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The default-mode network (DMN) is believed to be associated with levels of consciousness, but how the functional connectivity
(FC) of the DMN changes across different states of consciousness is still unclear. In the current work, we addressed this issue by
exploring the coactive micropattern (CAMP) networks of the DMN according to the CAMPs of rat DMN activity during the
sleep-wake cycle and tracking their topological alterations among different states of consciousness. Three CAMP networks were
observed in DMN activity, and they displayed greater FC and higher efficiency than the original DMN structure in all states of
consciousness, implying more efficient information processing in the CAMP networks. Furthermore, no significant differences
in FC or network properties were found among the three CAMP networks in the waking state. However, the three networks
were distinct in their characteristics in two sleep states, indicating that different CAMP networks played specific roles in distinct
sleep states. In addition, we found that the changes in the FC and network properties of the CAMP networks were similar to
those in the original DMN structure, suggesting intrinsic effects of various states of consciousness on DMN dynamics. Our
findings revealed three underlying CAMP networks within the DMN dynamics and deepened the current knowledge concerning
FC alterations in the DMN during conscious changes in the sleep-wake cycle.

1. Introduction

Sleep is associated with the fading of consciousness, and it is
manifested objectively as a reduction in responsiveness to
environmental stimuli [1, 2]. Over the past few decades, the
changes in functional connectivity (FC) across multiple brain
regions during sleep have been recognized as a key issue in
investigating the electrophysiological mechanism of con-
sciousness [3–5]. Brain networks always display increased
dissociation of FC as deep sleep occurs [6, 7], favoring more
randomized structures with lower local efficiency [8]. More-
over, segregated network modules can be observed in deep
sleep [9], implying a close relationship between reduced
functional integration and the loss of consciousness. One of
the most studied brain networks during sleep is the default-
mode network (DMN) [10–12], which is believed to be

closely related to consciousness and cognitive functions in
both humans and animals [13–15]. The regions of the
DMN retain their coupling during light sleep and are
decoupled during deep sleep, signifying that DMN connec-
tions may support certain states of consciousness [16, 17].
In addition, the alterations in FC in DMN subsystems from
light sleep to deep sleep account well for the quantitative fea-
tures of light sleep [18]. However, the FC among core regions
of the DMN has been found to remain intact during sleep
[11]. Thus, the underlying neural mechanism of the alter-
ations in DMN connectivity during changes in consciousness
remains unclear.

Functional connectivity reflects the synchronization of
neural activity in multiple brain regions, and various algo-
rithms have been proposed to characterize it [19]. The most
commonly applied measurement is the coherence algorithm
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[20], which statistically describes the interdependency
between pairs of time series in the frequency domain. How-
ever, the electroencephalography (EEG) signals, which reveal
the electrical activity of the brain along the scalp, typically
contain several distinct sources of interference and back-
ground noise that cannot be removed by artifact removal or
other methods. In addition, functional magnetic resonance
imaging (fMRI) can detect changes associated with blood
flow (the blood oxygen level-dependent (BOLD) signals)
from many brain voxels [21], but it cannot directly reveal
the neural activity and also contains the background noise.
All of these stochastic effects may account for spurious con-
nectivity when connectivity is assessed with the existing
methods [22, 23], which estimate the static functional con-
nectivity. Recently, several studies have conjectured that
exploring the FC patterns from the dynamic FCs of neural
activity might help reveal the underlying connectivity, and
several methods have been proposed, such as dynamic func-
tional connectivity (dFC) and microstate networks. The dFC
describes the FC pattern from a series of varied FC networks
estimated with sliding windows [24, 25], and microstate net-
works indicate the FC patterns over the time points that
belong to the same microstates [26, 27]. Based on these mea-
surements, prior studies have identified novel FC patterns
from brain activity and demonstrated that these FC patterns
play different roles in cognitive functions [28]. Thus, depict-
ing the FC networks from dynamic brain activity with spe-
cific joint features makes sense.

