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About 50-80% of total energy is consumed by signaling in neural networks. A neural network consumes much energy if there are
many active neurons in the network. If there are few active neurons in a neural network, the network consumes very little energy.
The ratio of active neurons to all neurons of a neural network, that is, the sparseness, affects the energy consumption of a neural
network. Laughlin’s studies show that the sparseness of an energy-efficient code depends on the balance between signaling and
fixed costs. Laughlin did not give an exact ratio of signaling to fixed costs, nor did they give the ratio of active neurons to all
neurons in most energy-efficient neural networks. In this paper, we calculated the ratio of signaling costs to fixed costs by the
data from physiology experiments. The ratio of signaling costs to fixed costs is between 1.3 and 2.1. We calculated the ratio of
active neurons to all neurons in most energy-efficient neural networks. The ratio of active neurons to all neurons in neural
networks is between 0.3 and 0.4. Our results are consistent with the data from many relevant physiological experiments,
indicating that the model used in this paper may meet neural coding under real conditions. The calculation results of this paper

may be helpful to the study of neural coding.

1. Introduction

Recent studies have shown that single neuron firing is
sufficient to influence learning and behavior [1, 2]. The result
challenges people’s long-standing understanding that a
behavioral response needs the firing of thousands of neurons.
Their findings provide the basis and support for a neural
theory (neuron “sparse coding” hypothesis); the hypothesis
argues that a small number of neurons are enough to
encode information [3-5]. Only a small part of neurons
are activated when signaling in a sparse coding mode,
and most of the neurons are responsible only for network
connection [6-8]. Since a small number of neuron firing
and little energy are required in the sparse coding mode,
the sparse coding is an energy-efficient neural coding
method [9, 10]. This energy-efficient neural coding pattern
increases the ratio of neuron-encoded information and
greatly improves energy efficiency [11, 12]. Although the

sparse coding hypothesis of neural networks in the cere-
bral cortex has not yet been confirmed, it has been shown
that sparse coding represents the maximization of energy
efficiency [13-15].

Wang et al. studied the information carried by neurons
and the energy cost by neurons [13]. They found that neu-
rons are not most energy-efficient when coding the maxi-
mum information, and the ratio of signaling to fixed costs
affects the total energy consumed by neurons. Laughlin
studied the sparseness and representational capabilities of
neural networks [14]. They found that the sparseness of
the most energy-efficient coding pattern depends on the
ratio of signaling to fixed costs when neural networks have
similar representational capabilities. However, Wang et al.
and Laughlin did not consider the exact ratio of signaling
to fixed costs. Wang et al.’s study believes that the ratio of
signaling to fixed costs is between 10 and 200, and Laugh-
lin just studied three cases with a ratio of 1, 10, and 100.
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They just considered a very large range of ratios and did
not give the sparseness of the most energy-efficient coding
mode. The purpose of this paper is to find the sparseness
of the most energy-efficient coding mode based on the
research of Wang et al.

In this paper, we first study the relationship among the
total energy cost of neural networks, the ratio of signaling
to fixed cost, and the ratio of active neurons to all neurons
in networks under similar representational capabilities. We
found that the ratio of active neurons to all neurons in most
energy-efficient neural networks is related to the ratio of sig-
naling to fixed costs. When the ratio of signaling to fixed
costs is high (70~100), the optimal ratio of active neurons
to all neurons in neural networks (at this time, neural net-
works cost the least energy) is less than 0.1. When the ratio
of signaling to fixed costs is low (1~20), the optimal ratio of
active neurons to all neurons in neural networks is between
0.2 and 0.5.

Based on the above work, we calculated the ratio of
signaling to fixed costs by the data from physiological
experiments and gave an exact ratio signaling to fixed
costs. We studied the relationship between the total energy
cost of different neural networks and the ratio of active
neurons to all neurons when neural networks have similar
representational capabilities. We found that the total
energy cost of a network is the least when the ratio of
active neurons to all neurons is between 0.3 and 0.4. In
addition, neural networks have the most representational
capabilities with the same total energy cost when the ratio
of active neurons to all neurons is between 0.3 and 0.4.
This paper confirms that neural networks have the most
representational capabilities and the least total energy cost
when the ratio of active neurons to all neurons is between
0.3 and 0.4.

