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Electrophysiological studies have shown that mammalian primary visual cortex are selective for the orientations of visual stimuli.
Inspired by this mechanism, we propose a hierarchical spiking neural network (SNN) for image classification. Grayscale input
images are fed through a feed-forward network consisting of orientation-selective neurons, which then projected to a layer of
downstream classifier neurons through the spiking-based supervised tempotron learning rule. Based on the orientation-selective
mechanism of the visual cortex and tempotron learning rule, the network can effectively classify images of the extensively
studied MNIST database of handwritten digits, which achieves 96% classification accuracy based on only 2000 training samples
(traditional training set is 60000). Compared with other classification methods, our model not only guarantees the biological
plausibility and the accuracy of image classification but also significantly reduces the needed training samples. Considering the
fact that the most commonly used deep learning neural networks need big data samples and high power consumption in image
recognition, this brain-inspired computational neural network model based on the layer-by-layer hierarchical image processing
mechanism of the visual cortex may provide a basis for the wide application of spiking neural networks in the field of intelligent
computing.

1. Introduction

Pattern recognition is to distinguish different kinds of pat-
terns according to the semantic information of inputs, and
it is an important basic problem in the field of computer
vision and artificial intelligence. There is a wide range of
applications in reality, such as object recognition [1, 2],
region detection [3], aurora image analysis [4], and scene cat-
egorization [5]. Due to the great research value, researchers
have developed many methods for pattern recognition, for
example, k-nearest neighbor classifier [6], multilayer percep-
tron [7], support vector machine [8], and convolutional neu-
ral networks (CNNs) [9, 10]. In these methods, CNNs are
one of the most commonly used methods which has achieved
great success in intelligent computing. Although CNNs
implement a biological-inspired network topology, the node
models and learning rules are quite different from the real-
life biological neural networks. And CNNs often rely on the
error backpropagation learning rule, which has been criti-
cized for being biologically unrealistic and requiring massive

computing power, time, and energy, and thus make it infea-
sible for real-time applications, e.g., on mobile devices or
autonomous robots [11].

In fact, the learning method based on the error gradient
descent lacks biological support. It is known that the human
being has an overwhelming advantage in image recognition,
which shows that our brain has a unique processing mecha-
nism in visual processing. Therefore, many researchers try
to find more biosupported classification methods by imitat-
ing the structure and synaptic plasticity learning rules of bio-
logical neural networks. Among various temporal learning
rules for spiking neural models, several rules have been
widely studied, including spike-timing-dependent plasticity
(STDP), the tempotron rule, the SpikeProp rule, the SPAN
rule, the Chronotron rule, and the ReSuMe rule [12]. Mark-
ram proposed the spike-timing-dependent plasticity (STDP)
which has been confirmed to explain the brain activities espe-
cially for LTP and LTD [13]. STDP learning rule which
adjusts the synaptic weights according to the spiking time
interval of presynaptic and postsynaptic currents is widely
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used for unsupervised learning of SNNs [14, 15]. In view of
the great success of deep learning, Kheradpisheh proposed
a spiking deep convolutional neural network (SDNN) based
on STDP rules, which can extract image features with multi-
layer convolution operation [16], Kulkarni proposed normal-
ized approximate descent to apply error back propagation
[17], and they both achieved high performance on the
MNIST dataset. In other applications, Seijoon proposed
spike Yolo, which is the first time to use the SNN for target
detection and has achieved the same performance as CNN
[18]. In particular, the tempotron learning is specially
designed to solve the binary classification problem of spike
trains. Compared with other algorithms, it has stronger pat-
tern recognition ability and can make appropriate decisions
based on an error-correcting strategy which adjusts only a
few parameters under the effect of supervisory signals. More-
over, different from traditional supervised learning algorithm
based on gradient descent, the tempotron learning does not
need to explicitly calculate the gradient of the cost function
with respect to parameters, which avoids the problem caused
by the discontinuity of firings in SNNs.

