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A model is introduced by coupling two three-dimensional Hindmarsh-Rose models with the help of a nonsmooth memristor. The
firing patterns dependent on the external forcing current are explored, which undergo a process from adding-period to chaos. The
stability of equilibrium points of the considered model is investigated via qualitative analysis, from which it can be gained that
the model has diversity in the number and stability of equilibrium points for different coupling coefficients. The coexistence of
multiple firing patterns relative to initial values is revealed, which means that the referred model can appear various firing
patterns with the change of the initial value. Multiple firing patterns of the addressed neuron model induced by different
scales are uncovered, which suggests that the discussed model has a multiscale effect for the nonzero initial value.

1. Introduction

As the building elements of the nervous system, the neuron is
the most fundamental unit in neural processing. Research on
the nonlinear dynamics of neurons is crucial for revealing the
mechanisms underlying perception and transmission of neu-
ral information.

In 1952, to describe the ionic conductance dynamics of
the giant axon, Hodgkin and Huxley established the
Hodgkin-Huxley (HH) neuron model [1], which started the
research on the neuron model. From then on, other simpli-
fied neuron models were proposed successively, which
mainly explained lots of ion channels, various synapses, and
spatial geometry of individual cells, such as the FitzHugh-
Nagumo (FHN) model [2] depicting a prototype of a neuron,
the Hindmarsh-Rose (HR) model [3] simulating the charac-
teristics of neurons in the hippocampus of the brain, the
Morris-Lecar (ML) model [4] obtained in the research on
muscle fiber of Arctic goose, the Chay model [5] as a new the-
oretical model with unity based on many different types of
excitable cells, and the Izhikevich neuron model [6] regarded
as a mathematical simplification of the HH model using a
binary tree. These models represented a variety of neurons.

These neuron models have demonstrated different electrical
activities and attracted many researchers’ attention. For
example, the FHN neuron model exhibits discontinuous
transition between different oscillations [7] and double
coherence resonance induced by phase noise [8]; the HH
neuron model displays evoking spiking caused by enough
noise intensity [9], chaotic resonance dependent on current
intensity [10], and extrinsic stochastic resonance caused by
ion shot noise [11]; in the presence of periodic input, the
HR neuron model can show nonlinear resonance behavior
[12], periodic and chaotic firing patterns [13], transition
between chaotic firing and periodic firing [14], and bursting
phenomenon [15]; the Izhikevich neuron model can appear
chaotic resonance [16, 17]; the ML neuron model can exhibit
mono- and bistable dynamic regimes [18] and responses to
two temperature-sensitive ion channels, calcium and leak
current, respectively [19]. These classical models and their
dynamical analysis are motivating researchers to develop
more realistic or refined neuron models.

In recent years, improving the classical neuron models by
different schemes, such as by introducing the electrical mag-
netic effect, has received intense attention. For example, con-
sidering magnetic flux and Gaussian white noise, a modified
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Izhikevich model was set up and diverse firing patterns for a
different set of parameters were brought to light [20]. An
improved HH neuron model was raised, and the firing
frequency dependent on the external forcing current was
analyzed [21]. A memristor-based HH neuron model was
constructed, and multiple patterns of electrical activities as
well as stochastic resonance were detected [22]. A stochastic
HH model was brought up, and the effects of ionic channel
blockage on the electrical activities of it were studied [23].
Kinds of improved FHN models [24–26] came up, and the
complicated dynamics were revealed, such as noise-
enhanced stability and resonance [24], hidden extreme
multistability [25], and subcritical Hopf bifurcation and sto-
chastic resonance [26]. The ML neuron model was improved
[27–29] along with the dynamical properties being explored,
like the memristor synapse-based ML model with abundant
periodic and chaotic bursting [27], the random dynamical
behavior driven by Gaussian white noise [28], and the sto-
chastic hybrid ML model with the extended parameter
regime of oscillations related to noise [29]. In particular,
many researchers paid much attention to the well-known
HR model and revised it utilizing various methods [30–38],
including impulsive effect and period-adding bifurcation in
a hybrid HRmodel [30]; alternating current-induced coexist-
ing behaviors of asymmetric busters in an external alternat-
ing current injected HR model [31]; diversity of firing
patterns in a memristor-coupled HRmodel [32]; multiple fir-
ing patterns dependent on the complex electrophysiological
condition found in a memristor HR model [33]; coherence
resonance induced by phase noise in a 3D memristor-based
HR model [34]; the relationship between the energy and
the firing pattern in a type of memristor-based HR model
[35]; the coexisting phenomenon of diverse firing patterns
in a 5D memristor-coupled HR neuron model [36]; hyperch-
aotic behavior in a kind of neuron model with discontinuous
magnetic induction [37]; and different types of firing patterns
in a modified Hindmarsh-Rose model, such as square-wave
bursting, chattering, fast spiking, periodic spiking, and
mixed-mode oscillations [38]. Additionally, a novel neuron
model, the Wang-Zhang model, built directly at the neuron
level was brought forth [39]. Research results [40, 41] sug-
gested that the Wang-Zhang model is equivalent to the HH
neuron model from the perspective of neural energy calcula-
tion and energy coding. The aforementioned results indicate
that to better show electrical activity of the neuron system,
many improved neurons were brought up from different per-
spectives and various dynamical phenomena were gained. It
is worth mentioning that among the referred methods to
improve the neuron model, memristor coupling was an
important approach when considering the effect of the elec-
tric field. However, the memristor coupling was mainly about
a smooth memristor. Nonsmooth memristor-coupled neu-
rons as well as the dynamics were hardly reported.

