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Mental fatigue has serious negative impacts on the brain cognitive functions and has been widely explored by the means of brain
functional networks with the neuroimaging technique of electroencephalogram (EEG). Recently, several researchers reported that
brain functional network constructed from EEG signals has fractal feature, raising an important question: what are the effects of
mental fatigue on the fractal dimension of brain functional network? In the present study, the EEG data of alpha1 rhythm (8-
10Hz) at task state obtained by a mental fatigue model were chosen to construct brain functional networks. A modified greedy
colouring algorithm was proposed for fractal dimension calculation in both binary and weighted brain functional networks. The
results indicate that brain functional networks still maintain fractal structures even when the brain is at fatigue state; fractal
dimension presented an increasing trend along with the deepening of mental fatigue fractal dimension of the weighted network
was more sensitive to mental fatigue than that of binary network. Our current results suggested that mental fatigue has great
regular impacts on the fractal dimension in both binary and weighted brain functional networks.

1. Introduction

Mental fatigue has become a widespread subhealthy condi-
tion in nowadays society [1]. Many researchers are dedicated
to the studies of detection methods [2], neural mechanisms
[3], and mitigation methods [4] of the mental fatigue, owing
to the negative effects of mental fatigue on the human cogni-
tive functions [5], especially serious in driving fatigue [6].
Recently, mental fatigue has been prevalently explored by
the means of brain functional network with the neuroimag-
ing technique of electroencephalogram (EEG) [7–9]. It has
been widely proved that mental fatigue can lead to distinct
changes in brain functional network structures, for example,
the changes of small-world property [3, 10]. However, to our

knowledge, no researcher has studied the effects of mental
fatigue on the fractal feature of brain functional network.

Fractality was first proposed by the French mathemati-
cian Mandelrot in 1967 when he was trying to figure out
how to measure the coastline [11]. Mandelbrot defines that
a fractal is a shape made of parts similar to the whole in some
way, see Figure 1 for the example. Fractal has been found to
widely exist in nature [12]. Since the fractal theory was
revealed, it has been widely used in biomedical signal analy-
sis, such as EEG [13], fMRI (functional magnetic resonance
imaging) [14], and MRI [15]. Naturally, a scientific question
arises: does the brain functional network have fractal feature?

Brain functional network, as one type of the complex
networks in statistical physics, is a demonstration of the
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temporal correlations between different brain areas in the
processes of neural physiological events [16]. It has become
one of the most widely used techniques to investigate the
neurodynamics of cognitive functions [17–20], which are
especially sensitive to mental fatigue [3, 9]. Since the small-
world characteristic [21] and scale-free property [22] of com-
plex networks were proposed, the studies of complex net-
work topology have entered a high-speed developing period
[23]. Nevertheless, it was generally believed that complex
networks do not have self-similarity at the beginning of the
small-world characteristic discovery [24]. In other words,
complex networks do not show fractal property. The small-
world network requires that the diameter of the complex net-
work slowly increases with the increase of the number of net-
work nodes, and the network nodes and diameter have an
exponential relationship, while the self-similar structure
requires them to satisfy the power-law relationship [25].
However, Song et al. have revealed that most real networks
have self-similar structures by using renormalization method
in 2005 [25]. By performing box-covering method on the
complex networks [26], they discovered that the box number,
referring to the number of boxes covering the entire network

for the given box size and ensuring that the diameter of the
box is smaller than the given box size, has a power-law rela-
tionship with the box sizes, which revealed a common self-
similarity of the complex networks. From then on, the fractal
property of complex networks attracted much attention
among the researchers. It has been proved that brain
functional networks have fractal property [27, 28].

In the study of fractal features of complex networks, the
self-similarity is easy to be measured and described, and frac-
tal dimension is the direct quantification of the self-similarity
of fractal structures [26]. Fractal dimension can be measured
and calculated by the box-covering method introduced by
Song et al. [26]. When computing the fractal dimension of
a complex network, the most important and difficult step is
to find the minimum box number with the given box size.
Song et al. gave two equivalent algorithms for calculating
the minimum box number, greedy colouring algorithm,
and burning algorithm [26], but these two algorithms need
to repeat the calculation many times when estimating the
fractal dimension of the complex networks. Therefore, many
researches focus on fractal dimension calculation algorithms
in complex networks [27, 29].

