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Several research studies point to the fact that sensory and cognitive reductions like cataracts, deafness, macular degeneration, or
even lack of activity after job retirement, precede the onset of Alzheimer’s disease. To simulate Alzheimer’s disease earlier stages,
which manifest in sensory cortices, we used a computational model of the koniocortex that is the first cortical stage processing
sensory information. The architecture and physiology of the modeled koniocortex resemble those of its cerebral counterpart
being capable of continuous learning. This model allows one to analyze the initial phases of Alzheimer’s disease by “aging” the
artificial koniocortex through synaptic pruning, by the modification of acetylcholine and GABA-A signaling, and by reducing
sensory stimuli, among other processes. The computational model shows that during aging, a GABA-A deficit followed by a
reduction in sensory stimuli leads to a dysregulation of neural excitability, which in the biological brain is associated with

hypermetabolism, one of the earliest symptoms of Alzheimer’s disease.

1. Introduction

Since Alzheimer’s disease (AD) is a complex, multifaceted
illness (see Subsection 1.1), it is difficult to evaluate the
relationship between the many factors involved (genetic,
cognitive, social, sensory, neural, and molecular). This rela-
tionship should be sought at the level of the neural circuits
that process information, either from the senses or from
other areas of the brain. Neurons in these circuits are so
tightly packed [1] that inserting electrodes in predetermined
neurons to assess their operation is very costly. Even with the
advent of optogenetics, which allows neurons to be activated
by light [2], the task of studying circuit-level interactions of
neurons, by changing their parameters and connectivity, is
still a significant challenge that is easily tackled with neuro-
computing models [3]. Neurocomputational modeling has

strong theoretical support from the area of artificial neural
networks (ANNs), in which different arrangements of
neuron-like units contribute to the development of artificial
intelligence (AI) systems. Although neural networks (NNs)
models are far from being biological, they can be used to
understand biological NNs. Concepts like neural competi-
tion, synaptic weight adjustment, activation-function shift-
ing, vector separation, and pattern normalization contribute
to understanding not only artificial but also biological NNs.

One of the most exciting applications of NNs models is
the creation of brain disease models. Such a model can be
developed by “lesioning” an ANN that in “healthy” condi-
tions performs functions like learning, pattern completion,
abstraction, generalization, and categorization.

According to the seminal book Neural Modeling of Brain
and Cognitive Disorders, “recently, a new direction has
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emerged, that of using “lesioned” neural models to study
several brain and cognitive disorders from a computational
point of view” ([4], p.3).

In 1996, when this book was published, there were well-
developed models of memory, generalization, and categori-
zation implemented in artificial NNs. However, there was
still a lack of knowledge about how these operations take
place in real neural circuits. For this reason, earlier computer
models of neurological disorders made use of conventional
artificial NNs models rather than biologically plausible neu-
ral circuits. Even with the lack of biological realism, these first
computer models attempted to model amnesia [5], dyslexia
[6, 7], stroke [8], phantom limbs [9], Parkinson’s and
Huntington’s diseases [10], schizophrenia [11], and even
AD [12, 13]. Over time, with an increasing understanding
of biological neural circuits, realistic neural models of AD
appeared [14]. While some of these models tried to emulate
the hippocampal function [15, 16], others like Stefanovski
et al. model [17] performed whole-brain simulations for
inferring candidate mechanisms of AD.

Realistic neurocomputational models endowed with
operations at molecular levels can be very costly in computa-
tional terms. On the other hand, the so-called phenomeno-
logical models (see Section 1.2 in [18]) are simplified
models that try to capture the minimum characteristics
capable of simulating the basic operations of the modeled
phenomenon. In phenomenological models, the focus is the
function, not the details of the substrate in which the activity
takes place. For example, in the case of biological neurons,
they are modeled by mimicking their input-output opera-
tions without regard to molecular complexities. We adopted
this latter type of model for our simulations.