In the present study, we hypothesized that there might
exist different FC structures during DMN dynamics in the
sleep-wake cycle, and their alterations among distinct con-
scious states could help deepen our understanding about
the association between DMN activity and consciousness.
Accordingly, we recorded the local field potentials (LFPs)
from the rat DMN during wakefulness and sleep. To derive
the FC networks from rat DMN dynamics, we proposed a
novel coactive micropattern network (CAMP network)
method to construct the FCs among DMN regions based
on the coactive micropatterns (CAMPs) from DMN dynam-
ics described in our previous work [29]. Our results illus-
trated more robust functional structures of the CAMP
networks than the original DMN structure, and different
CAMP networks played distinct roles in specific levels of
consciousness. Additionally, both CAMP networks and orig-
inal DMN structures exhibited similar topological alterations
during the sleep-wake cycle, indicating a homogeneous influ-
ence on DMN dynamics from the changes in consciousness
and further deepening our knowledge about the relationship
between the DMN and levels of consciousness.

2. Materials and Methods

2.1. Experiments and Data Recording. In the current work, 29
male Sprague-Dawley rats were used in our experiments. Fif-
teen electrodes were chronically implanted into the brains of
rats under deep anesthesia to acquire neural activity in DMN
regions. The rat DMN contained the following bilateral
structures: the orbital frontal cortex (OFC), the rostral dorsal
prelimbic cortex (PrL), the cingulate cortex (CG), the retro-

splenial cortex (RSC), the dorsal hippocampus (HIP), the
temporal lobe (TE), the medial secondary visual cortex
(V2), and the posterior parietal cortex (PPC). The coordi-
nates of these fifteen DMN electrodes are based on the work
of Lu and his colleagues [30] and are shown in Table 1. The
reference electrode was implanted in the cerebellum, and
two electromyographic (EMG) electrodes were implanted
bilaterally in the dorsal neck muscles. After the electrode
implantation surgery, all rats were raised for at least 2 weeks
for recovery before the recording session started. During the
recording session, the rats were placed in a noise-attenuated
chamber. The local field potentials (LFPs) from DMN
regions, the EMG signals, and the simultaneous video
recordings were continuously acquired for 72 h. The ampli-
fied and filtered signals (0.16–100Hz for LFPs, 8.3–500Hz
for electromyogram (EMG), and 50Hz notch filter) were
stored on a hard disk, and the sample frequency was set to
1,000Hz. All experimental animal procedures were approved
by the Institutional Animal Care and Use Committee of the
University of Electronic Science and Technology of China.

After the recording session, histological images of DMN
regions for each rat were performed to confirm whether the
positions of electrodes were in the correct DMN regions, espe-
cially for four deep regions. The data used in the current work
is the same as that in our prior work, where we have displayed
the histological images of four DMN deep regions, including
the PrL, OFC, CG, and HIP. Only the rats with electrodes in
accurate DMN regions were used in the current work.

The dataset used in the current study was selected from
the last 24 h of the recording. We chose the dataset from
the last 24 h of the recording because, at that time, the rats
were more adjusted to the experimental environment and felt
less external pressure during the signal acquirement. The
total dataset was separated into three different conscious
states, including the awake resting state (AWAKE), the
slow-wave sleep state (SWS), and the rapid eye movement
sleep state (REM). The data for each state were selected by
several experts, and the rules for selection have been summa-
rized in our previous publication based on the LFP, EMG,
and simultaneous videos [31]. For each rat, 30 segments were
chosen for different states, and each segment lasted 10 s. In
total, we obtained approximately 300 s of LFPs for each rat
in each conscious state.

Table 1: Coordinates of the 15 DMN electrodes (mm). A-P, M-L,
and D-V indicate the anterior-posterior, medial-lateral, and
dorsal-ventral directions, respectively.