Actually, there is often a nonsmooth memristor, which
can be used and make the system appear complicated
dynamics. Inspired by this idea, in this paper, a nonsmooth
memristor is in consideration in the HR neuron model and
firing patterns of it are to be discovered. Other parts of this
paper are arranged as follows. In Section 2, a novel neuron

model is described by coupling two HR neurons using a non-
smooth memristor and different firing patterns are given
when changing the external forcing current. In Section 3,
the equilibrium points along with their stabilities of the intro-
duced model are analyzed quantitatively. In Section 4, the
coexistence of different firing patterns dependent on the ini-
tial values is exhibited via numerical simulations. In Section
5, the multiscale feature of the neuron model is discussed.
Some conclusions are drawn in Section 6.

2. Nonsmooth Memristor-Coupled
Neuron Model

2.1. Model Descriptions. In this section, a nonsmooth mem-
ductance function [42] is considered to be

W φð Þ = α + 3β φj j, ð1Þ

which is an ideal and active flux-controlled memristor with
absolute value nonlinearity, where α and β are two memris-
tor parameters with positive values.

When there exists a membrane potential difference
between two neurons, electromagnetic induction current will
be sensed. For this reason, memristor synapse can be applied
to characterizing the dynamics caused by the membrane
potential difference. Consequently, on the basis of the 3D
HR model [43], a model involving two neurons coupled with
a nonsmooth memristor can be presented as

_x = y − ax3 + bx2 − z + Iext + kW φð Þ x − uð Þ,
_y = c − dx2 − y,
_z = r S x + 1:6ð Þ − z½ �,
_u = v − au3 + bu2 −w + Iext + kW φð Þ x − uð Þ,
_v = c − du2 − v,
_w = r S u + 1:6ð Þ −w½ �,
_φ = x − uð Þ − φ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2Þ

where x and u represent the membrane potentials in coupled
neurons, y and vmean the exchanges of ions in coupled neu-
ron membranes, and z and w denote the adaptation currents.
Iext is the external forcing current. k is the coupling strength.
x − u expresses the difference of membrane potential. System
parameters a and b are the fitting coefficients of a cubic
function which is used to describe the rate of change of mem-
brane potential. The values of c and d are required to ensure
the time course of adaptation current in voltage-clamp con-
dition. r and S mean the corresponding parameters relative
to a short depolarizing current and are utilized to depict the
change of adaptation current.

2.2. Firing Patterns Affected by the External Forcing Current.
From Section 2.1, it can be known that by adjusting the rate
of change of membrane potential, voltage-clamp condition,
and change of adaptation current to an appropriate state,
the system parameters can be chosen as a = 1:0, b = 3:0,
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c = 1:0, d = 5:0, r = 0:006, and S = 4:0. With these parameter
values, the 3D HR model [43] can demonstrate complicated
dynamics. To explore the firing patterns of model (2), the cou-
pling strength is taken as k = 0:1 and the initial value is consid-
ered x0 = ð0, 0, 0, 0, 0, 0, 0Þ, and then the sampled time series
of neuron model (2) are calculated and drawn in Figures 1–
5, from which it can be seen that the addressed model (2)
appears multiple firing patterns with the change of the exter-
nal forcing current Iext while other parameters are kept
unchanged. Specifically, for Iext = 1:4, 1:8, 2:5, 2:8, neuron
model (2) displays firing patterns of period-1, period-2,
period-3, and period-4, respectively. Namely, it shows an
adding-period phenomenon. But for Iext = 3:3, neuron model
(2) comes into a chaotic state. To better characterize this pro-
cess of change, Figure 6 draws the bifurcation of membrane
potential x with bifurcation parameter Iext, which confirms
the results of Figures 1–5. As has been noted, the firing pat-
terns of model (2) are similar to the characteristics of the HR
neuron model coupled with a smooth memristor [44].