Initially, instead of simulating brain impairment, our
priority was to develop operational models of brain struc-
tures like the thalamus [19, 20], the amygdala [21], and the
koniocortex [22, 23]. When their initial operation was satis-
factory, the way of further evaluating them was by modeling
brain disorders. For example, in a previous paper [24],
incomplete sensory patterns when entering the artificial
model of the thalamus yielded a reconstructed copy reminis-
cent of hallucinations in actual schizophrenic patients. This
result led to propose a correlation between the genetic lack
of thalamic afferents from prefrontal and temporal areas
[25] and the so-called positive symptoms of schizophrenia.
A similar strategy allowed the assessment of the circuit link-
ing the thalamus and the amygdala, which led to an effective
therapy for treating specific phobias [21]. We also modeled
the koniocortex, the first cortical layer receiving inputs from
the sensory thalamus [23, 26]. Once modeled, learning
emerges competitively with spiny stellate (SS) neurons
behaving in a “winner-take-all” (WTA) manner (In a pool
of neurons, “winner-take-all” means that the most acti-
vated neuron starts firing while the others keep silent.).
The artificial koniocortex performs stimuli (input patterns)
classifications the same way competitive NNs do (i.e., by
firing a single neuron for each category of stimuli pre-
sented to the network).

As will be shown in Subsection 1.2, there is a strong pos-
itive correlation between the onset of AD and stimulus
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reduction in the nervous system. This stimulus reduction
can be of two types:

(a) A sensory reduction like in macular degeneration,
deafness, or cataracts

(b) Cognitive task reduction, like in retirement, loss of
employment, or loss of or separation from relatives

Since the koniocortex model performs memorizing tasks,
simultaneously dealing with input patterns, it seems the right
candidate for testing the hypothesis correlating to the AD
onset and the reduction of sensory stimuli. Furthermore,
cortical sensory areas like the koniocortex are also the first
ones to be affected by AD [27]. This fact was not so evident
at the beginning of AD research, due to the difficulty in iden-
tifying amyloid plaques in these areas because they appear in
their mildest diffuse or amorphous forms. Beach and McGeer
were able to highlight these diffuse plaques by using the
Bielschowsky stain technique [28]. Recently, advanced tech-
nologies like Spatial Proteomics Analysis have not only
shown AD-related protein alterations at sensory cortices
but also demonstrated that the evolution of AD begins in
sensory and motor cortices where the disease appears in its
mildest forms [29]. Other studies give further support to
these findings and show that SS neurons in the koniocortex
undergo significant density decrements and dendritic loss
during aging [30] and AD [31].

As mentioned previously, biologically plausible computa-
tional models can be tested by “lesioning” them in ways
similar to the lesions experienced in their biological counter-
parts. For assessing whether the koniocortex model mimics
Alzheimer’s symptoms, we simulate its “aging” by altering its
parameters. Although this “aging” operation seems somewhat
unspecific, the main factors of nervous system aging are not
unknown to scientists (see Subsection 1.3). They might be
reproduced in a modeled neural circuit, as will be explained.

One property of neurons in the koniocortex model that is
essential for learning processes is called intrinsic plasticity
(IP) [32, 33]. IP dynamically adjusts neurons’ firing threshold
performing a dual-type operation (see the appendix):

(a) In the case of very active neurons, IP makes the
neuron’s firing threshold more positive for lowering
its firing rate in the future. Neurons do this by elim-
inating intrinsic channels (like L-type Ca** channels,
Na® channels, and delayed rectifier K* channels)
from the neuron’s membrane ([33], Section 4)

(b) Conversely, in the case of low neuronal activity, IP
makes the firing threshold less positive, which
increases the firing rate in the future. Neurons do this
by placing intrinsic channels in the cell membrane.
Porter et al. [34] associates the excessive expression
of calcium channels in the neuron’s membrane to
neurotoxicity and AD

In NNs models, the position of the firing threshold
roughly coincides with the rightwards shift of the neuron’s

activation function (see Figure 1) that in many cases is “s”-
shaped (or sigmoidal) like the one used by Desai ([33], Fig.
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FiGurk 1: Intrinsic plasticity. (a) The continuous line at the center
represents the activation function at a hypothetical initial state. (b)
When the net-input values are diminished as in A, B, and C, the
sigmoidal activation function shifts leftwards. (c) When the net-
input values grow like in the case of D, E, and F, the sigmoidal
activation function shifts rightwards.