A-P M-L D-V

The rostral dorsal prelimbic cortex (PrL) 4.2 ±0.8 3

The orbital frontal cortex (OFC) 3.7 ±1.8 4.7

The cingulate cortex (CG) 1.7 ±0.7 2.6

The retrosplenial cortex (RSC) -3.3 0 0

The dorsal hippocampus (HIP) -4.3 ±1.4 3

The posterior parietal cortex (PPC) -4.5 ±4 0

The medial secondary visual cortex (V2) -5.2 ±2.4 0

The temporal lobe (TE) -5.2 ±8 5
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2.2. CAMP Network Algorithm. The coactive micropatterns
(CAMPs) in DMN dynamics are the characteristic maps of
DMN activity which constitute the dynamics of DMN activ-
ity, and the algorithm for extracting the CAMPs has been
proposed in our recent work [29]. In the current study, we
further estimated the functional connectivity network of
DMN for each CAMP in DMN dynamics and tracked their
alterations across different conscious states. Several steps
were included in the CAMP network method.

First, we derived the CAMPs from the dynamics of DMN
gamma (40-80Hz) activity (Figure 1(b)). Electrophysiologi-
cal gamma activity is believed to be strongly correlated with
the blood oxygen level-dependent (BOLD) signals, and the
deactivation of gamma activity in DMN regions has been
observed during external tasks. The description of the CAMP
algorithm as well as its functional roles in different conscious
states during the sleep-wake sleep has been systematically
presented in our prior work [29]. Briefly, the original DMN
activity was bandpass filtered into gamma oscillation, and
the Hilbert transform was then applied to obtain the enve-
lope activity of gamma oscillation. The extreme points in
the envelope activity of each DMN regions were selected as
the active points. If more than seven DMN regions exhibited
the extreme points at the same time, we then defined the
DMN activity in all regions at that time point as the coactive
pattern of DMN dynamics. Afterwards, the k-means cluster-
ing algorithm was employed to all the coactive patterns and
the derived cluster centroids were the coactive micropatterns
(CAMPs). Three spatially distinct CAMPs were decomposed
from DMN gamma dynamics, including the common low-
activity micropattern (cDMN), the anterior high-activity

micropattern (aDMN), and the posterior high-activity
micropattern (pDMN). These CAMPs showed stable spatial
structures during the sleep-wake cycle, and different CAMPs
played distinct roles in each consciousness level. In the cur-
rent work, we also focused on the CAMP index, which con-
tained the distribution of cDMN, aDMN, and pDMN for
all segments and displayed the structure of how these
CAMPs constituted DMN activity. The CAMP index was
applied in the next steps.

Second, the original DMN activity was low-band fil-
tered to the delta band (1-4Hz) to retain only the slow
oscillation. It has been reported that DMN connectivity in
the delta band varied during the sleep-wake cycle and
played an important role in supporting conscious aware-
ness [16, 32]. Thus, we mainly focused on the slow oscilla-
tion at the delta band in the current work. Meanwhile, the
Hilbert transform was employed to this slow activity of
DMN to obtain the distribution of phases in delta activity
at each time point.

Third, the phase-locking value (PLV) method was used to
calculate the connectivity within pairs of DMN regions for
each CAMP. In detail, the phases of time points that belong
to the same CAMP were concentrated, and then, the PLV
method was applied to these phases to construct the structure
of functional connectivity among DMN regions for each
CAMP. The structure of functional connectivity for each
CAMP was the CAMP network. In addition, we also esti-
mated the functional connectivity from all time points
among DMN regions, regardless of whether they belonged
to the same CAMP. This functional structure was termed
the original DMN structure in the further analysis.
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Figure 1: Illustration of the algorithm of CAMP networks. (a) The originally recorded signals from DMN regions. (b) The CAMPs in the
dynamics of DMN activity. (c) Low-frequency bandpass-filtered signals from the original signals. In the present study, we passed the
signals through a 1-4Hz bandpass filter. (d) The three CAMP networks were identified for the three CAMPs by the PLV algorithm.
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Note that during the estimation of the CAMP network,
the first step was performed for all datasets in different con-
scious states and 29 rats. The derived total CAMP index
was then divided for each segment, state, and rat. However,
the second and third steps were performed for each segment
separately to obtain the structures of three CAMP networks
and the original DMN structure for all segments. Finally,
the CAMP network structures and original DMN structures
for each rat and conscious state during the sleep-wake cycle
were derived by a group averaging these four network struc-
tures estimated from the segments.