Figure 1: Sierpinski triangle. As shown in the figure, the whole and the part have strict self-similarity.
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In this study, the greedy colouring algorithm was chosen
and modified to calculate the fractal dimension of brain func-
tional networks during the formation of mental fatigue. The
flowchart of greedy colouring algorithm is shown in
Figure 2 [26]. For the given network G and given box size
LB = 3, connect the nodes that the distance (refer to shortest
path length) between the nodes in the network G is greater
than or equal to 3, resulting in the new network G1. Then,
the network G1 is coloured by traversing all the network
nodes, which should ensure that the two connected nodes
are painted with different colours, resulting in the coloured
network G2. After the completion of colouring network G2,
the original connectivity is restored to gain network G3.
The number of colours in network G3 is the box number cov-
ering the entire network G3 for the given box size LB. Then,
fractal dimension dB can be determined by equation (1)
[25]. Greedy colouring algorithm can turn the problem of
finding the minimum box number into the problem of col-
ouring all nodes, which is easy to be implemented by com-
puter programming. However, in the first step of the greedy
colouring algorithm [26], the network nodes need to be num-
bered randomly, which may make a big difference for the box
number obtained by different network nodes’ numbering
orders. Therefore, this algorithm introduced by Song et al.
needs to repeat the calculation 10000 times to reduce the
influence of randomness and improve the accuracy of the
fractal dimension calculation. In the current study, we would
modify the greedy colouring algorithm to reduce the calcu-
lated number of repetitions.

NB ≈ L−dBB : ð1Þ

In the current study, we attempted to investigate the
effects of mental fatigue on the fractal dimension of the brain
functional network with a modified method. For this pur-
pose, firstly, a challenging sustained mental arithmetic math
task was performed on twenty young male volunteers for
mental fatigue induction, and multichannel EEG data were
recorded both in resting state and task state before and after
the tasks. Secondly, binary and weighted brain functional
networks were constructed with two widely used methods
using mutual information to determine the functional con-
nectivity among all pairwise combinations of EEG channels.

Finally, the fractal dimensions were calculated based on our
improved greedy colouring algorithm both in binary and
weighted brain functional networks, which were then used
to analyze the impacts of mental fatigue on the brain
functional networks.

2. Materials and Methods

2.1. Participants. Twenty healthy and right-handed male
engineering postgraduate students (females and left-handed
volunteers were excluded to eliminate the effects of sex differ-
ences and left-right handedness differences on the results)
were enrolled. They were postgraduate college students, aged
24:5 ± 1:5 years, and their mean BMI (body mass index) was
20:7 ± 1:8 kg/m2. All subjects were asked to read and sign an
informed consent form before the test, and the Shandong
University Ethics Committee have approved this study. This
experiment complied with the principles set forth in the
Helsinki declaration (2013 revision), the international code
of ethics for biomedical research involving human beings
(2016), the world declaration on the human genome and
human rights (1997), and other relevant ethical require-
ments. Every individual should have a regular life, normal
eyesight, and no brain disorders. Each participant was
required to not stay up late and not drink alcohol and
drugs within one week before the experiment. They were
prohibited from smoking and having coffee and tea in 8
hours and demanded to wash their hair in 2 hours before
EEG recording. All participants would get some monetary
reimbursement to motivate them to cooperate better
during the experiment.