3. Equilibrium Points and Their
Stability Analysis

In this section, system parameters of neuron model (2) are
also chosen as a = 1:0, b = 3:0, c = 1:0, d = 5:0, r = 0:006,
S = 4:0, α = 4:0, β = 5:0, and Iext = 3:0, with which model

(2) is provided with a chaotic feature. The equilibrium
points of (2) can be determined as

A = δ1, c − dδ21, S δ1 + 1:6ð Þ, δ2, c − dδ22, S δ1 + 1:6ð Þ, δ1 − δ2
� �

,
ð3Þ

where δ1 and δ2 can be regarded as the intersection points
of function curves

F1 δ1, δ2ð Þ = δ31 + 2δ21 + 4δ1 + 5:4 − Iext
− k δ1 − δ2ð Þ α + 3β δ1 − δ2j jð Þ = 0,

ð4Þ

F2 δ1, δ2ð Þ = δ32 + 2δ22 + 4δ2 + 5:4 − Iext
+ k δ1 − δ2ð Þ α + 3β δ1 − δ2j jð Þ = 0:

ð5Þ

It can be solved via the graphic analytic method, which
is a method to solve the problem in geometry. According
to the conditions and conclusions of the problem to be
solved, one or more basic graphics of it are found by ana-
lyzing. Then, the properties of these basic graphics are
applied to solve the problem. Because ðδ1, δ2Þ is believed
as the intersection point of function curves (4) and (5),
it can be obtained by picturing the curves of (4) and (5).
Therefore, the intersection coordinate ðδ1, δ2Þ can be
achieved. Substitute the values of δ1 and δ2 into (3), and
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Figure 1: Period-1 firing pattern of model (2) when Iext = 1:4 and k = 0:1. (a1 and a2) Firing patterns of membrane potentials. (b1 and b2)
Phase portraits.
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then the nonzero equilibrium points of model (2) can be
gained. To this end, we take k = 0:1 and k = 0:5 as two
examples. The intersection points of (4) and (5) can be
calculated numerically and pictured in Figures 7 and 8,
respectively, which indicate that for k = 0:1 and k = 0:5,
the number of intersection points of (4) and (5) is 5 and
3, respectively. It means that the value of coupling coeffi-
cients has an effect on the number of intersection points.
That is to say, the number of nonzero equilibrium points
of model (2) is relative to the value of the coupling coeffi-
cient k.

To judge the stabilities of the equilibrium points, the
Jacobian matrix of model (2) at A is yielded as

P =

h1 1 −1 h2 0 0 h3

−2dx −1 0 0 0 0 0
rS 0 −r 0 0 0 0
h2 0 0 h4 1 −1 −h3
0 0 0 −2du −1 0 0
0 0 0 rS 0 −r 0
1 0 0 −1 0 0 −1

2
666666666666664

3
777777777777775

, ð6Þ

where

h1 = −3aδ21 + 2bδ1 + k α + 3β δ1 − δ2j jð Þ,
h2 = −k α + 3β δ1 − δ2j jð Þ,
h3 = 3kβ δ1 − δ2ð Þ sgn δ1 − δ2ð Þ,
h4 = −3aδ22 + 2bδ2 + k α + 3β δ1 − δ2j jð Þ:

ð7Þ

For the given coupling strengths k = 0:1 and 0.5, the
values ðδ1, δ2Þ of the equilibrium points are calculated and
listed in Tables 1 and 2. Meanwhile, utilizing the Jacobian
matrix (6), the corresponding eigenvalues at A are computed
and also given in Tables 1 and 2. By doing so, the stabilities of
the equilibrium points can be asserted (see Tables 1 and 2),
from which we can conclude that for k = 0:1, the equilibrium
points A1, A2, A3, A4, and A5 are all unstable saddle points
and for k = 0:5, A1 and A3 are stable center points while A2
is an unstable saddle point. It is known that equilibrium
points have complicated distributions, which can result in
the multistability of a chaotic system [45].