3.a) to explain IP. In neurocomputational models, the terms
“shift” and “firing threshold” are interchangeable. The value
of the shift is between zero and one: zero corresponding to
the minimum firing threshold and 1 to the maximum firing
threshold.

IP is a homeostatic process in which the shift/threshold
tends to follow the average neural activity (ANA). Depending
on the velocity in which this ANA moves, the average shift
will quickly reach the ANA, or it will dynamically oscillate
around it until eventually catching it up.

This latter process might be related to the putative link
(see Section 1.2) between the onset of AD and stimuli reduc-
tion, as may occur during job retirement or separation from
relatives. When neurons suddenly diminish their activity
due to stimuli reduction, IP initially operates by making the
neuron’s firing threshold less positive so that the neuron
becomes more easily fired. Ideally, this process makes the
neuron more active until it gradually stabilizes. However, in
nonideal conditions, an oscillatory process around the ANA
occurs. In this process, hyperactivation and hypoactivation
alternate until the ANA and the shift match. Along this
process, the neuron’s IP adjusts the shifts by either creating
or eliminating intrinsic channels. The continuous productio-
n/elimination of intrinsic channels makes use of significant
metabolic resources leading to hypermetabolism (see Subsec-
tion 1.4.4). Hypermetabolism [35] appears in Magnetic Res-
onance Imaging (MRI) and Positron Emission Tomography
(PET) scans of AD patients and is simultaneous with the
stage of Mild Cognitive Impairment (MCI), in which patients
experience difficulties in recalling recent memories. It also
precedes the stage of beta-amyloid plaque proliferation (a
review of all the stages of AD is presented in Subsection 1.4).

Since the koniocortex network is able to continuously
learn new patterns during its regular operation, one can
evaluate its learning performance over time. We initially use
an integral (nondamaged) network and subsequently apply
several types of damage associated with aging (see Subsection
1.3 and Table 1). Finally, we reduce the intensity (module) of
the input patterns. We will see that when this reduction takes
place in a network with impaired GABA-A inhibition, a per-
sistent oscillatory dynamic takes place. Although oscillations
are an integral part of learning, persistent oscillations can dis-

rupt learning. Continuous oscillations also lead to hyperme-
tabolism. Since phenomenological models do not usually
deal with molecular properties, our koniocortex model cannot
directly assess hypermetabolism. Instead of this, to know
whether the koniocortex model is reaching the stage of
hypermetabolism, we continuously evaluate both the average
output and the average shift of neurons. When these two
markers engage in a persistent oscillatory dynamic, this fact
determines the onset of the hypermetabolic stage.

Next, we provide more detailed explanations of some of
the concepts presented in Introduction.

1.1. General Description. Characterized as a chronic, degener-
ative, and fatal disease, AD accounts for 60%-70% of demen-
tia diagnoses worldwide [36] and is estimated to affect 106.2
million persons or 1 in 85 persons by the year 2050 [37]. The
disease is partly hereditary, due to pathogenic genetic muta-
tions, as well as external factors like dietary habits, and
usually affects people over 65 years of age ([38], p.3).

Dietary patterns are a risk criterion as well as a factor of
protection against the incidence of AD. Among the nutritional
habits considered beneficial for reducing the risk of AD are
those that stimulate the consumption of antioxidants, vitamins,
polyphenols, fruits, vegetables, polyunsaturated fatty acids,
fish, and tea, such as the Japanese and Mediterranean diets
[39]. On the other hand, a large intake of red meat, butter,
and high-fat dairy increases the risk of developing AD [40].

One of the first symptoms reported by patients and care-
givers is difficulty in remembering facts, events, and names of
people close to them. However, an AD diagnosis requires the
presence of other concurrent problems like mental confu-
sion, impaired executive functions, apathy, and communica-
tion difficulties [41]. According to Masters et al. ([38], p.9),
the average clinical duration of AD is between eight and ten
years, preceded by preclinical and prodromal phases, and a
maximum span of 20 years.