2.2. EEG Data Acquisition and Preprocessing. Nineteen-
channel EEG data were collected by an EEG apparatus
(SYMTOP NT9200) according to the international 10-20
system. The sampling rate was 1000Hz, and the electrode
impedance was controlled below 5000Ω. Every participant
was required to do a continuous mental arithmetic task with
200 different problems (a double-digit between sixty and
ninety plus another random double-digit between sixty and
ninety and then multiplied by a random single digit between
six and nine). Each mental arithmetic problem was designed
to be completed in 30 seconds determined by preceding pre-
tests. That is, all the participants can get high accuracies dur-
ing the four tasks (the whole task was equally divided into 4
task segments). The results of the accuracies were similar
and had no statistical difference among these four tasks.
What we are concerned was the effects of continuous tasks
on the brain functional network structures. The participants
were required to highly concentrate on calculating the given
mental arithmetic math problems and write down the
answers on a paper. Besides, 2-minute EEG data for resting
state and 2-minute EEG data for task state were recorded
before and after each task segment, resulting in 5 times
EEG data acquisitions named as T0, T1, T2, T3, and T4, see
Figure 3 for details. Resting state refers to closing the eyes,
being awake, and relaxed. Meanwhile, task state means keep-
ing the body still and doing a mental arithmetic problem, a
three-digit subtracts a single-digit continuously. All the
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Figure 2: Greedy colouring algorithm flowchart [26].
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mental arithmetic math problems were showed on a com-
puter screen and displayed automatically controlled by a
timer. The whole experiment was implemented from 7pm
to 9pm in a sound-attenuated and light, temperature, and
humidity-controlled room.

In the current study, two subjects’ EEG data were elimi-
nated on account of their big head movements when record-
ing EEG. EEG data at task state were downsampled from
1000Hz to 256Hz. EEG rhythms was extracted by a digital
FFT filter (firstly, EEG signal was converted into its fre-
quency spectrum by FFT, and only the interest frequency
range is retained; secondly, interest EEG frequency band
was obtained by inverse FFT). Ten pieces of five seconds of
continuous EEG data for each state were singled out for func-
tional connectivity computation. Here, only alpha1 rhythm
(8-10Hz) at task state, which had significant statistical differ-
ence for mutual information in mental fatigue detection, was
further analyzed according to our previous study [30].

2.3. Brain Functional Network Construction. The mutual
information (see reference [31] for detailed definition and
description) between all pairs of EEG channels was com-
puted to determine functional connectivity by a software
proposed by Moddemeijer [32], obtaining an undirected 19
× 19 adjacency matrix for alpha1 rhythm at task state. Adja-
cency matrix is a means of representing which nodes of a net-
work are adjacent to which other nodes. Then, two typical
methods, named as method I and method II for convenient
presentation, were used to convert the adjacency matrixes
into brain functional networks. Method I refers to using a
certain weight of the functional connectivity to delete the net-
work edges whose weights are smaller than the selected
weight. Whereas method II means keeping the number of
network edges fixed in the networks by selecting the edges
from high to low according to the weights. The main differ-
ence between these two methods is that method I probably
makes the number of network edges inconsistent among
the obtained networks, while method II makes all obtained
networks have the same number of network edges. Method
I can sufficiently consider the effects of weights on the net-
work structure. If the whole weights in an adjacency matrix
are higher than those in another one, the converted network
can contain more network edges, which would directly result
in bigger differences of the network features between these
networks. As for method II, all obtained networks have the
same number of nodes and edges, and the only difference is
in the spatial arrangement of network edges. Then, we can
compare the topological structures to distinguish network
features between different networks. In this study, both
binary and weighted brain functional networks obtained with
these two methods were taken into consideration. Binary
brain functional network means setting the weights of the

edges to 1, whereas weighted brain functional network refers
to keeping the weights changeless.

2.4. Modified Algorithm for Fractal Dimension Computation.
In order to reduce the repetitive computation times and
improve the efficiency of fractal dimension calculation, we
propose to arrange the node degrees (node degree means
the number of edges connected to the node) in descending
order during the colouring step based on the Welch-Powell
algorithm [33]. In other words, the nodes are coloured in
the order of node degree from high to low. Meanwhile, the
nodes with the same degree are randomized to eliminate
the effect of the order of the same node degree on the result
of fractal dimension calculation when colouring. The specific
algorithm steps for binary brain functional network are as
follows (see Figure 2 for an example):

Step (a). Calculate the shortest path length lij (see reference
[30] for detailed description and definition) between all
nodes in network G.

Step (b). Set the box size LB = 1.

Step (c). Connect the nodes between node i and node j when
lij ≥ LB in network G to get the new network G1.