4. Coexistence of Multiple Firing Patterns

As it is well known, a chaotic system is sensitive to the initial
value. In terms of the neuron system, the change of the initial
value can make neurons demonstrate different electrical

0 2 4 6 8 10
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

t

x

0 2 4 6 8 10
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

t

u

–2 –1 0 1 2
–15

–10

–5

0

5

x

y

–2 –1 0 1 2
−15

−10

−5

0

5

u

v

Iext = 1.8Iext = 1.8

Iext = 1.8Iext = 1.8

⨯104⨯104

(b1) (b2)

(a1) (a2)

Figure 2: Period-2 firing pattern of model (2) when Iext = 1:8 and k = 0:1. (a1 and a2) Firing patterns of membrane potentials. (b1 and b2)
Phase portraits.

4 Neural Plasticity



0 5 10
–1.5

–1

–0.5

0

0.5

1

1.5

2

x

0 2 4 6 8 10
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

u

Iext = 2.5Iext = 2.5

Iext = 2.5Iext = 2.5

–2 –1 0 1 2
–10

–5

0

5

x

y

–2 –1 0 1 2
–10

–5

0

5

u

v

⨯104⨯104
tt

(b1) (b2)

(a1) (a2)

Figure 3: Period-3 firing pattern of model (2) when Iext = 2:5 and k = 0:1. (a1 and a2) Firing patterns of membrane potentials. (b1 and b2)
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activities. To verify this result, system parameters are selected
as a = 1:0, b = 3:0, c = 1:0, d = 5:0, r = 0:006, S = 4:0, α = 4:0,
and β = 5:0. Coupling coefficients k = 0:1 and k = 0:5 are
taken as two examples.

For the coupling coefficient k = 0:1 and initial value
x0 = ð0, 0, 0, 0, 0, 0, 0Þ, according to Section 2.2, model (2)
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appears periodic firing and chaotic firing for Iext = 1:4 and
Iext = 3:3, respectively. Namely, in model (2), various external
forcing currents can lead to multiple firing patterns. In this
part, the existence of multiple firing patterns of model (2)
dependent on initial values is demonstrated. For this purpose,
considering Iext = 1:4, another initial value is chosen as ð−2,
0, 0, 2, 0, 0, 0Þ and the sampled time series for membrane
potential in model (2) are computed and pictured in
Figure 9. Comparing Figure 1 with Figure 9, it is obvious to
see that model (2) shows the period-1 firing pattern for initial
value ð0, 0, 0, 0, 0, 0, 0Þ and becomes close to being stable with
small tiny vibration around equilibrium points for initial value
ð−2, 0, 0, 2, 0, 0, 0Þ. The phase portrait in Figure 10 verifies the
coexistence of two kinds of firing patterns. Take Iext = 3:3 and
initial value ð−2, 0, 0, 2, 0, 0, 0Þ; the sampled time series for
membrane potential in model (2) are computed and drawn
in Figure 11. By analyzing Figures 5 and 11, it can be found that
model (2) presents a chaotic phenomenon for initial value ð0
, 0, 0, 0, 0, 0, 0Þ and tends to be stable with small tiny vibration
around equilibrium points for initial value ð−2, 0, 0, 2, 0, 0, 0Þ.
Figure 12 confirms the result of Figures 5 and 11.

Equally important, when k = 0:5, Iext = 1:4, and initial
values are selected as ð0, 0, 0, 0, 0, 0, 0Þ and ð−2, 0, 0, 2, 0, 0,
0Þ, corresponding time series of membrane potential in
model (2) are computed and pictured in Figure 13, which
means that model (2) can illustrate different firing patterns
for various initial values. That is to say, the coexistence of
multiple firing patterns can also be disclosed, which can be
tested in Figure 14. When k = 0:5, Iext = 3:3, initial values
are also selected as ð0, 0, 0, 0, 0, 0, 0Þ and ð−2, 0, 0, 2, 0, 0, 0Þ,
sampled time series for membrane potential in model (2)
are counted and drawn in Figure 15, which shows the chaotic
characteristic for initial value ð0, 0, 0, 0, 0, 0, 0Þ, while appears
to be stable with small tiny vibration around equilibrium
points for initial value ð−2, 0, 0, 2, 0, 0, 0Þ. It suggests that

model (2) also can exhibit different firing patterns depen-
dent on the initial values. Phase portraits in Figure 16 verify
this result.