Compared with the published research, we give an exact
ratio of signaling to fixed costs and calculate the ratio of sig-
naling costs to total energy costs of neural networks. We give
the optimal ratio of active neurons to all neurons in neural
networks with the most representational capabilities and
the least total energy cost. The significance of this paper is
not only to determine the ratio of signaling to fixed costs
but also to prove that the sparse coding mode is a kind of
energy-saving neural coding mode. This mode is in line with
the maximization of neural signal transmission theory and
the maximization of energy utilization rate theory [16-18].
In addition, the ratio of signaling costs to total energy costs
of neural networks and the ratio of active neurons to all neu-
rons in neural networks are consistent with the results of the
correlation physiology experiments [19, 20]. This suggests
that the model of neural networks that we used is likely to
conform to the coding of neurons under real conditions,
and the results may be helpful in the study of neural coding
theory.

2. Model

The representational capacity (cap) of neural networks refers
to the number of active neurons arranged in a neural net-
work, depending on the total number of neurons N and the
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number of active neurons A. The equation for calculating
cap is given by

N!
P AN-A 1)

The ratio r is the ratio of signaling to fixed costs; it
depends on a single neuron signaling cost (ac) in unit time
divided by fixed costs (fc). The ratio r is given by

ac
r=o (2)

The total energy consumption of neural networks (cost)
is the sum of fixed energy costs of all neurons and signaling
costs of active neurons, and the cost is given by

cost=fcx N +acx A. (3)

The ratio of active neurons to all neurons in a neural
network (p) is the number of active neurons divided by the
number of neurons N in the network; p is given by

P=x5- (4)

From equations (2), (3), and (4), we can get the relation-
ship between costs, p and r, given by

cost=fcx N+rxfcxNxp=fcxNx(1+rxp), (5)

where fc is a fixed constant, and if we fixed the total number
of neurons in a neural network, then fc and N do not affect
the total energy consumption. If we disregard the representa-
tional capacity and just consider the total energy consump-
tion, the ratio of active neurons to all neurons, and the ratio
of signaling to fixed costs, then we can find that the total
energy consumption and the ratio of active neurons to all
neurons are linear-related and the total energy consumption
and the ratio of signaling to fixed costs are linear-related. For
simplicity, fc is set to 1 and N is set to 100. The ratio p is
between 0 and 1, and related research believed that the ratio
r is between 1 and 100 [13, 14]. When p is a fixed value, the
cost increases linearly with the increase of r, as shown in
Figure 1. Note that we do not consider the representational
capacity.

The horizontal axis is p, the vertical axis is r, the color is
cost, blue means the total energy consumption is lower, red
means the total energy consumption is higher, N is 100,
and fc is 1.

It can be seen that if we do not consider the representa-
tional capacity when fc and N are fixed, the cost is linearly
increased as p and r. Now, we consider representational
capacity. From equation (1), we can see that when cap is
fixed, if A is determined, then N can be obtained according
to the value of A. According to equation (4), we can obtain
p. In other words, N and p are not independent variables
when cap is a fixed value. From equation (5), although N is
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FIGURE 1: The relationship between cost and p and r.

a variable value, cost is only related to r and p when cap is a
fixed value.

Table 1 shows the number of total neurons and the
corresponding number of active neurons in neural net-
works which have approximately representational capacity.
When N is 100, A is 50, and p is 0.5, from equation (1),
we can get that the corresponding cap is 1.0089¢ + 029. We
use 1.0089¢ + 029 as a benchmark, and the normalization
technique is adopted for cap. There are many cases which
have a different number of neurons, different number of
active neurons, and different ratio of active neurons to all
neurons. The difference between these cases and the above
benchmark value is within 5%. Although N is variable, cost
is just related to r and p. The relationship between cost and
r and p is shown in Figure 2.