Step (d). Calculate all node degrees of network G1, add a
small random noise less than 1 on the node degrees to ran-
domize the same node degrees, and then arrange all the
nodes in descending order based on the node degrees to get
the sequential numbering from 1 to n for every node. Put
node 1 and other nodes which are not connected to it into
the first box; put the smallest node numbering in the remain-
ing nodes and other nodes which are not connected to it into
the other box until all nodes are processed. The total number
of used boxes is NB for the given LB.

Step (e). Increase LB by one, repeat step (c) and step (d) until
LB = L max B ( L max B refers to the maximum value of lij).

Step (f). Linear fit log ðLBÞ and log ðNBÞ, and take the
absolute value of its slope as the fractal dimension dB.

Basing on the principle of constructing box size [29] and
the idea of node sequencing in the improved algorithm pro-
posed above, the specific algorithm steps for weighted brain
functional network are determined as follows (see Figure 2
for an example):

Step (a). Calculate the weighted shortest path length lw ij (see
reference [30] for detailed description and definition)
between all nodes in network G, and arrange all weighted
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RS:2 minutes
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Task
25 minutesT0
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Task
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EEG DAQ
RS:2 minutes
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Task
25 minutes

EEG DAQ
RS:2 minutes
TS:2 minutesT3

Task
25 minutes

EEG DAQ
RS:2 minutes
TS:2 minutesT4

Figure 3: EEG data acquisition (EEG DAQ) procedures. RS means resting state and TS means task state.
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shortest path length values in ascending order as d1, d2, d3,
•••, dk, •••, and dn.

Step (b). Set box size LB = dk, and k = 1.

Step (c). Connect the nodes between node i and node j when
lw ij ≥ LB in network G to get the new network G1, which is
resulted as a binary network.

Step (d). Calculate all node degrees of network G1, add a
small random noise less than 1 on the node degrees to ran-
domize the same node degrees, and then arrange all the
nodes in descending order based on the node degrees to get
the sequential numbering from 1 to n for every node. Put
node 1 and other nodes which are not connected to it into
the first box; put the smallest node numbering in the remain-
ing nodes and other nodes which are not connected to it into
the other box until all nodes are processed. The total number
of used boxes is NB for the given LB.

Step (e). Increase k by one, meanwhile increase LB by dk,
repeat step (c) and step (d) until LB ≥ Lmax B = dn.

Step (f). Linear fit log ðLBÞ and log ðNBÞ, and take the
absolute value of its slope as the fractal dimension dB.

Additionally, a group of thresholds, 0.2, 0.25, and 0.3 for
method I and 45, 70, and 90 for method II, were selected to
construct both binary and weighted brain functional net-
works with method I andmethod II, respectively. The thresh-
olds for method I and method II should be neither too big
nor too small, which must ensure that no isolated nodes
existed in the networks, and the structural differences were
enlarged among T0, T1, T2, T3, and T4. A total of 100 repe-
titions were performed under each threshold, and all the
results of fractal dimension dB were averaged. The least-
square method is adopted for the linear fitting of log ðLBÞ
and log ðNBÞ to obtain the fractal dimension dB of binary
and weighted brain functional networks using cftool Toolbox
embedded in MATLAB 2012b.

2.5. Statistical Analysis. One-way analysis of variance
(ANOVA) was carried out for the fractal dimensions to dis-
tinguish the statistically significant differences among T0,
T1, T2, T3, and T4. P value is given as the ANOVA results.
Results are displayed as mean ± SD (standard deviation).
Significant level is reported at P < 0:01.

3. Results

Figure 4 shows an example of the brain functional network.
Tables 1–3 are obtained from 10 random computations on
the same brain functional network given in Figure 4.
Table 1 is the calculated box numbers using the traditional
greedy colouring algorithm. As shown in Table 1, the results
of the box numbers are quite different among the 10 groups
obtained by different numbering sequence, and this phenom-
enon is pretty significant under the box size of 4, 5, and 6.
Meanwhile, this traditional algorithm performs poorly to

obtain the minimum box number under the box size of 2
and 3. Tables 2 and 3 are the results of box numbers obtained
by the modified greedy colouring algorithm in binary and
weighted networks, respectively. In order to clarify that the
modified greedy colouring algorithm is better than the
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Figure 4: An example of brain functional network structure gained
with method I for alpha1 rhythm at task state in T0 time period.

