPK signaling pathway. Subsequently, the term
interaction network was constructed using important terms
in clusters (Figure 2(b)).

3.4. PPI Network Construction. The PPI network of cluster
genes in three clusters included 117 nodes and 243 interac-
tions (Figure 3(a)). Notably, the nodes coded by cluster 1
genes were all downregulated, and the nodes coded by cluster
2 and 3 genes were all upregulated in this PPI network. Based
on connectivity degree analysis, the nodes with greater
connectivity degrees were protein kinase CAMP-activated
catalytic subunit beta (Prkacb), complement C3 (C3),
synaptosome-associated protein 25 (Snap25), activating
transcription factor 3 (Atf3), and protein phosphatase 3
regulatory subunit B, alpha (Ppp3r1), which were considered
as PPI network hub nodes. Notably, Prkacb, Ppp3r1, and
Mapk9 were revealed to be remarkably enriched in the
rno04010:MAPK signaling pathway. Further module analy-
sis identified five modules with node > 3 (Figure 3(b)). The
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Figure 3: Protein-protein interaction (PPI) network constructed by cluster genes in three clusters, five modules, and KEGG pathway analysis
for module genes. (a) The PPI network and (b) five modules. Red nodes represent cluster 1 genes, blue nodes represent cluster 2 genes, and
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KEGG pathway showed that genes in modules 1-5 were dra-
matically enriched in the synaptic vesicle cycle, complement
and coagulation cascades, focal adhesion, wnt signaling path-
way, and phagosome (Figure 3(c)).

3.5. TF-Gene Regulatory Network Analysis. TFs that could
interact with cluster genes were predicted using WebGestalt.
The results showed that 15 TFs that could interact with clus-
ter 1 genes were obtained, whereas TFs that could interact
with cluster 2 and 3 genes were not predicted. The TF-gene
regulatory network containing 15 TFs and 54 target cluster
1 genes was constructed (Figure 4). Most of cluster 1 genes
in this network were downregulated. According to the num-
ber of target TFs, the important cluster 1 genes that could
interact with more TFs were protein phosphatase 2 regula-
tory subunit B gamma (Ppp2r2c), visinin-like 1 (Vsnl1), and

fibroblast growth factor 9 (Fgf9). Fgf9 was also found to be
enriched in the rno04010:MAPK signaling pathway.

3.6. miRNA-Target Regulatory Network Analysis. In total,
4546 miRNA-target interactions, including 681 miRNAs
and 103 target genes, were obtained using miRWalk2.0. Since
there were so many miRNAs, the miRNAs with target
cluster genes ≥ 15 were screened out again. The miRNA-
target regulatory network was established, containing 14
miRNAs and 70 target cluster genes (Figure 5). Among them,
rno-miR-3583-5p was found to be targeted by Fgf9 and rno-
miR-1912-3p was targeted by neuregulin 1 (Nrg1).

3.7. DEG Corroboration with More Microarray Data. To ver-
ify the important cluster genes, microarray data GSE15041
and GSE18803 were also downloaded from NCBI GEO and
used to identify DEGs between SNI samples and sham
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controls at seven days post-SNI. The results showed that 830
(498 up- and 332 downregulated genes) and 188 (184 up-
and four downregulated genes) DEGs were screened out
between SNI samples and sham controls based on the
GSE15041 and GSE18803 datasets, respectively. Since most
of cluster 1 genes were downregulated according to the afore-
mentioned analysis, we investigated the intersection of clus-
ter 1 genes and downregulated genes obtained from
GSE15041 and GSE18803 databases. The results showed that
14 intersected genes between cluster 1 genes and downregu-
lated genes obtained from the GSE15041 database were
obtained, including Nrg1 and Fgf9 (Figure 6(a)). Since the
overall SNI group expression in cluster 2 and cluster 3 was
higher than that in the control group, the intersection of clus-
ter 2 genes or cluster 3 genes and upregulated genes obtained
from GSE15041 and GSE18803 databases were analyzed. The
results showed that only one intersected gene, named TIMP
Metallopeptidase Inhibitor 1 (Timp1), was obtained between
cluster 2 genes and upregulated genes obtained from
GSE15041 and GSE18803 databases (Figure 6(b)). Nine
intersected genes, including Atf3 and C3, were screened
between cluster 3 genes and upregulated genes obtained from
GSE15041 and GSE18803 databases (Figure 6(c)).