Histopathologically, a key feature is a proliferation of
senile plaques, aggregations of the insoluble form of the f3-
amyloid peptide (Af), not only in the entorhinal cortex,
hippocampus, and associative cortices [42] but also, in a
milder way, in sensory and motor cortices where AD starts
according to Spatial Proteomics Analysis techniques [29].
Neurofibrillary tangles formed by the tau protein are also
characteristic of the disease. They appear in cortical neurons,
mainly in the entorhinal cortex, hippocampus, frontal cortex,
and temporal and parietal lobes [42].

1.2. Principal Causes of Stimulus Reduction due to Age.
Decreased sensory stimulation usually takes place due to
the loss of sensory receptors or due to age-related health
problems, such as macular degeneration, deafness, or cata-
racts. Retirement, a sedentary lifestyle, or the loss of relatives
and friends could be external factors that contribute to
decreasing the intellectual and cognitive stimuli experienced
by older persons. Let us study these phenomena by classify-
ing them into the following two types.

1.2.1. Sensory Reduction. Macular degeneration, cataracts, or
deafness are different ways in which sensory reduction
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TaBLE 1: Description of the performed tests and their corresponding parameters. Abbreviations: (a) GABA-A: this column shows the
percentage of epochs in which GABA-A deficit initiates. (b) ACh: this column exhibits the percentage of epochs in which ACh deficit
begins. (c) Pruning: the values indicate the percentage of epochs in which pruning initiates. (d) S_R: the values below this title indicate the
percentage of epochs in which stimulus reduction starts. (e) STM: the values below this title indicate the percentage of epochs in which
the experiment of short-term memory initiates. (f) Mem: when memantine treatment (i.e., an NMDA blocker simulation) is applied, the
numeric value shows the percentage of epochs in which memantine treatment initiates.

Parameters
Test Experiment GABA-A ACh Pruning S_R STM Mem
ol Ok Ok 75% No 70% No
. Test of short-term memory
Normal aging )
a. 0 0, 0,
Reduction of sensory stimuli and short-term memory test Ok Ok 75%  60% 70% No
b.1
. 50% Ok 75% No No No
No sensory reduction
b2 0, 0 0,
Reduction of sensory stimuli S0% Ok~ 75% 60% No  No
Aging with impaired b.3 ) ) ) )
GABA-A receptors Reduction of sensory stimuli and short-term memory test 50% Ok 75% 60% 70% No
b.4
Reduction of sensory stimuli, short-term memory test and o o o o o
administration of an NMDA receptor blocker S0% Ok 75%  60% 70% 55%
(memantine)
ol Ok  50% 75% No No No
No sensory reduction
c2 o o o
Reduction of sensory stimuli Ok S0%  75%  60% No  No
Aging with ACh deficiency c3
: 0, 0, 0, 0,
Reduction of sensory stimuli and short-term memory test Ok S0% - 75% - 60% 70%  No
c4
Reduction of sensory stimuli, short-term memory testand Ok 50% 75% 60% 70% 55%
administration of memantine
d.1
Aging with GABA-A Sensory stimulus reduction, short-term memory stimulus, 50%.
impairment at 50% of epochs.  and recovery of GABA-A receptor functionality. Pruning 7 50; Ok  75% 60% 85% No
0

Recovery at 75% of epochs
brain aging

is present as in previous experiments modeling healthy

appears in elders. Age-related macular degeneration (AMD) is
a neurodegenerative disease that affects the macula (the central
region of the retina), causing progressive loss of vision. AMD
affects 15% of people between 65 and 74, 25% of people
between 75 and 84, and 30% of people older than 85; it also
shares many characteristics with AD, including oxidative stress
and inflammation [43]. According to Kaarniranta et al. [43],
studies on AMD are “interesting opportunities to understand
the early signs of AMD that might be associated with AD
pathology as well.” According to Javaid et al. [44], eye examina-
tions allow an earlier diagnosis of AD because Af3 plaque
deposition and hyperphosphorylated tau protein first appear
in the retina. These authors point out that AD patients display
an increased prevalence of cataracts affecting visual acuity.