Table 1: The box numbers NB under the box sizes LB acquired by
greedy colouring algorithm in a binary brain functional network.

Box size (LB) 1 2 3 4 5 6 7 8

Box number (NB)

19 18 18 17 15 9 3 1

19 19 19 19 11 4 2 1

19 19 19 12 7 4 3 1

19 19 19 18 16 9 3 1

19 19 17 14 11 8 3 1

19 19 19 19 16 9 3 1

19 19 19 19 15 6 3 1

19 19 19 17 14 9 3 1

19 19 19 19 15 8 3 1

19 19 17 14 9 4 2 1

Table 2: The box numbers NB under the box sizes LB acquired by
improved greedy colouring algorithm in a binary brain functional
network.

Box size (LB) 1 2 3 4 5 6 7 8

Box number (NB)

19 7 4 3 2 2 2 1

19 8 4 3 2 2 2 1

19 7 4 3 2 2 2 1

19 7 5 3 2 2 2 1

19 7 5 3 2 2 2 1

19 8 4 3 2 2 2 1

19 8 5 3 2 2 2 1

19 8 5 3 2 2 2 1

19 8 5 3 2 2 2 1

19 7 4 3 2 2 2 1
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traditional greedy colouring algorithm, we computed the
adjusted R-square (which can be used as the evaluation
index of fitting quality) of linear fitting between log ðLBÞ
and log ðNBÞ. The results of adjusted R-square corre-
sponding to Tables 1–3 are shown in Table 4. As shown
in Table 4, modified greedy colouring algorithm can
obtain 0:9563 ± 0:0024 and 0:9450 ± 0:0131 for binary
and weighted networks, respectively, whereas traditional
algorithm can only obtain 0:3541 ± 0:1043 for binary net-
works. As shown in Tables 1–4, the modified algorithm
can effectively improve the accuracy of calculating the
box number and can gain a better approximation of the
box number under the limited computations. Different
ordering of nodes with the same degree in network G1
(see Figure 2) have an effect on the results of the box
numbers, which can be eliminated by repeating calcula-
tions with the improved algorithm.

Figure 5 demonstrates a group of brain functional net-
works obtained by method I during the formation of mental
fatigue. Figure 6 is the linear fitting results between log ðLBÞ
and log ðNBÞ for T0, T1, T2, T3, and T4 in both binary and
weighted brain functional networks on the basis of
Figure 5. Table 5 is the results of fit quality corresponding
to Figure 6. The values shown in Table 5 are all above 0.94,

which shows a good linearity to prove that both binary and
weighted brain functional networks have fractal feature.
The box sizes corresponding to Figure 6 are counted as
shown in Table 6. Table 6 shows that the fractal dimensions
of T3 and T4 networks can be distinguished by the difference
in box sizes in weighted networks, but there is no difference
in the binary network. The results demonstrate that the num-
ber of box sizes needed in weighted network is more than that
in binary network, which suggested a better box coverage in
the weighted brain functional network than in the binary
brain functional network.

Figures 7 and 8 are the results of fractal dimensions under
different thresholds computed by the improved greedy col-
ouring algorithm in binary and weighted brain functional
network under method I and method II, respectively. As
shown in Figure 7(a), it is observed that the fractal dimension
of binary brain functional networks increases significantly
with the accumulation of task time only when the threshold
values are 0.2 and 0.3 in method I (P < 0:01). In method II
shown in Figure 7(b), there is no significant change in the
fractal dimension of five time periods under all given thresh-
olds. As shown in Figure 8, the fractal dimension of weighted
brain functional networks in both methods I and II shows a
significant increasing trend (P < 0:01). By comparing

Table 3: The box numbersNB under the box sizes LB acquired by improved greedy colouring algorithm in weighted brain functional network.