2.3. Estimation of Topological Features for CAMP Networks
through Graph Theory. In the present study, we employed
a graph theoretical analysis to characterize the properties
of CAMP networks and the original DMN. This type of
analysis is a mathematical approach to studying the features
of complex systems, and it is designed to identify and char-
acterize patterns in the connections between modules in a
network [33].

The clustering coefficient of a network is defined as

C = 1
n
〠
i⊆N

Ci =
1
n
〠
i⊆N

∑j,h⊆N aijaihajh
� �1/3

ki ki − 1ð Þ , ð1Þ

where aij, aih, and ajh are the connectivity between nodes i, j,
and h in the FC matrix A, respectively, N is the set of all
nodes in the network, and n is the number of nodes.

The characteristic shortest path of a network is

L = 1
n
〠
i⊆N

Li =
1
n
〠
i⊆N

∑j⊆N ,j≠id
W
ij

n − 1 , ð2Þ

where dWij is the shortest weighted path length between nodes
i and j.

The small-world index of a network is measured as

S = C/Crand
L/Lrand

, ð3Þ

where Crand and Lrand are the mean clustering coefficient
and mean characteristic shortest path of a number of ran-
dom networks derived from the tested network. In the
present work, the number of random networks is 2000.
Generally, we considered a network with S≫ 1 to be a
small-world network.

The global efficiency of a network is

E = 1
n
〠
i⊆N

∑j⊆N ,j≠i dWij
� �−1

n − 1 , ð4Þ

and the local efficiency of a network is

Eloc =
1
2〠i⊆N

∑j,h⊆N ,j≠i aijaih dWjh Nið Þ
h i−1� �1/3

ki ki − 1ð Þ : ð5Þ

Both global efficiency and local efficiency characterized
the ability of information transmission in network structure
[34]. Specifically, the global efficiency indicated the whole
efficiency of network topological structure, while the local
efficiency was the efficiency of information processing in sub-
structures of the whole network and revealed the fault toler-
ance of the network.

Meanwhile, we estimated the network density as

Amean =
1

n n − 1ð Þ 〠
i,j⊆N ,i≠j

aij ð6Þ

to describe the connectivity of the functional network.
The synchronizability of a network features the structural

property that enables the network to be synchronized, and it
is expressed by the following equation:

Syn = λ2
λn

, ð7Þ

where λ2 is the second smallest eigenvalue of the Laplacian
matrix L of the adjacency matrix A, and λn is the largest
eigenvalue. A larger value of network synchronizability sug-
gests that the network would be more synchronous [35, 36].

2.4. Altered Rate for CAMP Networks and Original DMN
across Different States. To display the similarity of alterations
in topological structures between CAMP networks and the
original DMN during the sleep-wake cycle, we used the sim-
ilarity features with the following equation:

Rsim = N −N1
N

, ð8Þ

where N1 is the number of connections that show the same
alterations between two compared networks, such as an
increase, a decrease, or no change. N is the total number of
changed connections among DMN regions.

2.5. Statistical Analysis. In the current study, we employed
Student’s t-test to explore the topographic differences in
FC between the CAMP networks and the original DMN
in different conscious stages during wakefulness and sleep.
Moreover, the difference in FC among the three conscious
stages for each network was also estimated with Student’s
t-test. All of these tests were corrected by the familywise
error (FWE) rate with p < 0:0002. In addition, to test the
significant alterations in network properties between CAMP
networks with the original DMN in each conscious stage, we
used Student’s t-test and displayed three types of significant
differences for the comparisons: significant difference

4 Neural Plasticity



(p < 0:05), very significant difference (p < 0:01), and most
significant difference (p < 0:001).