Regarding deafness (which affects 30% of adults over 60),
Lin et al. [45] show that early treatment for deafness post-
pones the onset of AD symptoms.

1.2.2. Cognitive Task Reduction: Retirement, Loss of
Employment, etc. Using data from the Survey of Health, Age-

ing and Retirement (SHARE) in Europe, Adam et al. [46]
examined whether the cognitive decline in aging could be
affected by occupation or more specifically by inactivity after
retirement and the relationship of these variables to partici-
pants’ physical and mental health. The research revealed that
retirees or individuals who never had a professional activity
had lower performance on cognitive and occupational tests
compared with professionally active participants ([46],
p-385). Furthermore, retired people who engaged in cogni-
tively stimulating activities or had social or religious involve-
ment performed better than those who did not [46].

Lupton et al. [47] showed that late retirement acts as a
protective factor against AD by postponing its age of onset,
while the education level or type of occupation had no effect.
In line with those results, Grotz et al. ([48], p.9) showed a
strong positive correlation between the appearance of the
first symptoms of AD and early retirement, indicating that
postponing retirement by one year delays AD by 0.3 years.

Bonsang et al. [49] and Finkel et al. [50] confirmed that
promoting the participation of older workers in the labor
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force delays cognitive decline and thus the occurrence of
associated impairments.

1.3. Typical Nervous System Alterations due to Age. During
normal aging, some neurophysiological changes impair
long-term mnemonic systems and working memory: (a) the
synaptic pruning of cortical neurons [51], (b) a reduction in
the synthesis and release of acetylcholine (ACh) [52], and
(c) the attenuation of inhibitory signaling of GABAergic
interneurons in the hippocampus and prefrontal cortex
(PFC) [53]. Next, we explain these processes in more detail.

1.3.1. Synaptic Pruning. Although synaptic pruning (also
known as synaptic connection harvesting) is associated with
AD, it also occurs at every stage of a healthy brain’s develop-
ment and maturation. Synaptic pruning obeys Lamarck’s
law: “use it or lose it” by keeping only the reinforced connec-
tions during learning. According to Gopnik et al. [54], there
is a decay from 15,000 synaptic connections to approximately
7,500 synaptic connections per neuron in older individuals.
In an expressive graph ([55], Fig. 3), Huttenlocher depicts
the evolution of synaptic density (in synapses per cubic mili-
meter) in the middle frontal gyrus as a function of age. It
shows that this density increases from birth to around five
years of age. From that point, synaptic density decreases until
it stabilizes at around the age of 40 and starts falling again
(about 75 years), linearly, until death.

Using mutant APP (beta-amyloid precursor protein)
mice, Bezprozvanny and Mattson [56] showed a correlation
between AD and synaptic pruning: the appearance of toxic
forms of S-amyloid peptides (present in AD) is correlated
with the loss of synaptic spines.

An article published by Nikolaev et al. [57] discusses the
relationship between A3 protein, “death receptor 6” (DR6 or
TNFRSF21), synaptic pruning, and neuronal cell death. The
DR6 receptor triggers cell death in response to low cell
growth factor levels at specific periods of brain tissue devel-
opment or when this tissue is damaged. The authors also
present a loss/gain function model in which a fragment of
the A3 protein would bind to the DR6 receptor. This binding
triggers neuronal degeneration and the self-destruction
observed in AD. According to Nikolaev et al. [57], this mech-
anism occurs due to genetic causes or to the decrease in cell
growth factors found in aging brain tissue.

A study by DeKosky and Scheff [58] supports the find-
ings of Nikolaev et al. [57] by showing that the postmortem
brain tissue from the right frontal lobe of patients with a mild
form of AD exhibits decreased synaptic counts with an
increase in the remaining contact area, compared with a con-
trol group. This fact suggests, according to the authors, that
there is a “law of compensation,” aimed at maintaining the
total contact area of the synapses per unit volume at a stable
level. However, this ability is lost throughout the progression
of the disease. In its final stages, both the number of synapses
and the total area of synaptic contact suffer a significant loss
that negatively affects patients’ cognitive capacity.