The above results indicate that when coupling coeffi-
cients are taken as k = 0:1 and k = 0:5, whether the firing pat-
tern is periodic or chaotic, it can be changed into an
approximately stable state by selecting the initial value.
Namely, the coexistence of multiple firing patterns depen-
dent on the initial values can be uncovered, while in the
coupled HR model with a smooth memristor, it is hard to
detect this coexistence of firing patterns.

5. Multiscale Effect of the Coupled HR Neuron
Model by a Nonsmooth Memristor

Traditional approaches to establish a model often focus on one
scale, but multiscale phenomena are part of our daily life
whether we explicitly recognize it or not. For instance, as a result
of the multiscale dynamics of the solar system, our time can be
organized in days, months, and years. Our society is in a hierar-
chical structure from towns to states, countries, and continents.
That is to say, it is not an easy task to think of a situation which
is not involved in any multiscale characteristics. Therefore, the
multiscale model is crucial in precise modeling and can provide
support for the dynamic analysis of systems. For example,
considering the effects of different drugs on cardiac electrophys-
iological activity, the drug-induced multiscale model was
addressed and the mechanism of drug-induced changes in car-
diac behavior was studied [46]. A multiscale model linking the
cell level and the subcellular level was proposed [47], which
illustrated the prediction of cancer cell migration. In terms of
the inertia and response time of the hydraulic servo system,
multitime scales modeling of the hydroturbine governing sys-
tem was put up and the effects of time scales on the dynamical
behavior of the system were analyzed [48]. Existing results sug-
gest that the dynamics of the system are often affected by differ-
ent scales and have a multiscale effect.

Encouraged by the above results, the multiscale effect of
the coupled HR neuron model with a nonsmooth memristor
is to be investigated. As a matter of fact, in a neuron system,
electromagnetic induction current is often caused by the dif-
ference of membrane potential between two neurons. There-
fore, there are different time scales in model (2). Suppose the
original time scale is t, the fast time scale is T1, and the slow
time scale is T2. Variables x, y, z, u, v, and w are related to T1,
and φ is associated with T2. Let T1 = t and T2 = εt, and then
model (2) can be rescaled as

_x = y − ax3 + bx2 − z + Iext + kW φð Þ x − uð Þ,
_y = c − dx2 − y,
_z = r S x + 1:6ð Þ − z½ �,
_u = v − au3 + bu2 −w + Iext − kW φð Þ x − uð Þ,
_v = c − du2 − v,
_w = r S u + 1:6ð Þ −w½ �,
_φ = ε x − uð Þ − φð Þ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ
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Table 1: Equilibrium points, eigenvalues, and stabilities when k = 0:1.

No δ1, δ2ð Þ of the equilibrium points Corresponding eigenvalues Stability

A1 (-6.3408, 5.0009) 90.6301, -0.0059, -0.0063, -1.0000, -1.2470, -1.7594, -119.1816 Unstable saddle point

A2 (-1.1104, -0.439) 9.6340, 0.0839, 0.0271, -0.0050, -1.0000, -2.3443, -8.9102 Unstable saddle point

A3 (-0.7882, -0.7882) 1.1140, 0.1428, 0.0147, -0.0015, -1.0000, -4.7115, -7.7565 Unstable saddle point

A4 (-0.439, -1.1104) 9.6340, 0.0839, 0.0271, -0.0050, -1.0000, -2.3443, -8.9102 Unstable saddle point

A5 (5.0009, -6.3408) 90.6301, -0.0059, -0.0063, -1.0000, -1.2470, -1.7594, -119.1816 Unstable saddle point

Table 2: Equilibrium points, eigenvalues, and stabilities when k = 0:5.