3. Results

3.1. Comparisons of Topological Structures between Three
CAMP Networks and the Original DMN. First, using the
PLV method, we constructed three CAMP networks from
the DMN activity for three different states of consciousness
during the sleep-wake cycle based on the CAMPs we
described in our prior study. Specifically, the functional net-
work derived from the common low-activity micropattern
was named the cDMN (cDMmN), the network from the
aDMN was named the anterior default-mode micropattern
network (aDMmN), and the network for the pDMN was
named the posterior default-mode micropattern network
(pDMmN). All of the CAMP networks and the original
DMN showed robust functional structures with different
numbers of segments (data not shown). By comparing the
topological differences between the three CAMP networks
with the original DMN, we observed that all of these CAMP
networks displayed greater FC than the original DMN in the
sleep-wake cycle (Figure 2). However, the increased FC pat-
terns were specific to different CAMP networks and different
states of consciousness. In the AWAKE state, the connec-
tions between the anterior DMN regions ((prefrontal lobe
(PrL), orbitofrontal cortex (OFC), and cingulate gyrus
(CG)) and the posterior DMN regions (hippocampus
(HIP), posterior parietal cortex (PPC), temporal lobe (TE),
V2, and retrosplenial cortex (RSC)) increased significantly
in the three CAMP networks. Moreover, the cDMmN dis-
played enhanced FC within the posterior DMN regions while
the aDMmN and pDMmN showed enhance FC within the
anterior DMN regions. In the SWS state, almost all FC values
among DMN regions were observed to increase in the
aDMmN and pDMmN. The cDMmN displayed increased
FCs between anterior DMN regions and posterior DMN
regions. These differences between the increased FC in
cDMmN and that in aDMmN/pDMmN suggested that the
functional structure of cDMmNwas more similar to the orig-
inal DMN in the deep sleep state. However, in the REM sleep
state, cDMmN exhibited more increased FCs than aDMmN
and pDMmN, indicating that the functional structures of
aDMmN and pDMmN are more similar to the functional
structure of the original DMN.

Although all CAMP networks showed increased FC
among DMN regions than the original DMN, several dif-
ferences among them also existed. As shown in Figure 3,
no difference in FCs across the three CAMP networks
could be observed in the AWAKE state. In the SWS state,
the cDMmN presented significantly higher FC than the
aDMmN or pDMmN, especially the connections between
anterior DMN regions and posterior DMN regions. Con-
versely, the cDMmN had lower FC than the aDMmN or
pDMmN in the REM sleep state. These opposite changes
revealed that the functional roles of cDMmN and
aDMmN/pDMmN might be distinct for the different sleep
states. Interestingly, we observed no difference in FC
between the aDMmN and the pDMmN in SWS or REM

sleep, suggesting that these two CAMP networks might
have similar functions during sleep.

3.2. Comparisons of Network Properties between CAMP
Networks and the Original DMN.Network properties quanti-
tatively represent the graphical structure and the efficiency of
information transition in the network. In the current work,
we first assessed the density and synchronizability of three
CAMP networks and the original DMN in different states
of consciousness. Consistent with the alterations in FCs
among DMN regions across three levels of consciousness,
the network densities of FCs in three CAMP networks were
larger than that in the original DMN for all conscious states.
In the two sleep states, a significant difference was observed
between the network density of cDMmN and aDMmN or
pDMmN. In the SWS stage, the aDMmN and pDMmN
showed the largest values of network density, whereas in
the REM sleep stage, the network density of the cDMmN
was the largest (Figure 4(a)). Moreover, the alterations in net-
work synchronizability in all four networks were similar to
those of network density (Figure 4(b)). These similarities
implied that our proposed CAMP networks were more syn-
chronous than the original DMN.