These cases have different N, different A, and different p
and have approximately representational capacity. We nor-
malize the value of the first cap as a benchmark. The differ-
ence between these cases and the above benchmark value is
within 5%. Since these cap values are difficult to exactly
match, we consider these cases to have the same value of
representational capacity.

The horizontal axis is p, and the range is 0 to 0.5. The
vertical axis is 7, and the range is 1~100. The horizontal axis
has not taken into account the range of 0.5 to 1, because when
p exceeds 0.5, we can findp below 0.5, and they have the same
representational capacity. For example, p=0.8 and p=0.2
have the same representational capacity, but the total energy
cost is high when p = 0.8, so the horizontal axis has not taken
into account the range of 0.5 to 1.

As can be seen from Figure 2, if the value of r is large, the
value of cost will be large when p is the same. When p is large
(0.4~0.5), the cost is greatly affected by r. When p is small
(0.05~0.1), the cost is hardly influenced by r. This is because
when p is large, the number of active neurons in neural net-
works is large. When r is large, it means that the signaling
cost is much larger than the fixed cost, so the total energy cost
of the network will be large. When p is small, the number of
active neurons in neural networks is small and the energy

TaBLE 1: The value of N and A and the corresponding value of cap
and p.

All neurons Active cap Ratio
(N) neurons (A) “ap (normalized)  (p)

100 50 1.008%¢ + 029 1.000 50%
101 45 1.0083e + 029 0.999 46%
104 40 9.9480e + 028 0.986 38%
116 33 9.903%¢ + 028 0.982 29%
119 32 1.0051e + 029 0.996 27%
131 29 9.9655¢e + 028 0.988 22%
143 27 1.0432¢ + 029 1.034 19%
170 24 9.9550e + 028 0.987 14%
199 22 1.0015e + 029 0.993 11%
219 21 1.0254e+029  1.016 9.5%
276 19 1.0396¢+ 029 1030 6.9%
373 17 1.0168e + 029 1.008 4.6%
558 15 1.0013e + 029 0.993 2.7%
971 13 1.0105e + 029 1.002 1.3%

cost of signaling is small, so the total energy cost of the net-
works is hardly affected by r.

In Figure 2, when the value of r is different, the value of p
is also different corresponding to the minimum value of cost.
When r is large (70~100) and p is around 0.05, the value of
cost is the least. When r is small (0~20) and p is between
0.1 and 0.4, the value of cost is the least. Therefore, the value
of p corresponding to the minimum cost depends on the
value of r. Considering the published results, the range of r
in Figure 2 is set to 1 to 100, but this range is rough. We will
give a more precise range of r by the data from physiological
experiments.

From equation (2), we can see that the value of r depends
on signaling cost and fixed cost. The cost of signaling



4 Neural Plasticity
100 Cost 5000
90 1 4500
80 1 4000
70 1 - 3500
60 1 - 3000
= 50 2500
40 L 2000
30 1500
20 1000
10 500
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
P

FIGURE 2: The relationship between cost and p and r.

includes the generation of a spike, propagation along the
axon, mechanisms of transmitter release, and recycling
[21]. Studies have shown that the generation of spikes and
the propagation of action potentials account for about 95%
of the total energy cost of signaling [21, 22]. In this study,
we consider that the energy cost of signaling just includes
the generation of spikes and the propagation of action
potentials.

There are a lot of glial cells in the brain besides neurons;
glial cells provide support and protection for neurons and
supply nutrients and oxygen to neurons [22]. A glial cell
has no axons, and it cannot generate a spike [22, 23]. Neuron
activity requires glial cells to provide nutritional support, and
the costs of glial cells need to be included in the fixed costs of
neural networks. Therefore, the fixed costs of neural net-
works include the cost of maintaining resting potentials in
neurons and glial cells. That is, the total energy consumption
of neural networks includes the cost of maintaining resting
potentials in neurons and glial cells, the generation of spikes,
and the propagation of action potentials.