Box size (LB) 1.47 3.14 4.88 6.69 8.55 10.41 12.27 14.14 16.02

Box number (NB)

19 7 5 4 2 2 2 2 1

19 8 5 4 2 2 2 2 1

19 7 5 4 3 2 2 2 1

19 7 5 4 2 2 2 2 1

19 7 5 4 2 2 2 2 1

19 8 5 4 2 2 2 2 1

19 8 5 4 2 2 2 2 1

19 8 5 4 2 2 2 2 1

19 8 5 4 3 2 2 2 1

19 7 5 4 3 2 2 2 1

Table 4: The results of fitting quality (adjusted R-square) for traditional method and modified method in binary and weighted networks
according to the results of Tables 1–3.

Traditional algorithm Modified algorithm in binary network Modified algorithm in weighted network

1 0.2691 0.9576 0.9338

2 0.4024 0.9594 0.9417

3 0.5621 0.9576 0.9522

4 0.2505 0.9529 0.9338

5 0.3690 0.9529 0.9338

6 0.2612 0.9594 0.9417

7 0.3533 0.9553 0.9417

8 0.2805 0.9553 0.9417

9 0.3058 0.9553 0.9771

10 0.4871 0.9576 0.9522

Mean ± SD 0:3541 ± 0:1043 0:9563 ± 0:0024 0:9450 ± 0:0131
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Figures 8(a) and 8(b), it can be found that method II is better
in depicting fractal dimension than method I, and its varia-
tion trend is more consistent.

4. Discussion

In this study, we explored the effects of mental fatigue on the
fractal dimension in both binary and weighted brain func-
tional networks with the EEG data of alpha1 rhythm at task
state. Box-covering method of greedy colouring algorithm
was used to calculate the fractal dimension of the brain func-
tional network, which was known to belong to the NP-hard
problems for the minimum box number identification [26].
Song et al. had to repeat the calculation 10000 times to
acquire the fractal dimension with greedy colouring algo-
rithm [26]. So the greedy colouring algorithm needed to be
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Figure 5: Brain functional network structures during the formation of mental fatigue obtained by the average of all participants.
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Figure 6: The relationship between box size LB and box number NB in binary and weighted brain functional networks during the formation
of mental fatigue. (a) Results in binary brain functional network. (b) Results in weighted brain functional network.

Table 5: The results of fitting quality (adjusted R-square) for T0, T1,
T2, T3, and T4 in binary and weighted brain functional networks
corresponding to Figure 6.

Time T0 T1 T2 T3 T4

Binary network 0.9638 0.9659 0.9556 0.9818 0.9818

Weighted network 0.9476 0.9583 0.9741 0.9665 0.9655

7Neural Plasticity



improved to raise the computing efficiency. Comparing
Tables 2 and 3 with Table 1, the results indicated that the
modified greedy colouring algorithm can effectively obtain
the minimum box number for the given box size and can
solve the problem of colouring the nodes that have the
same degree by adding a small random noise on the node
degrees during renormalization process. According to
Table 4, this improved algorithm is better than the tradi-
tional algorithm, which can be used to investigate the
fractal dimension of the brain functional network during
the formation of mental fatigue.

In order to determine whether the brain functional net-
work had fractal characteristic during the formation of men-
tal fatigue, a group of brain functional networks at T0, T1,
T2, T3, and T4 were chosen to compute the fractal dimen-
sion. The results shown in Figure 6 and Table 4 indicated that
both the binary and weighted brain functional networks still
maintained fractal structure even when the brain was at
fatigue state. Moreover, the fractal dimension of T3 and T4

in the binary brain functional network cannot be distin-
guished, but it can be identified in the weighted network,
which initially reflected the advantage of the fractal dimen-
sion in weighted brain functional network. The number of
box sizes in the weighted network was also slightly larger
than that in the binary network, which suggested the more
refined box coverage in the weighted brain functional net-
work. Therefore, we can conclude that the fractal dimension
of the weighted brain functional network was indeed better
than that of the binary network in response to the change
of brain functional state.

The fractal dimension demonstrated an increasing trend
along with the accumulation of task time in both binary and
weighted brain functional networks. Fractal dimension was
an effective indicator to measure the complexity and irregu-
larity of self-similar structures [27, 34]. The results indicated
that mental fatigue can lead to a higher complexity of brain
functional network structure, and the brain’s ability to main-
tain more complex functional networks in task state may

Table 6: The box size LB used in the improved greedy colouring algorithm in binary and weighted brain functional networks corresponding
to Figure 6.