Besides learning rules, preprocessing of input data and
visual attention is also crucial for visual image recognition
[19]. In 1959, Hubel and Wiesel inserted a electrode into
the cat’s visual cortex and projected light and dark pattern
on the screen in front of the cat, and they found that some
neurons in the visual cortex fired rapidly when the line was
at a particular angle, while other angles corresponds to differ-
ent neurons [20]. This experiment showed that neurons in
the visual cortex are selectively responsive to the directions
of visual stimulation, and such cells are known as orientation
selective cells. Subsequently, Simoncelli established a mathe-
matical model, called the motion energy model [21], for the
response of visual cortical areas V1 and MT. And the MT
receptive field is sensitive to pattern direction. Recently,
Beyeler et al. modify the motion energy model and runs on
off-the-shelf graphics processing unit (GPU) successfully
[22]. Their simulator CARLsim is written in C/C++ and run-
ning on CUDA environment which is an efficient computing
platform of NVIDIA, supporting many kinds of spiking neu-
ron models and synaptic plasticity rules [23]. They built a
hierarchical feedforward SNN that integrates a low-level
memory encoding mechanism with a higher level decision
process to perform a visual classification task in real-time.
The network was trained by an STDP-like learning rule and
finally achieved 92% accuracy in the MNIST database of
handwritten digits [24].

In general, although SNNs have strong biological charac-
teristics and have been broadly studied in computational
neuroscience, the computing accuracy is lower than that of
traditional artificial neural networks. In this article, by apply-
ing the motion energy model and orientation-selective mech-
anism of visual cortex as studied in [24] for the preprocessing
of input data, we use the biologically plausible supervised
synaptic learning rule named tempotron [25] to replace the
STDP-like learning rule to train the output weights. In order
to simplify the training process and improve computational
efficiency, we propose the single-spike temporal encoding
which is one of the simplest temporal encoding for the trans-

form of firing rates to spiking trains before the tempotron
learning. Our results show that the this model is very efficient
for the MNIST hand-written digit recognition with the rec-
ognition accuracy of 96% based on only 2000 training sam-
ples. Compared with other image classification methods,
our model needs much smaller data samples to achieve high
performance of classification.

2. Methods

2.1. Network Architecture. The network architecture is shown
in Figure 1(a). The network is divided into four layers (dotted
boxes). The input layer (MNIST grayscale images with 28 ×
28 pixels) was fed through a feed-forward network consisting
of V1 and V2, which then projected to a downstream popu-
lation of decision neurons (output layer). V1 and V2 popula-
tions were previously implemented and tested in papers [21–
23]. Each image is spatially expanded into four pools
orientation-selective responses of the V2 layer neurons, with
each pool of neurons preferentially responded to one of four
spatial orientations in 45 ° increments (horizontal “H,” right
diagonal “RD,” vertical “V,” and left diagonal “LD”
(Figure 1(b)). V1 simple and complex cell responses were
constructed by using the rate-based motion energy model.
The 28 × 28 pixel images in the MNIST dataset were proc-
essed at three different spatial scales resulting in 84 filter
responses per pixel. Simulated spiking neurons in V2
received input only from V1 complex cells and preferentially
responded to one of four spatial orientations. The orientation
layer V2 thus consists of four pools of 28 × 28 neurons (as
illustrated in Figure 1(b)). Synaptic weights from V2 to the
output layer are trained using the spiking-based tempotron
supervised learning rule which will be introduced in the fol-
lowing sections. Figure 1(b) shows some MNIST samples
(28 × 28) and their corresponding orientation-selective
responses (28 × 112). The orientation layer consisted of four
pools of 28 × 28 neurons responding to one of four spatial
orientations. Although there are subtle differences in writing
for the same digit, the heatmaps are very similar and signifi-
cantly different from the other digits. For example, digit 1
shows the strongest response to the vertical direction. Firing
rates are color-coded ranging from 0Hz (blue) to 400Hz
(red).