According to the relevant experimental results [24],
the generation of one spike in one neuron needs to cost
3.84x 10% ATPs; 3.28 x 10% ATPs support action potential
propagation to output synapses along axon collaterals. About
3.42 x 10® ATPs/s are used to maintain the resting potential
of a neuron; 1.02 x 10% ATPs/s are used to maintain the rest-
ing potential of a glial cell. For neuron populations in chick
retinal ganglion cells, the mean action potential frequency
range is between 3 and 4Hz [20]. Therefore, we use the
boundary value of the mean rate, 3~4 Hz. It is generally
believed that the number of glial cells in the brain is 10 times
more than the number of neurons, so in this study, the ratio
of the number of neurons to glial cells is 1: 10.

Based on the above data, when the mean action poten-
tial frequency in neural networks is 3Hz (or 4Hz), the
signaling cost of a single neuron per second is (3.84 x
108 +3.28 x 10%) x 3 (or4) = 21.36 x 10% (28.48 x 10%) ATPs
and the fixed cost of a single neuron and ten glial cells

is (3.42 x 108 + 10 x 1.02 x 10%) = 13.62 x 10% ATPs per sec-
ond. The total energy cost is 21.36 x 10° (28.48 x 10%) +
13.62 x 10% = 34.98 x 10°% (42.1 x 10%) ATPs per second.
According to the above results, the cost of signaling
accounted for 61% to 68% of the total energy cost, which
matches Sokoloff experimental results (the cost of signaling
accounted for 50% to 70% of total energy consumption)
[25]. This shows that the above calculation is reasonable
and credible.

Note that the neural networks mentioned herein just
include neurons and do not include glial cells. Because the
glial cells do not release the action potential, nor directly
involve in the coding, the glial cells were ignored in the calcu-
lation of coding ability of neural networks. Glial cells were
just included in the calculation of fixed cost.

When the mean action potential frequency in neural net-
works is 3Hz or 4 Hz, the ratio of the cost of maintaining
resting potentials in neurons and glial cells, the generation
of spikes, and the propagation of action potentials to the total
energy cost are shown in Figures 3 and 4, respectively.

When the mean action potential frequency in neural net-
works is 3 Hz, at the cost of maintaining resting potentials in
neurons and glial cells, the generation of a spike and the
propagation of action potentials account for 10%, 29%,
33%, and 28% of the total energy consumption, respectively.

When the mean action potential frequency in neural net-
works is 4 Hz, at the cost of maintaining resting potentials in
neurons and glial cells, the generation of spikes and the prop-
agation of action potentials account for 8%, 24%, 36%, and
31% of the total energy consumption, respectively.

Based on the above data, we can calculate » when the
mean action potential frequency is 3 Hz or 4 Hz according
to equation (2):

ac _ (3.84x10° +3.28 X 10%) x 3(or4)
r=—=
3.42x 108 + 10 x 1.02 x 108

=1.57(0r2.09).

(6)

fc
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Distribution of energy consumption for a mean action potential rate of 3 Hz

F1GURE 3: Distribution of energy consumption in neural networks.

Distribution of energy consumption for a mean action potential rate of 4 Hz

‘Ncu“ ls .

F1GURE 4: Distribution of energy consumption in neural networks.

The ratio of signaling cost to fixed cost, that is, the values The blue pillar is signaling cost, and the red pillar
of r, is shown in Figure 5 when the mean action potential  is fixed cost. The horizontal axis is the action poten-
frequency is 3 Hz or 4 Hz. tial frequency, and the vertical axis is the ratio of
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FIGURE 6: The representational capacity of different neural networks.

signaling cost to fixed cost, which is 1.57 and 2.09,
respectively.

In a real situation, the number of glial cells is above 10
times more than the number of neurons. That is, the value
of r is lower than that we calculated, so we set that the range
of ris 1.3 to 2.1.