Horn et al. ([12], p.737) cite DeKosky and Scheft [58] in
the development of their computational model of memory
decay due to the gradual and progressive deterioration of

synaptic connections during AD evolution, presenting a
“framework for examining the interplay of synaptic deletion
and compensation” [12].

1.3.2. Acetylcholine Deficit. Acetylcholine (ACh), one of the
most abundant neurotransmitters present in the human
brain, is directly involved with neural excitability,
hippocampal-dependent learning [59], and memory pro-
cesses [60]. Martinello et al. [59] demonstrate the importance
of ACh for synaptic communication and, consequently, for
memory formation.

The excessive neuronal loss characteristic of AD occurs
mainly in cholinergic neurons of the basal forebrain (BFCN),
which are also susceptible to axonal alterations, accumula-
tion of phosphorylated tau protein, and formation of neuro-
fibrillary tangles [61]. This set of factors led to the cholinergic
hypothesis of AD. Francis et al. [62] proposed that an
individual with AD presents degeneration of cholinergic
neurons, a decrease in the activity of choline acetyltransferase
(ChAT) and acetylcholinesterase (AChE), and reduction of
ACh levels and cholinergic transmission mechanisms.
According to them, these factors cause the cognitive impair-
ment characteristic of the disease [63].

One of the treatments used in the earliest stages of AD
includes drugs that act on cholinergic centers [62, 64], partic-
ularly on cholinesterase inhibitors. Although they contribute
to improving the cognitive and behavioral aspects of AD,
these medications do not prevent disease progression [64].

Although at first an ACh deficit seems to be one of the
leading causes that disrupt the normal functioning of neuro-
nal activity in AD, studies indicate that GABA-A may also
play a critical role in the development of the disease [65].

1.3.3. GABA-A Deficit. GABAergic inhibitory interneurons
(GABA: gamma-aminobutyric acid) play a crucial role in
the regulation of neural dynamics. According to McQuail
et al. [53], imbalances in this system might result in psychiat-
ric damage and neurodegenerative diseases such as AD.

Although researchers initially asserted that GABAergic
neurons are relatively preserved during aging, and in neuro-
degenerative pathologies, recent research shows that the
GABA-A type undergoes significant changes due to age
and may play a primary role in AD [65]. According to
Limon et al. [66], there is a profound loss of GABA-A recep-
tors in AD.

GABA-A receptors are ionotropic, contain intrinsic
channels permeable to chlorine (Cl'), and participate in most
of the inhibitory connections of the brain through shunting
inhibition [53]. Shunting inhibition is characterized by “an
increase in conductance, leading to a reversal potential near
the chlorine resting potential” ([67], p. 136). Shunting inhibi-
tion involves the entry of negatively charged Cl into the neu-
rons, which hampers action potential firing, thereby resulting
in a mathematically divisive effect on cell depolarization [68]
(this effect will be explained when presenting shunting basket
neurons in Section 2 and also in Equation (A.3)).

Nowadays, there is an increasing interest in looking for
nutrients that contribute to the synthesis of GABA-A recep-
tors. According to Currais et al. [69], fisetin (present in fruits



and vegetables like strawberries, tomatoes, oranges, and
cucumber) enhances mnemonic systems in healthy individ-
uals. It mitigates the cognitive decline characteristic of neuro-
degenerative diseases such as AD. In line with this, Raygude
et al. [70] showed that administering fisetin increases
GABA-A levels in the brain. Another promising set of
substances that contribute to the expression of GABA-A
receptors in GABAergic synapses are terpenoids [71].
Terpenoids are found in vegetables and spices like salvia,
peppermint, ginger, Curcuma longa, cinnamon, cloves, and
mustard. Used in traditional medicine [72, 73] for improving
cognitive functions, several authors cite terpenoids as prom-
ising therapeutic substances against AD [74, 75].