3. Motion Energy Model

V1 consists of the V1 simple cell, V1 complex cell, and spik-
ing neurons. V1 cell responses were constructed by using the
first stage of the (rate-based) motion energy model [23]. V1
simple cells are modeled as linear space-time-oriented filter
whose receptive fields, consisted of 28 space-time orienta-
tions (Uniform distribution in sphere), are third derivatives
of a Gaussian which are very similar to a Gabor filter. V1
complex cell responses were computed as a weighted sum
of simple cell afferents that have the same space-time orien-
tation and phase. Since the motion energy model expected
movies rather than static images as an input, we expand the
28 × 28 pixel image into videos (20 frames with each duration
of 50ms) as the input. A visual stimulus was processed at
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Figure 1: (a) Network architecture. The network is divided into four layers (dotted boxes). The input layer (MNIST grayscale images with
28 × 28 pixels) was fed through a feed-forward network consisting of V1 and V2, which then projected to a downstream population of
decision neurons (output layer). The black dot is the Izhikevich model, and the white circle is the leaky integrate-and-fire (LIF) model.
The input is the raw pixel value of MINIST grayscale images. V1 simple and complex cell responses were constructed by using the rate-
based motion energy model. Simulated spiking neurons in V2 received input only from V1 complex cells and preferentially responded to
one of four spatial orientations. There are full connections from the V2 layer to the output layer, with the weights updated by the
tempotron learning rule. (b) Some MNIST samples (28 × 28) and their corresponding orientation-selective responses (28 × 112). Each
image is spatially expanded into four pool orientation-selective responses of the V2 layer neurons, with each pool of neurons preferentially
responded to one of four spatial orientations (horizontal “H,” right diagonal “RD,” vertical “V,” and left diagonal “LD”). Firing rates are
color-coded ranging from 0Hz (blue) to 400Hz (red).
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three different spatiotemporal scales (as the three banks
depicted in neuron populations in the V1 layer of Figure 1)
resulting in 84 filter responses per pixel. Filter responses were
then interpreted as the mean firing rates of Poisson spike
trains which are the input of V1 spiking neurons.

V2 only consists of spiking neurons which receive the
input from V1 spiking neurons and more sensitive to four
specified directions in 45° increments (horizontal “H,”
right-diagonal “RD,” vertical “V,” and left-diagonal “LD”).
The neurons were broadly tuned such that they only
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Figure 2: (a) Firing rates of four pool orientation-selective V2 neurons for different digit images. (b) Spike trains for V2 neurons after t =
100,250,350ms. (d) Synaptic weights from the V2 layer to the output layer after tempotron learning with n = 1,10,200 training samples for
the digit “0:” Note that firing activities of the edge neurons of each pool of the orientation population in V2 as shown in (c) (bottom
panel) are quite similar with the weight matrix after learning. (e, f) The voltage accumulations of output neurons during the training and
testing process, respectively.
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response strongest to a specific direction in a Gaussian neigh-
borhood and send an inhibitory projection to the neurons
with the antipreferred direction. V2 orientation layer con-
sisted of 3136 neurons correspond to 28 × 28 pixels in four
orientations. The orientation information is presented by
the firing rate of the V2 neuron population. For complete
model description and parameter settings, please refer to
[21–23]. Here, V1 and V2 layers are modeled by using
the CARLSim SNN simulator platform which is available
on the website http://www.socsci.uci.edu/jkrichma/
CARLsim/.

4. Spiking Neuron Model

The neurons in V1 and V2 are modeled by using the Izhike-
vich neuron [26], which has both computational efficiency
and biological plausibility for simulating large-scale spiking
neural networks.

dV tð Þ/dt = 0:04V tð Þ2 + 5V tð Þ + 140 −U tð Þ + Isyn tð Þ
dU tð Þ/dt = a bV tð Þ −U tð Þð Þ,

if V > 30mV, then
V = c

U =U + d

(
,

ð1Þ

where V represents the membrane potential, and U is a
membrane recovery variable; Isyn is the external synaptic cur-
rent through neuron, and the units for the membrane poten-
tial V and time t are mv and ms, respectively. The parameters
a, b, c, d can be set as different values according to different
neuron types. For example, regular spiking (RS) neurons
(excitatory neurons) have a = 0:02, b = 0:2, c = −65, d = 8,
and fast spiking (FS) neurons (inhibitory neurons) have a
= 0:1, b = 0:2, c = −65, d = 2 [26, 27].