Network type Time Box size (LB)

Binary network

T0 1 2 3 4 5 6 7 8 —

T1 1 2 3 4 5 6 7 — —

T2 1 2 3 4 5 6 — — —

T3 1 2 3 4 5 — — — —

T4 1 2 3 4 5 — — — —

Weighted network

T0 1.47 3.14 4.88 6.69 8.55 10.41 12.27 14.14 16.02

T1 1.46 3.01 4.59 6.17 7.78 9.41 11.05 12.70 —

T2 1.44 2.92 4.45 5.99 7.58 9.18 10.83 — —

T3 1.23 2.56 3.91 5.28 6.64 8.02 9.42 — —

T4 1.30 2.65 4.07 5.50 6.95 8.44 9.93 — —
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Figure 7: Results of fractal dimension obtained bymethod I andmethod II in binary brain functional network during the formation of mental
fatigue. The bars indicate the standard error of mean. (a) Results in method I. (b) Results in method II.
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further lead to the deepening of mental fatigue. In the binary
brain functional network (see the results of Figure 7), the
fractal dimension tended to increase as the level of mental
fatigue increases in method I and has no significant changes
in method II, which reflected that the response of method I
to mental fatigue is slightly better than method II. In the
weighted brain functional network (see the results of
Figure 8), the weights had a greater influence on the fractal
dimension than the number of network edges, because the
changing trend of fractal dimension under method II (in
which the number of network edges was the same among
T0, T1, T2, T3, and T4) was more consistent than that under
method I. Therefore, it can be concluded from the comparison
between binary and weighted networks that the fractal dimen-
sion of the weighted brain functional network was more sensi-
tive to mental fatigue than that of the binary network.

Previous studies have proved that the small-world char-
acteristic and fractal characteristic of brain functional net-
works can indeed coexist [35–37]. When analyzing the
origin of fractal structure in the evolution process of complex
networks [24], Song et al. pointed out that the mutual exclu-
sion (or mismatches) between the central nodes of complex
networks can cause the central nodes to disperse with each
other, which generated the fractal characteristic of the com-
plex networks. In the brain functional network, the center
nodes are not completely exclusive, but there is certain con-
nectivity between the center nodes, which probably makes
the characteristic path length between any two nodes become
shorter, exhibiting small-world characteristic in the network.
That is to say, the coexistence of small-world feature and
fractal feature in the brain functional networks may be
caused by neither complete attraction nor complete exclu-
sion between central nodes. Previous researchers have
reported that the small-world feature still exists in the brain
functional networks when the brain is at fatigue state [3, 10,
38]. Taking together with the results of this study, we can

infer that the small-world feature and fractal feature of the
brain functional networks can still exist simultaneously
during the formation of mental fatigue.

5. Conclusions

In the present study, we focused on studying the effects of
mental fatigue on the fractal dimension in brain functional
networks with a modified greedy colouring algorithm. The
results suggested the following conclusions: first, the
improved greedy colouring algorithm can efficiently obtain
the minimum box number for the given box size, which
can reduce the repetitive computation times and improve
the efficiency of fractal dimension calculation; second, both
binary and weighted brain functional networks still main-
tain fractal structure even when the brain is at fatigue state,
and the fractal dimension presents an increasing trend
along with the accumulation of task time, which indicated
that the topological structures of brain functional networks
become more complex with the increasing of mental
fatigue; third, the fractal dimension of the weighted brain
functional network is indeed better than that of the binary
network in response to the change of brain functional state;
finally, it is of great reason to infer that the small-world fea-
ture and fractal feature of the brain functional networks can
still exist simultaneously during the formation of mental
fatigue. Our results provide a better method for fractal
dimension estimation and a new perspective to understand
the neural mechanisms of mental fatigue based on the frac-
tal feature of the complex networks.
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Figure 8: Results of fractal dimension obtained by method I and method II in weighted brain functional network during the formation of
mental fatigue. The bars indicate the standard error of mean. (a) Results in method I. (b) Results in method II.
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