Moreover, we estimated the small-worldness as well as
the clustering coefficient and the characteristic shortest path
for three CAMP networks and the original DMN in different
states of consciousness. By comparison, we observed that all
CAMP networks displayed larger clustering coefficients and
smaller characteristic shortest paths than the original DMN
during the sleep-wake cycle (Figures 5(a) and 5(b)). Mean-
while, the small-world indices of the three CAMP networks
were larger than those of the original DMN, indicating that
the CAMP networks had greater small-worldness than the
original DMN structure (Figure 5(c)). However, in the SWS
state and REM sleep state, these properties of cDMmN,
aDMmN, and pDMmN were slightly distinct. As we could
see, cDMmN showed a larger clustering coefficient, smaller
characteristic shortest path, and larger small-world index
than aDMmN or pDMmN in the SWS state. However,
in the REM sleep state, aDMmN and pDMmN presented
larger clustering coefficients, smaller characteristic shortest
paths, and larger small-world indices than cDMmN. In
addition, pDMmN displayed greater small-worldness than
aDMmN in the REM sleep state due to the larger cluster-
ing coefficient, smaller characteristic shortest path, and
larger small-world index.

We also estimated the efficiency of each of the three
CAMP networks and the original DMN, including the global
efficiency and the local efficiency. We found that both the
global efficiency and the local efficiency of the three CAMP
networks were greater than those of the original DMN, sug-
gesting that the CAMP networks were more efficient. In
addition, cDMmN was the most efficient structure of all net-
works in the SWS state, and pDMmN was the most efficient
in the REM sleep state (Figure 6).

3.3. Similar Topological Alterations in CAMP Networks and
the Original DMN across Changes in Consciousness. The
FCs among DMN regions showed various topological
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changes across the conscious states (first row in Figure 7).
Compared with the AWAKE state, the anterior DMN
regions showed decreased FCs within themselves while the
posterior DMN regions, except the hippocampus, displayed
increased FCs in the SWS state. During the REM sleep state,
the FCs within anterior DMN regions and FCs between ante-
rior DMN regions with posterior DMN regions decreased
significantly. In addition, we found that the FCs in the
REM sleep state were decreased compared with those in the
SWS state, especially the FCs within anterior DMN regions
and within posterior DMN regions.

The alterations in FC in the three CAMP networks and
the original DMN across states of consciousness were highly
similar (Figure 7) and with small altered rates (Table 2). For
the alterations in FCs between the AWAKE state and the
SWS state, cDMmN displayed a 0.95% altered rate, and
aDMmN/pDMmN showed 12.38%/4.76% altered rates to
the original DMN. In addition, alterations in FCs in the
cDMmN, aDMmN, and pDMmN presented 16.19%, 18.10%,
and 0.95% altered rates, respectively, to those in the original

DMNwhen comparing the AWAKE state and the REM sleep
state. The altered rates of FC changes between the three
CAMP networks (cDMmN, aDMmN, and pDMmN) and
the original DMN measured 4.76%, 16.19%, and 15.24%,
respectively, for the comparison between the SWS state and
the REM sleep state. These low altered rates and high degrees
of similarity further indicated that the alterations in con-
sciousness might respond to consistent FC variations for
the DMN, including the CAMP networks. However, a slight
difference was found between the alterations in FCs in
aDMmN and pDMmN and those in the original DMN. In
these two CAMP networks, the hippocampus showed
increased FC with the temporal lobe during the SWS state,
whereas no significant changes were found in the original
DMN and cDMmN. In addition, greater decreases were
observed in FC between the anterior DMN regions and the
posterior DMN regions than between the original DMN
and cDMmN in the REM sleep state. All of these differences
suggested that the CAMP networks might play different roles
during changes in consciousness across the sleep-wake cycle.
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Figure 2: Comparisons between CAMP networks and the original DMN in different states of consciousness. The red lines indicate
significantly increased FC with p < 0:0002 (FWE correction).
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4. Discussion