There are two synapse model descriptions: the current-
based (CUBA) description uses a single synaptic current
term while the conductance-based (COBA) description
calculates the synaptic current using more complex con-
ductance equations for each synaptic receptor-type. Both
CUBA and COBA current contributions are influenced
by the synaptic weight of the synapse [28]. Here, we use
the COBA mode. There are four receptor types, that is,
AMPA (fast decay), NMDA (slow decay and voltage-
dependent), GABAa (fast decay), or GABAb (slow decay).
A spike arriving at a synapse that is postsynaptically con-
nected to an excitatory (inhibitory) neuron increases both
gAMPA and gNMDA (gGABAa

and gGABAb
). So, Isyn includes

the excitatory current and inhibitory current:

Isyn = ie + ii

ie = iAMPA + iNMDA

ii = iGABAa
+ iGABAb

: ð2Þ

The total current Isyn for each neuron is given by

iAMPA = gAMPA v − vrevAMPAð Þ

iNMDA = gNMDA
v + 80/60½ �2

1 + v + 80/60½ �2 v − vrevNMDAð Þ ,

iGABAa
= gGABAa

v − vrevGABAa

� �
iGABAb

= gGABAb
v − vrevGABAb

� �
ð3Þ

where g and vrev are specific to a particular ion channel or
receptor. Synaptic conductances g obey the exponential
decay and changed when presynaptic spikes arrived.

dgr tð Þ
dt

= −
1
τr
gr tð Þ +w〠

i

δ t − tið Þ, ð4Þ

where δ is the Dirac delta function, w is the synaptic
weight, τ is the time constant, and r is the receptor type
(AMPA, NMDA, GABAa, GABAb). ti is the arriving time
of presynaptic spikes. In our simulations, we set the
parameters as τAMPA = 5ms, τNMDA = 150ms, τGABAa

= 6
ms, and τGABAb

= 150ms.

5. Single-Spike Temporal Encoding for V2

Since the orientation information in the V2 layer is presented
by firing rates of the neuronal population (shown in
Figure 1(b)), it cannot be directly transmitted to the output
neurons for the spiking-based supervised learning. Here, we
adopt the latency coding [29] for the transform of V2 firing
rates to spiking trains. Latency coding is one of the simplest
temporal encoding. It encodes information of the response
time in the encoding window, which is related to external
stimulus. According to the characteristics of neurons, i.e.,
the larger the input, the earlier the neuron discharges, and
no firing without stimulation, the input information is
encoded into a delay time relative to the initial time and
mapped to a predefined time window. In order to simplify
the training process and improve computational efficiency,
we normalize the firing frequencies of V2 neurons and
encode them into a spiking train in the time window between
0 and T with each neuron fires only once (i.e., single-spike
temporal encoding). V2 neurons with high firing rates would
result in earlier encoded spiking time, whereas neurons with
low firing rates would firing later or no firing at all (as shown
in Figures 2(a)–2(c)). In this way, the spike train of the
encoded V2 layer is sparse and much efficient for tempotron
learning. The spiking time of the ith V2 neuron is obtained
by

ti = 1 − f ið ÞT: ð5Þ

Here, f i is the normalized firing frequency of the ith
(i = 1, 2; ;3136) neuron in the V2 layer. The length of time
window is T = 400ms. After encoding, the higher the firing
frequency, the earlier the spike time ti. For example, if the i
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th V2 neuron has no firings, its encoded spike time ti is equal
to T . Note that the spiking time T is not included in the
calculations of synaptic learning.

6. Tempotron Supervised Learning

Following the previous implementation of V1 and V2 layers
and the single-spike temporal encoding, we train the synaptic
weights from V2 to the output layer for the recognition of the
MNIST database using a spiking-based supervised learning
rule, called the tempotron learning proposed in [25]. The
V2 orientation layer is fully connected to the output layer
which is plastic in Figure 1. The output layer consists of 10
leaky integrate-and-fire (LIF) neurons, corresponding to 10
types of digits (0, 1,⋯, 9). There are 3136 × 10 connections
(presynaptic 3136 neurons times postsynaptic 10 output neu-
rons), and the synaptic weights w are a matrix of 3136 × 10.
The subthreshold membrane voltage of the decision/output
layer is a weighted sum of the postsynaptic potentials (PSPs)
from all incoming spikes of the V2 layer [25]:

V j tð Þ = 〠
N

i=1
wij〠

ti

K t − tið Þ + V rest, ð6Þ

where ti is the spiking time of the ith neuron
(i = 1, 2; ;⋯,N , N is the number of presynaptic V2 neurons),
and wij is the synaptic weights from the ith V2 layer neuron
to the jth output neuron. Kðt − tiÞ is the normalized PSP
contributed by each incoming spike:

K t − tið Þ =V0
exp − t − tið Þð Þ

τ
−
exp − t − tið Þð Þ

τs

� �
, ti < t,

ð7Þ

Here, τ and τs denote decay time constants of membrane
integration and synaptic currents, respectively. The factor V0
normalizes PSP kernels to 1. Input spike arrives in the time t
which locates in the time window ½0, T�. When VðtÞ crossed
the firing threshold (here, V threshold = 1), the neuron elicits a
spike, then VðtÞ exponentially decays by shunting all incom-
ing spikes that arrived after the output spike (for details,
please see [25]). Here, we take V rest = 0, V0 = 2:12, τ = 16
ms, and τs = 4ms.

The update of weights follows the below rules:

Δwj =

λ+ 〠
ti<tmax

K tmax − tið Þ if P+error,

−λ− 〠
ti<tmax

K tmax − tið Þ if P−error,

0 otherwise:

8>>>>><
>>>>>:

ð8Þ

Here, tmax is the time when the membrane potential VðtÞ
of the decision layer reached the maximal value. The constant
λ+ and λ− denotes the updating value of synaptic weights for
each input spike. Δwj is the change value of synaptic weight
projecting to the jth output neuron, j = 1, 2; ;⋯, 10. The clas-

sical tempotron rule is used in the binary classification prob-
lem. Each input pattern belongs to one of two classes (labeled
P+ and P−). Assume that when input belongs to the P+ (P−)
pattern, the output neuron should spike (not spike). But if
the input belongs to P+ and the output neuron does not spike,
then P+ is the error, so is the same for P−. The tempotron
learning is to modify the synaptic weights whenever an error
occurs.

Here, we explore the tempotron learning for multiclassi-
fication task of the 10-digit recognition. During the training
process, the correct output neuron which belongs to the cur-
rent input pattern is labeled as P+ and P− for the other nine
outputs. Therefore, the voltage V of the labeled neuron
should pass the firing threshold for spiking, while the volt-
ages V of the other nine neurons should be under the firing
threshold (not spike). If this condition is not met, then the
P+ error and P− error occurred. The weights will be updated
until the outputs meet the condition. The average number of
iterations for learning is usually around 5 for P+ and 1 for P−.
The initial values of weights from the V2 layer to the decision
layer are quite small (0:001), thus weights are gradually
increased to trigger the correct output neuron firing.

7. Results

In order to evaluate the computational performance of our
model, we applied it to the extensively studied MNIST data-
base of handwritten digits. The simulation comprised three
stages: a preprocessing stage in which the MNIST dataset
was converted into orientation responses, a training phase,
and a testing phase. The preprocessing stage was performed
only once initially. Each image is spatially expanded into four
pool orientation-selective responses of the V2 layer neurons,
with each pool of neurons preferentially responded to one of
four spatial orientations in 45° increments (horizontal “H,”
right diagonal “RD,” vertical “V,” and left diagonal “LD”
(Figure 2(a)). After the single-spike temporal encoding, firing
rates in the V2 layer are transformed into spike trains with
each neuron that has only one spiking time as shown in
Figure 2(b). Since the firing rate of each V2 neuron is
encoded as a single spike with the spiking time proportional
to the firing rate, the encoded spike trains of the four pools of
orientation-selective neurons look like four triangles, where
the image center of the four orientation population corre-
sponding to the highest intensity of the V2 response shows
the earliest encoded spiking time. Figure 2(c) shows the spik-
ing neurons at three different times after the single-spiking
temporal encoding, and we can see that center neurons with
the highest firing rates fire at the earliest times, while edge
neurons with low firing rates fire near the end of time
window.