1.4. Stages of Alzheimer’s Disease

1.4.1. Preclinical. The preclinical phase occurs approximately
12 years before the onset of symptoms. In this stage, the
patient does not usually exhibit signs of dementia. Masters
etal. [38] consider this phase a window for disease prevention
because it is rather lengthy and exempt from severe cognitive
impairments.

According to Masters et al. ([38], p.9), at this stage, there
is an increase in levels of the main AD biomarkers, such as -
amyloid binder protein (A deposition) and isoform 42 of
the S-amyloid protein (CSF AfS42). This latter biomarker
can be identified in the cerebrospinal fluid (CSF) 20 years
before the onset of the first symptoms.

At this stage, approximately 15 years before the onset of
disease symptoms, there is also an increase in the level of
tau protein in the cerebrospinal fluid (CSF tau) exceeding
normal thresholds.

Reduced hippocampal volume, Clinical Dementia
Rating-Sum of Boxes (CDR-SB) scores, and glucose metabo-
lism levels (hypermetabolism at the preclinical stage and
hypometabolism in the transition phase between the prodro-
mal and clinical stages) are also considered important
biomarkers of AD.

1.4.2. Prodromal. The prodromal phase begins with the sud-
den manifestation of cognitive symptoms related to dementia
and memory loss at a level below that associated with AD
([38], p.9). High levels of disease biomarkers begin during
this phase and extend towards the mild-to-moderate stage.

1.4.3. Mild Cognitive Impairment Stage. The Mild Cognitive
Impairment (MCI) stage of AD occurs after the prodromal
phase. The MCI stage is considered a preclinical phase
because the changes observed in memory and cognitive func-
tions differ from those considered normal during the aging
process [76].

There are two types of MCI: (a) Simple Domain Amnestic
MCI, which affects only memory, and (b) Multiple Domain
Amnestic MCI, which affects memory and one or more cogni-
tive functions like language, attention, perception, or executive
functions. Busse et al. [77] reported that Multiple Domain
Amnestic MCI can be considered a preclinical stage of AD.

Recently, the National Institute on Aging and the Alzhei-
mer’s Association have revised the criteria for the diagnosis
of MCI as a preclinical indication of AD [78] and have
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recommended additional procedures for brain assessment,
including testing biomarkers for A3 and brain imaging.

1.4.4. From Hypermetabolism to Beta-Amyloid Plaque
Creation. Hypermetabolism (increased glucose metabolism
observed with fMRI and PET scans) occurs in subjects with
MCI before the development of beta-amyloid plaques [35].
This fact is supported by Dickerson et al. findings [79], who
reported increased hippocampal activation in MCI subjects.
Busche et al. [80] studied individual cortical neurons in a
mouse model of AD and reported increased neuronal activity
in the direct vicinity of Af plaques. These authors suggest
that this increased activity may also contribute to the calcium
overload recently observed in neurites surrounding Af
plaques. Regarding hypermetabolism and beta-amyloid
plaque creation, Kim et al. [81] noticed that metabolism
(measured by the uptake of FDG [18F] fluoro-2-
deoxyglucose in the basal forebrain region) was higher in
patients in the early stages of the disease and in MCI patients
than those already diagnosed with AD and healthy subjects.
According to those authors, this metabolic increase may be
responsible for B-amyloid plaque formation leading to
dementia ([81], p.935).

These metabolic changes, as well as perturbed calcium
homeostasis, support the idea that Alzheimer’s disease is
related to mitochondrial dysfunction [82].

Finally, one of the latest manifestations of AD is hypoac-
tivity, which is due, according to Bass and colleagues [83], to
a combination of homeostatic alterations and Af plaque
proliferation. As mentioned in Introduction, our computa-
tional model is not able to simulate the Af3 plaques prolifer-
ation, being only able to predict events until reaching the
initial hypermetabolic stage that is associated with persistent
neural oscillations.

2. Materials and Methods

As mentioned in Introduction, this research study is based on
a computational model of the cerebral koniocortex that we
developed in previous work [23, 26].