We set a fixed value of r in the range of 1.3 to 2.1, then
calculate the representational capacity of different neural net-
works with different N and different A which have the same
total energy consumption. To facilitate the calculation, fc is
set to 1. The value of ac is equal to the value of r through
equation (2). According to equation (3), we can get

cost=fcxN+acxA=N+rxA,

(7)

where cost and r are constant; so, we can get
(8)

The corresponding representational capacity and the
ratio of active neurons to all neurons can be calculated
according to equations (1) and (2). Therefore, we can get
the value N and the value A with the maximum cap when
cost is fixed. When the range of the cost is 154 to 156 (within
a difference of 2%, approximately equal) and the value of r is
1.4, 1.6, 1.8, and 2.0, the relationship between N and A and
cap is shown in Figures 6-9, respectively. The squares in
Figures 6-9 show the neural networks with different total
neurons (N) and different numbers of active neurons (A).
The cost of these networks is between 154 and 156, and the

N =-rxA + cost.
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FIGURE 8: The representational capacity of different neural networks.

color depth indicates the value of the corresponding repre-
sentational capacity. The color is deep which means cap is
large. The value of N corresponding to the maximum cap
in Figure 6 is 104, the value of A is 37, and the value of p is
37/104 = 35.6%. The value of N corresponding to the maxi-
mum cap in Figure 7 is 103, the value of A is 33, and the value
of p is 33/103 = 32.0%. The value of N corresponding to the
maximum cap in Figure 8 is 100, the value of A is 31, and
the value of p is 31/100 = 31.0%. The value of N correspond-
ing to the maximum cap in Figure 9 is 95, the value of A is 30,
and the value of p is 30/95 = 31.6%.

It can be seen that when r is different, cap of the net-
work is different though the value of cost is the same.
When r is 1.4, 1.6, 1.8, and 2.0, the value of p of the net-
work corresponding to the maximum cap is 35.6%, 32%,

31%, and 31.6%, respectively. However, since both N and
A must be positive integers in equation (8), the value of
cost affects the values of N and A, which will cause the
value of p to be discontinuous. Therefore, the value of p
we get may not be accurate.

A small rectangular block in the figure represents neural
networks with total energy cost between 154 and 156. The
horizontal axis is the number of active neurons in the net-
work; the vertical axis is the total number of neurons in the
network. The color of the small rectangle indicates the
representational capacity of the network. Black means large
representational capacity, and white color means small
representational capacity. The case that corresponds to the
maximum representational capacity is N =104, A =37, and
p=37/104 =35.6%.
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A small rectangular block in the figure represents neural
networks with total energy cost between 154 and 156. The
horizontal axis is the number of active neurons in the net-
work; the vertical axis is the total number of neurons in the
network. The color of the small rectangle indicates the
representational capacity of the network. Black means large
representational capacity, and white color means small
representational capacity. The case that corresponds to the
maximum representational capacity is N =103, A =33, and
p=33/103 =32.0%.

A small rectangular block in the figure represents neural
networks with total energy cost between 154 and 156. The
horizontal axis is the number of active neurons in the net-
work; the vertical axis is the total number of neurons in the
network. The color of the small rectangle indicates the
representational capacity of the network. Black means large
representational capacity, and white color means small
representational capacity. The case that corresponds to the
maximum representational capacity is N =100, A =31, and
p=31/100 = 31.0%.

A small rectangular block in the figure represents neural
networks with total energy cost between 154 and 156. The
horizontal axis is the number of active neurons in the net-
work; the vertical axis is the total number of neurons in the
network. The color of the small rectangle indicates the
representational capacity of the network. Black means large
representational capacity, and white color means small
representational capacity. The case that corresponds to the
maximum representational capacity is N =95, A =30, and
p=30/95=31.6%.

The values of p that are calculated in Figures 6-9 are not
continuous and are related to the total number of neurons in
neural networks. We need to let the representational capacity
just related to p and regardless of the total number of neurons
N. We take the logarithm of cap which does not affect the
comparison of representational capacity of different net-
works by the Stirling equation (see equation (9)). In this case,

the ratio of cap to the cost is not related to N in neural
networks [26]:

nl=v/27tn (g) 9)