4. Discussion

Neuropathic pain is chronic pain with an elusive mechanism.
To discover the possible mechanism, this study utilized a
comprehensive bioinformatic approach to screen candidate
genes associated with SNI-induced neuropathic pain. Consis-
tent with previous findings by Costigan et al. [12], we also
found that KCNS1 was downregulated in the SNI-induced
neuropathic pain model, suggesting that our results were reli-
able. In addition to this, our analysis further revealed three
clusters with different change trends over time after SNI.
Prkacb, C3, and Atf3 were hub nodes in the PPI network,
and Fgf9 was found to interact with more TFs. Prkacb and
Fgf9 were significantly enriched in the MAPK signaling path-
way. Moreover, rno-miR-3583-5p was found to be targeted
by Fgf9, and rno-miR-1912-3p was targeted by neuregulin 1
(Nrg1). After corroborating microarray data with two other
microarray datasets, key genes, like Nrg1 and Fgf9 in cluster
1, Timp1 in cluster 2, and Atf3 and C3 in cluster 3, were
screened out to be implicated in SNI-induced neuropathic
pain.

Increasing evidence has revealed that nerve injury leads
to p38 MAPK pathway activation in the spinal cord,
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consequently resulting in neuropathic pain development by
regulating proinflammatory cytokine production [34–36].
Moreover, the p38MAPK pathway is considered a promising
therapeutic target for neuropathic pain [37]. Here, the
MAPK signaling pathway was simultaneously enriched by
cluster genes in different clusters, confirming the key role of
this pathway in SNI-induced neuropathic pain. Moreover,
Prkacb and Fgf9were significantly enriched in theMAPK sig-
naling pathway. Prkacb is a subunit of the cAMP-dependent
protein kinase, which has a catalytic role in numerous cellu-
lar processes like cell proliferation, gene transcription, and
differentiation [38]. Fgf9 is a member of the highly conserved
FGF family, which is reportedly important for glial cell devel-
opment in the nervous system [39]. Fgf9 silencing recapitu-
lates the inhibitory effect of miR-182 overexpression on
Schwann cell proliferation at an early stage following SNI
[40], suggesting the potential role of Fgf9 after SNI. Although
the key role of Prkacb and Fgf9 in neuropathic pain has not
been fully disclosed, we speculate that Prkacb and Fgf9 may
be implicated in SNI-induced neuropathic pain in rats by
being involved in the MAPK signaling pathway.

In addition to Fgf9, other important genes, like Nrg1 in
cluster 1, Timp1 in cluster 2, and Atf3 and C3 in cluster 3,
were also found to be differentially expressed in SNI samples
after corroborating microarray data with two other microar-
ray datasets. Nrg1 reportedly plays a pivotal role in neural
development and plasticity [41]. Wang et al. demonstrated
that Nrg1 upregulation reversed the signs of SNI-induced
neuropathic pain in rats, and modulating Nrg1might exhibit
therapeutic value for neuropathic pain treatment [42].
Timp1 is well known as an inhibitor of matrix metallopro-
teinases (MMPs) that are widely involved in pain develop-
ment following a variety of injury and inflammatory
conditions [43, 44]. Knight et al. revealed that Timp1 played
a crucial role in pathological pain states associated with
inflammation [45]. Moreover, Timp1 is upregulated in
DRG and spinal cord tissues after tibial nerve transection,
and it may be related to neuropathic pain following periph-
eral nerve injury [46]. A recent microarray analysis also
showed that hub genes like C3 and Timp1 are closely related
to SNI-induced neuropathic pain development, providing
the theoretical basis for treatment of this disease [14]. In
addition, ATF3 has been shown to be implicated in the
Bortezomib-induced painful peripheral neuropathy [47].
Atf3 expression was found to be significantly increased after
SNI operation, and it may be a key regulator in neuropathic
pain development [48], which agrees with our bioinformatic
results. Based on our results, we speculate that these genes
may be involved in neuropathic pain development and could
serve as the therapeutic targets of this disease. Furthermore,
rno-miR-3583-5p was found to be targeted by Fgf9, and
rno-miR-1912-3p was targeted by Nrg1. However, there are
few reports about the roles of rno-miR-3583-5p and rno-
miR-1912-3p in neuropathic pain. Given the potential role
of Fgf9 and Nrg1, we speculate that rno-miR-3583-5p and
rno-miR-1912-3p may also contribute to neuropathic pain
development in rats.

However, there are some limitations in this study. First,
the sample size was small which influences the sample power

stability. Second, we only used other microarray data to cor-
roborate the identified key genes; no experimental valida-
tions were conducted to confirm our findings. In the future,
more studies with large samples and experimental valida-
tions are needed to verify the role of critical genes and path-
ways in neuropathic pain development.

5. Conclusions

Our results reveal that key pathways like the MAPK signaling
pathway and crucial genes like Prkacb,Nrg1, Fgf9, Timp1, C3,
and Atf3may be implicated in SNI-induced neuropathic pain
development in rats. Our findings will provide new insight
for designing effective neuropathic pain therapies.
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