In the current study, we derived three CAMP networks (i.e.,
cDMmN, aDMmN, and pDMmN) based on CAMPs in
DMN activity and compared their topological structures
and properties among states of consciousness during the
sleep-wake cycle. We found that all of these CAMP networks
displayed increased FCs compared with the original DMN in
all states of consciousness. Moreover, the local and global
efficiencies were higher in the three CAMP networks than
in the original DMN, suggesting that the CAMP networks
executed more efficient information processing during the
sleep-wake cycle. In the AWAKE state, no difference could
be observed among the CAMP networks for both topological
structures and features. However, the aDMmN and pDMmN

became more efficient in the SWS sleep state, whereas in the
REM sleep state, the cDMmN was the most efficient struc-
ture. These differences indicated that the roles of the three
CAMP networks might be specific to distinct states in sleep.
Interestingly, the alterations in topological structures and
features of CAMP networks were highly similar to the origi-
nal DMN, implying an intrinsic effect of conscious alteration
on the DMN activity. Taken together, our findings revealed
the underlying functional structures of DMN activity associ-
ated with its CAMPs and deepened the current knowledge
regarding the alteration in DMN FC during changes in con-
sciousness in the sleep-wake cycle.

The FC of the DMN always changes during the sleep-
wake cycle. The decoupling of frontal DMN regions with
other DMN regions has been noted in the SWS state, with
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Figure 3: Comparisons among the three CAMP networks in different states of consciousness. The red lines indicate significantly increased FC
with p < 0:0002 (FWE correction). The blue lines indicate significantly decreased FC with p < 0:0002 (FWE correction).
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an increase in connectivity strength within posterior DMN
regions [17, 37, 38]. Accordingly, our findings revealed that
the FC strength among anterior DMN regions was reduced

while that within posterior DMN regions was significantly
increased. This increase indicated a strong clustering of the
posterior submodule in the DMN during deep sleep [39]
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Figure 4: The network density of FC and network synchronizability of the three CAMP networks and the DMN in each state of
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with p < 0:05. ∗∗ indicates a very significant difference with p < 0:01. ∗∗∗ indicates the most significant difference with p < 0:001.
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and may be related to the memory consolidation process.
Memory consolidation often occurs during deep sleep [40–
42], and the coupling between the hippocampus and cortical
regions mediates memory consolidation during sleep [43].
We found that the pDMmN exhibited increased coupling
between the HIP and TE during deep sleep, illustrating the
participation of DMN neural activity in memory consolida-
tion during deep sleep. Meanwhile, the graph theoretical
analysis demonstrated an enhanced clustering coefficient
and decreased characteristic shortest path of all DMmNs
and DMN during the SWS state, implying a more regularized
structure of the DMN in deep sleep [8]. In addition, increased
network density and efficiency also emerged, suggesting that
the structure of the DMN was more efficient for information
processing during the deep sleep state.

However, in the REM sleep state, all of the DMN and
DMmNs showed decreased connections within anterior
DMN regions and within posterior DMN regions. This
decrease in FC in the DMN has also been investigated in a
prior study, and the opposite alteration in FCs in the DMN
between the SWS state and the REM sleep state suggested
that DMN activity might be modulated in distinct sleep states
[44]. In addition, all of the DMmNs and the original DMN
tended toward randomized structures with a decreased clus-
tering coefficient and increased shortest path. This random-
ized structure of the DMN further implied a decreased
efficiency of information processing during the REM sleep
state [44, 45]. Through the connections of DMN regions
decreased in the REM sleep state, we observed that the con-
nectivity between anterior and posterior DMN regions per-
sisted in all sleep states. Our findings suggested that major
interactions of DMN regions existed during sleep and were
in agreement with the view that the DMN preserved the
functions for consciousness and cognition during the sleep-
wake cycle [46].