From representational capacity cap=In [N!/(Np)!x
(N = Np)!], we can obtain the ratio of cap to the cost which
is not related to N by equation (9):

cap=Nx[-pxlnp—-(1-p)xln(1-p)]-05xInN-C,
(10)

where C=0.5%1In[2p x (1 —p)] is a constant. When N is
large, 0.5 x In N/N also tends to 0. These two parts are not
affecting the calculation of cap and can be ignored. The equa-
tion for calculating the ratio of cap to cost is given by

cost fex (1+7rxp) ’

where the fixed cost fc is a constant. When cost and r are
fixed, cap is only related to p and cap is not related to N.
Let fc=1 and cost = 1; the relationship between cap and p
obtained by equation (11) is shown in Figure 10. All four
graphs in Figure 10 show that cap increases first and then
decreases with the increase of p. When p is between 0.3 and
0.4, cap is maximized. To facilitate observation, we enlarge
a part of the graphs in Figure 10, as shown in Figure 11. It
can be seen that the values of p corresponding to the maxi-
mum cap are different, but all the values of p are between
0.3 and 0.4. That is, when r is 1.4 or 1.6 or 1.8 or 2.0, a neural
network has the largest representational capacity if the ratio
of active neurons to all neurons is between 30% and 40%.
The horizontal axis is p, and the vertical axis is cap. The
values of r in the four graphs are 1.4, 1.6, 1.8, and 2.0,
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FIGURE 11: The relationship between cap and p.

respectively. In equation (11), both fc and cost are equal to 1.
The relationship between cap and p is as follows:

3 —-pxlnp—(1-p)xln(1-p)

1+rxp

cap

(12)

The portions where p is between 0.3 and 0.4 in Figure 10
are enlarged. The four pictures correspond to the four
pictures in Figure 10, respectively. The maximum values of
cap are 0.1887, 0.1803, 0.1728, and 0.1660, and the corre-
sponding p are 0.353, 0.341, 0.329, and 0.319, respectively.
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According to equation (11), when cap and r are fixed,
cost is only related to p; the relationship between cost and p
is shown in Figure 12. Figures 12 and 10 are the opposite;
with the increase of p, costs first decrease and then increase.
The value of cost reaches the minimum when p is between

F1GURE 13: The relationship between cost and p.

0.3 and 0.4. We enlarge part of the graphs in Figure 12, as
shown in Figure 13. The value of p that corresponds to the
minimum cost in Figure 13 is the same as the value of p that
corresponds to the maximum cap in Figure 11. That is, when
ris 1.4 or 1.6 or 1.8 or 2.0, a neural network has the smallest
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FIGURE 14: The relationship between cap and p and r.

total cost if the ratio of active neurons to all neurons is
between 30% and 40% and the sparse ratio of 30% to 40%.

The horizontal axis is p, and the vertical axis is cost. The
values of r in the four graphs are 1.4, 1.6, 1.8, and 2.0, respec-
tively. In equation (11), both fc and cap are equal to 1. The
relationship between cost and p is as follows:

I+rxp

—pxInp-(1-p)xIn(1-p)’

(13)

cost=

The portions where p is between 0.3 and 0.4 in Figure 12
are enlarged. The four pictures correspond to the four pic-
tures in Figure 12, respectively. The minimum values of cost
are 5.2994, 5.5463, 5.7870, and 6.0241, and the correspond-
ing p are 0.353, 0.341, 0.329, and 0.319, respectively.

3. Results

In Figure 10, we give four special values of r and get the value
of p which corresponds to the maximum value of cap. All the
values of p are between 0.3 and 0.4. It is unclear whether the
values of p corresponding to the maximum cap are between
0.3 and 0.4 when r is between 1.3 and 2.1. In Figure 12,
it is unclear whether the values of p corresponding to
the minimum cost are between 0.3 and 0.4 when r is
between 1.3 and 2.1. We need to find out the relationship
among cost, cap, and p when r is a continuous change
between 1.3 and 2.1.

Figure 14 shows the relationship among cap, p, and r
when the cost is the same. For convenience, fc is set to 1,
and cost is set to 1 in equation (11). The statistical results
show that when r is the same, all the values of p correspond-
ing to the maximum cap are between 0.3 and 0.4. Figure 15
shows the relationship among cost, p, and r when cap is the
same. The statistical results show that when r is the same,
all the values of p corresponding to the minimum cost are
between 0.3 and 0.4.