During the training stage, the change of synaptic weights
Δw is calculated according to the kernel equation (8), where
updating changes exponentially declined with the increase of
time interval between the spiking time and the time when the
membrane potential of the output layer reached the maximal
value, i.e., tmax. Since the number of presynaptic V2 spikings
gradually increase during each time window, the output neu-
rons reach the maximal value at the end of each time
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window. Therefore, as shown in Figure 2(d), synaptic
updates from center neurons to output neurons can be
ignored due to the large time interval between their spiking
times ti and tmax. Only weights from edge neurons to output
neurons are significantly increased. By comparing Figure 2(c)
and Figure 2(d), we can clearly see that firing activities of the
edge neurons of each pool of the orientation population in
V2 are quite similar with the weight matrix after learning.
In this way, after training the temporal information of the
V2 activity as shown in Figure 2(c), it is successfully trans-
ferred and saved as spatial information in the synaptic
weights from V2 to the outputs as shown in Figure 2(d).
For each sample image, synaptic weights are updated only
once at the end of each time window. With the increase of
training samples n = 1,10,200, more weights from edge
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Figure 3: The influence of the time window T (a) and weights updating amount λ (b) on the classification accuracy of our model. In this
paper, we choose the optimal value as T = 400ms and λ = 0:001. (c) The influence of training samples on the computational performance
of this model with 2, 4, or 8 directions in the V2 layer, where testing samples are 1000. (d) The influence of testing samples on the
computational performance, where training samples are 2000.

Table 1: Comparisons with other spiking-based models on the
performance of MNIST recognition.

Model Train Test Accuracy (%)

Spiking deep CNN [16] 60000 10000 98.4

Spiking deep NN [30] 60000 10000 98.6

Spiking deep belief network [31] 60000 10000 94.09

SNN+NormAD [17] 50000 10000 98.2

Living NN+STDP [32] 10000 1000 74.7

SNN+STDP [24] 2000 1000 92

V2 layer+tempotron (this model) 2000 1000 96
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Figure 4: (a)The architecture of the convolutional neural network (CNN). The convolutional layer has 32 convolution kernels of size 3 × 3.
The pooling layer has kernels of size 2 × 2. The output layer is a fully connected layer of 128 × 10, which is mapping to 10 classes. (b) The
comparison of classification accuracy between our model and CNN with one or two convolutional layers in the tasks for different number
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directions before the convolutional layer. The two directions are horizontal and vertical while the four and eight directions are in 45° or 22
:5° increments, respectively. The convolutional kernels (d, e) and feature maps (f, g) for CNN (1 convolutional layer) with or without the
V2 layer are compared.
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neurons to the outputs are enhanced, making the weight
image become more fuzzy and polarized.

Figures 2(e) and 2(f) illustrate a sample run for which the
accumulation of voltage caused the labeled output neuron to
cross the threshold. Since the encoded information of the
presynaptic V2 firings are concentrated in the later part of
time window as shown in Figure 2(b), the voltages rise from
zero gradually during the whole time window. During the
training process, the voltage of the labeled output neuron
with input belongs to P+ is accumulated repeatedly due to
the increase of weights until it crosses the threshold. While
the weights targeting to the other output neurons are almost
not updated, keeping the other voltages under threshold.
After training all the weights are fixed, the output neuron
having the highest membrane voltage is taken as the final rec-
ognition result. From this figure, we can notice that for both
training and testing process, the voltage of the correct output
is significantly integrated and increased to reach to the
threshold during the last 50ms of the time window. This
means that only presynaptic spikes from the edge neurons
which firing at the end of time window can be successfully
propagated to the output layer. And only the correct output
neuron connected by the previously learned weights from
the corresponding four pools of V2 neurons receives the
most information and shows the most rapid accumulation
to reach to the threshold.