The functional structures of DMmNs were distinct from
the functional structure of the DMN in each state of con-
sciousness in the sleep-wake cycle, with increased FCs and
efficiency among all DMN regions. The increased values of
connections in DMmNs might indicate the intrinsic func-

tional structures of DMN activity because the CAMP analysis
decomposed the neural activity of DMN regions into several
micropatterns based on their coactivation properties. This
procedure could help remove the effect of noise interference
on the DMN functional structure and reveal the intrinsic
DMN structures. Further investigation showed that the dif-
ference between the DMmNs and the DMN connectivity
was specific to the levels of consciousness. Consistent with
the findings of CAMPs, the corresponding DMmNs pre-
sented similar alterations in topographical structure to the
original DMN in the AWAKE state, implying their homoge-
nous roles in conscious awareness at rest. Nevertheless, their
topological structures in SWS and REM sleep states were dis-
tinct. The aDMmN and pDMmN were more efficient and
synchronous in the SWS state while the cDMmN showed
efficient topology in the REM sleep state. We have previously
indicated that different CAMPs play distinct roles in different
conscious states. In the present study, we also found that the
roles of DMmNs were specific to different levels of con-
sciousness. Together, our findings showed several possible
activity patterns for the neural activity of DMN regions,
and these patterns represented different specific functions
for conscious awareness. In addition, we observed that the
topological alterations in DMmNs and DMN across three
states of consciousness in the sleep-wake cycle were similar,
with high correlations. The changes in consciousness could
result in universal alterations in DMN activity, and all of
the micropattern networks of DMN activity displayed consis-
tent variations in functional structures during sleep.

Meanwhile, we also observed increased efficiency, includ-
ing the global efficiency and local efficiency, during the SWS
state and decreased efficiency in the REM sleep state for all
the original DMN structure and CAMP networks. The
increased efficiency means less energy consumption and the
decreased efficiency means more energy consumption. Thus,
our findings illustrated less energy consumption of DMN
during the deep sleep and more energy consumption in the
REM sleep and demonstrated the functional association
between DMN energy cost with different conscious states.
The energy cost of DMN has been reported in a prior study,
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efficiency. (b) Comparisons of global efficiency. ∗ indicates a significant difference with p < 0:05. ∗∗ indicates a very significant difference with
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which revealed the energy cost of DMN at the resting state
and tasks using the ordinate differential equation (ODE)
model [47]. Additionally, the computational models, such
as the ODE model and two, have contributed to the findings
of a neural mechanism for the dynamics in the sleep-wake
cycle [48]. These models provided mechanistic insight into
the stabilization of sleep and wake states and suggested a
common underlying neural framework driving a diverse

range of observed behaviors during the sleep-wake cycle
[49, 50]. Modelling sleep and the circadian cycle has been a
promising way in tracking the underlying mechanism of
brain activity during sleep and related disorders, which could
further deepen our understanding of consciousness.

Although our findings have revealed the alterations in
CAMP networks within the DMN dynamics during the
sleep-wake cycle, this study also has several limitations that
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should be stated. First, our findings are based on the DMN
structure of rats, which is different from that of the human
brain. Although the regions of the rat DMN overlap with
the regions of human DMN, our findings should be validated
on human DMN activity. In addition, our DMmNs and
DMN functional structures are derived from the delta band
(1-4Hz) oscillations and the CAMP points. The alterations
in topological structures and features in all of these networks
are specific to the frequency bands. Therefore, future investi-
gations could reveal these alterations in the DMN functional
structure in other frequency bands.

5. Conclusion

The alteration in DMN connections during the sleep-wake
cycle is an important issue underlying the mechanism of con-
scious changes, and it is addressed in this work. Instead of
estimating the connections among DMN regions from the
whole time series, we proposed a coactive micropattern net-
work (CAMP network) measurement that constructed the
functional connection structures based on the coactive activ-
ity patterns in DMN dynamics. We found that three CAMP
networks possessed distinct topological structures and graph
properties in different conscious stages during the sleep-wake
cycle. These differences further suggest that the roles of the
three CAMP networks might be specific to distinct states in
sleep. We also found that despite the differences among the
three CAMP networks, the alterations in both their topolog-
ical structures and graph properties were highly similar,
implying an instinctive effect of conscious alteration on the
dynamics of DMN activity.
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