The horizontal axis is p, the vertical axis is r, and the color
corresponds to the value of cap. The red area indicates high
value of caps, and the blue area indicates low value of caps.
For convenience, fc and cost are set to 1 in equation (11).
The relationship between cap and p iscap=(—pxInp—
(I1-p)xIn (1-p))/(1+7rxp).

The horizontal axis is p, the vertical axis is , and the color
corresponds to the value of cost. The red area indicates the
high value of cost, and the blue area indicates the low value
of cost. For convenience, fc and cap are set to 1 in equation
(11). The relationship between cost and p is cost = (1 + 7 x p)/
(=pxInp-(1-p)xIn(1-p)).

Figure 14 shows that all the values of p corresponding to
the maximum cap are between 0.3 and 0.4 when the cost is
the same. Figure 15 shows that all the values of p correspond-
ing to the minimum cost are between 0.3 and 0.4 when cap is
the same. It is uncertain whether the value of p which is
between 0.3 and 0.4 corresponds to the minimum cost and
maximum cap at the same time. According to equation
(11), the change trend of cap/cost is the same as the change
trend of cap in Figure 14. That is, the value of p which is
between 0.3 and 0.4 corresponds to the minimum cost and
maximum cap at the same time and has no relation with
the total number of neurons.

4. Discussion

The generation of spikes and the propagation of action
potentials consume much energy, in total accounting for
about 50% to 70% of the total energy cost by neural networks
[24-27]. The less the number of active neurons in a neural
network, the less energy the network cost. Studies have
shown that sparse neural coding patterns reflect the maximi-
zation of energy efficiency, that is, consume little energy to
encode information [9, 28-30].

In this paper, we first calculate the ratio of signaling to
fixed costs according to the data from physiological experi-
ments, and the ratio is between 1.3 and 2.1. We find the
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FIGURE 15: The relationship between cost and p and r.

generation of spikes and the propagation of action potentials
accounted for about 56% to 68% of total energy consump-
tion, and the results are consistent with existing experimental
results. It confirms that the calculated results are believable
and meet the energy consumption of neural networks under
physiological experiments [24, 25].

Secondly, we simulate the relationship between the ratio
of active neurons to all neurons in neural networks and the
total energy consumption of networks with the same repre-
sentational capacity. Statistical analysis shows that neural
networks have the least total energy consumption if the ratio
of active neurons to all neurons is between 30% and 40%. We
simulate the relationship between the ratio of active neurons
to all neurons in neural networks and the total energy con-
sumption of networks with the same representational capac-
ity. Statistical analysis shows that neural networks have the
largest representational capacity if the ratio of active neurons
to all neurons is between 30% and 40%. These two simula-
tions are more consistent with physiological experiments
(Zhang and Rochefort’s study on the chick retina and mouse
visual cortex, respectively. They found that the ratios of
active neurons to all neurons are 33% and 36%, respectively
[18-20]). We derive the optimal sparse proportion of active
neurons in neuron clusters through real physiological data
and rigorous formulas. The physiological significance of this
result is that the proportion of active neurons can be deter-
mined in subsequent studies or in designing neuron cluster
experiments. In addition, the ratio of the energy consumed
by the neurons to the calculated action potential and the rest-
ing state energy may be helpful for subsequent research or
designing the energy consumption of the neuron cluster,
such as some research on small-world networks and energy
transfer consumption [31-33].

In addition to the energy consumed by the generation of
spikes, the propagation of action potentials, and maintaining
resting potentials in neurons and glial cells, we ignore other
energy consumption by neural networks. Although other

energy consumption just accounts for a small part of total
energy consumption, our calculations are not accurate
enough. It should be noted that the model we used is a sim-
plified coding model. Thus far, how neural networks code
information is unknown. Our next work is to refine and
calculate the model of neural networks to make it more
consistent with the real situation of neuron coding.
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