We also examine the influence of the parameter time
window T and weights updating amount λ as shown in
Figures 3(a) and 3(b). Due to the nonlinear dynamical
characteristics of synaptic integration, if the time window
T is too small, presynaptic information from V2 neurons
cannot be completely propagated to the output layer, but
if it is too large, since the synaptic current decays expo-
nentially, it will lose much useful information after a long
time of attenuation. Therefore, the value of T should be
moderate to ensure that less information is lost in the pro-
cess of synaptic transmission; otherwise, the performance
of the network will be seriously reduced. In this paper, T
is set to be the optimal value 400ms. For the parameter
of weights updating amount λ, the updating time of syn-
aptic weights will increase and prolong the training time
when λ is too small, while if λ is too large, the synaptic
weights will change greatly in each adjustment step, which
will reduce the learning ability of the network and lead to
the decline of recognition accuracy. Therefore, considering
both of the recognition accuracy and time consumption, λ
is set to be 0:001 in this paper.

Figure 3(c) demonstrates that the larger the number of
orientations/directions in the V2 layer is, the smaller training
samples are needed for achieving high recognition accuracy.
For the cases of 4 directions and 8 directions, the accuracy
can reach to 93% based on only 500 training samples.
Besides, the computational performance of this model is very
robust with the increase of testing samples as shown in
Figure 3(d), with the training sample of 2000 for the 4 direc-
tion cases.

In Table 1, we compare our model with some other
spiking-based neural networks on the task performance of
the MNIST classification. Compared with the 60000 training

samples and 10000 testing samples needed in the other
methods, our model needs only 2000 training samples and
1000 testing samples and almost has no much loss of accu-
racy. In this paper, we used the tempotron learning rule to
replace the STDP-like learning rule in [24], which further
improved the classification accuracy on the MNIST dataset.
The results show that the method adopted in this paper can
achieve high classification performance with much smaller
training samples.

Since convolutional neural networks (CNN) are most
commonly used for image recognition in recent years, we
specifically compared the computational accuracy of our
model and traditional CNN with one or two convolutional
layers in the task with different training sample numbers.
The CNN architecture is shown in Figure 4(a). Figure 4(b)
demonstrates that the accuracy increases with the increase
of training samples for both our model and CNNs, but the
performance of our model is always better than CNNs espe-
cially for small training samples. Noted that when training set
is 500, the classification accuracy of our model achieves a
high performance of 93% while the accuracy of CNN with
two layers is only about 86%. Although CNN can increase
the accuracy by adding convolution layers, it still cannot
achieve good performance for small samples.

In order to examine whether the preprocessing of the V2
layer can improve the performance of CNN, we add the V2
layer with two, four, or eight directions before the convolu-
tional layer of CNN (Figure 4(c)). The two directions are hor-
izontal and vertical while the four and eight directions are in
45° or 22:5° increments, respectively. To avoid too much cal-
culation, only CNN with one convolutional layer is examined
by adding the V2 layer. From this figure, we can see that the
V2 layer with four or eight directions can more significantly
improve the performance of CNN for small training samples
than the case of only two directions. When further increasing
the number of training samples, the more training sets will
lead to larger calculation cost but no significant improvement
in the classification accuracy. Figures 4(d)–(g) compare the
convolutional kernels and feature maps for CNN (one con-
volutional layer) with or without the conversion of V2 orien-
tation responses from the image data. We can see that more
feature maps for CNN with the V2 layer can be extracted
than the traditional CNN, which contributes to the reduction
of training samples and improvement of computational
performance.

8. Conclusion

Here, we present a large-scale model of a hierarchical spiking
neural network to perform a visual classification task in real-
time. Based on the orientation-selective features of the pri-
mary visual cortical neurons and supervised tempotron
learning method, we have successfully realized the high per-
formance of MNIST handwriting digit recognition with
small data samples. The orientation-selective layer expands
the original image into high dimensional information to
achieve highly detailed feature extraction, which provides
the main contribution to reduce the training samples. Our
results also show that the tempotron supervised learning rule
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is efficient to train the weight matrix between the V2 layer
and output layer, which further improves the recognition
accuracy. Compared with other image classification methods,
our method needs much smaller data samples to achieve high
performance of classification. Our results indicate a new
brain-inspired computational model based on the visual cor-
tex image processing mechanism to realize high-precision
image recognition under small sample data. This work may
provide a basis for the wide application of spiking neural net-
works in the field of intelligent computing, which is valuable
and meaningful in both theoretical and applied researches.
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