No δ1, δ2ð Þ of the equilibrium points Corresponding eigenvalues Stability

A1 (-30.7112, 29.3776) 0, 0, -0.5, -1.0, -1.0, -1717.7, -2804.1 Stable center point

A2 (-0.7882, -0.7882) 1.1140, 0.1428, 0.0147, -1.0, -0.0015, -7.7565, -4.7115 Unstable saddle point

A3 (29.3776, -30.7112) 0, 0, -0.5, -1.0, -1.0, -1717.7, -2804.1 Stable center point
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Figure 9: Firing patterns of membrane potentials in model (2) with k = 0:1, Iext = 1:4, and initial value ð−2, 0, 0, 2, 0, 0, 0Þ.
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Figure 10: Coexistence of various firing patterns dependent on initial values in model (2) with k = 0:1 and Iext = 1:4. The red phase portrait is
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where ε is a small positive number on interval ð0, 1Þ, which
rescales neuron model (2) into a fast subsystem and a slow
subsystem under the effect of ε.

System parameters are also chosen as a = 1:0, b = 3:0,
c = 1:0, d = 5:0, r = 0:006, S = 4:0, α = 4:0, and β = 5:0,
and the external forcing current is taken as Iext = 3:0. When
the initial value is considered x0 = ð0, 0, 0, 0, 0, 0, 0Þ, ε has lit-
tle effect on the firing pattern of model (8). Therefore, in the
following discussions, the nonzero initial value is considered,
e.g., x0 = ð1, 0, 0, 0, 0, 0, 0Þ. Two cases are studied with cou-
pling coefficients k = 0:1 and k = 0:5. The effect of small-
scale ε on the firing pattern of model (8) is to be studied.

For this purpose, ε is selected as different values. Sampled
time series for membrane potential in model (8) are attained
and given in Figures 17 and 18. From Figure 17, it can be
known that for k = 0:1, when ε = 0:6, the firing patterns of
membrane potentials in model (8) gradually converge to a
state vibrating around a point with very low amplitude,
which can be called a quasisteady state; when ε = 0:06, the fir-
ing patterns of membrane potentials in model (8) tend to be
stable; when ε reduces to 0.006, the firing patterns of mem-
brane potentials in model (8) appear a new chaotic phenom-
enon, in which there appears low-amplitude oscillation in the
resting state between two adjacent bursting firings. It means
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Figure 12: Coexistence of multiple firing patterns dependent on initial values in model (2) with k = 0:1 and Iext = 3:3. The red phase portrait is
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that low-amplitude oscillation and high-amplitude oscilla-
tion can take on alternatively. From Figure 18, it is obvious
to see that for k = 0:5, with the change of ε, model (8) also

presents various firing patterns, which is similar to that for
k = 0:1. Figures 17 and 18 indicate that different time scales
have much effect on the firing pattern of model (8) with the
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nonzero initial value. Namely, model (8) has an obvious mul-
tiscale effect for the nonzero initial value. It is worth noting
that compared with model (8), the firing pattern of the
coupled HR model with a smooth memristor has little multi-
scale effect whether the initial value is zero or nonzero. This
result may contribute to the optimization analysis and con-
trol of the neuron system.

6. Conclusions

In this paper, considering that the membrane potential dif-
ference between different neurons may be responsible for
electromagnetic induction current, a neuron model coupled

with a nonsmooth memristor is introduced and the multiple
firing patterns are explored.

Firstly, multiple firing patterns induced by different
external forcing currents are discussed. It is found that
with the change of the external forcing current, the
referred neuron model experiences a process of period-1,
period-2, period-3, period-4, and chaos, namely, adding-
period bifurcation to chaos. Secondly, the diversity of the
number and stability of equilibrium points caused by the
coupling coefficient is studied and it is disclosed that dif-
ferent coupling coefficients can make the mentioned
model be provided with different numbers of equilibrium
points as well as various stable states. Thirdly, the
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Figure 17: Multiple firing patterns of model (8) with small-scale ε changing when k = 0:1 and Iext = 3:0.
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coexistence of multiple firing patterns depending on the
initial value is revealed, which suggests that the dynamics
of the addressed neuron model is sensitive to the initial
value. Fourthly, the multiscale effect of the mentioned
neuron model is uncovered and results suggest that a
small scale has much effect on the firing pattern of the
referred neuron model.

As has been noted, the electrical activities in coupled
Hindmarsh-Rose neurons with a nonsmooth memristor dis-
play diversity. The firing pattern of it is relevant to many fac-
tors. By regulating certain factors, some required electrical
activities can be achieved, which helps uncover the dynamics
of neurons and then provides a basis for controlling the firing
rhythm of the nervous system.
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Additionally, the results in this paper can be generalized
to the cases of three neurons or even more neurons, because
in the real nervous system, more than two neurons can be
regarded as the coupling between another neuron and the
coupled neurons.
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