The term koniocortex, also known as granular cortex,
means a cortex with a grainy texture (Konia “dust” in Greek)
due to the high density of spiny stellate (SS) neurons. It refers
to the different cortical regions with a distinctive inner granular
layer (layer IV). The koniocortex includes Brodmann areas 1-3
(somatic sensory cortex), 17 (visual cortex), and 41 (auditory
cortex). All these areas are like topographic maps that undergo
plastic changes in their boundaries and receptive fields accord-
ing to sensory experience. These changes are mainly due to
NMDA receptors in koniocortex spiny stellate (SS) cells [84].

The cytoarchitecture of the koniocortex is depicted in
Figure 2. SS neurons receive excitatory and inhibitory affer-
ents, each of which has two types.

(1) Excitatory afferents:

(a) Autapses [85]

(b) Afferents from thalamocortical neurons (TC) in
the thalamus that process sensory information
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FIGURe 2: Cytoarchitecture of the koniocortex network in which acetylcholinergic neurons from the parabrachial nucleus project to
thalamocortical neurons. The neurons that specifically belong to the koniocortex are the spiny stellate (SS) neurons, the inhibitory basket

neurons (B), and the shunting basket (SB) neurons.

(2) Inhibitory afferents:

(a) Basket neurons (B) that are stimulated by nearby
excitatory SS neurons and exhibit the steepest
activation-function slope among all neurons in
the koniocortex ([86], Figure 3)

(b) Shunting basket neurons (SB), which, according
to Angulo et al. [87], accomplish linear summa-
tion of their thalamocortical afferents. In mathe-
matical terms, this operation is called 11-norm
(see Equation (A.2) in the appendix). These
neurons use this result to produce a type of shun-
ting/divisive inhibition ([88], p.1225) over SS
neurons. This divisive inhibition is due to the
GABA-A receptor used in shunting basket neu-
rons’ axon terminals. The concatenation of these
two operations (the 11-norm and the division)
means that shunting basket neurons perform a
sort of normalization in their targets, the SS neu-
rons (see Equation (A.3) in the appendix)

As previously mentioned, we developed a phenomeno-
logical model of the koniocortex in which we took into
account the main functionalities of each of the neurons. Each
neuron communicates with the following one by transmit-
ting its output, a value between 0 and 1 that in spiking models
corresponds to the neuron’s firing rate. This value, when
multiplied by a synaptic weight, is the synaptic contribution
to the next neuron (see the appendix explaining the mathe-
matical background).

The koniocortex model can learn how to classify input
patterns like a conventional competitive NN. Although the
artificial koniocortex deals with input patterns of any size,

we used patterns represented in a 5 x 3 grid (Figure 3), a total
of 11 alphanumerical patterns. Ten patterns were numbers (0
to 9), and one was a letter (X). These patterns were forcedly
placed at the output of the 5 x 3 = 15 sensory input neurons
(I) of the koniocortex model (see cytoarchitecture depicted
in Figure 2).

The learning processes take place in our simulations
along 2,000 epochs, that is to say, 2,000 repetitions of the
complete set of patterns that represent the life span of our
model. Within these 2,000 epochs, we will model several
natural processes taking place in the human brain from birth
to death. Before 50% of repetitions, ten SS neurons of the
koniocortex compete to recognize each one of the numerical
patterns, so that, in the end, a single neuron fires for each one
of the presented numbers. This type of specificity occurs
because the synaptic weights of each neuron evolve to reflect
the distinctive characteristics of each numerical pattern. In
the end, when the synaptic weights of each neuron match
the unique features of each number, the firing of a specific
neuron takes place.

Although the synaptic weights of each SS neuron evolve to
match the differential characteristics of each input pattern
(not the complete input pattern), we still would like to recover
the entire numerical pattern that fires each neuron for asses-
sing the correctness of the pattern classification. For this pur-
pose, it was necessary to create a recurrent ancillary network
consisting of a set of virtual feedback connections ([26],
Figure 6(b)) from spiny neurons to sensory neurons. At the
end of the training, the collection of virtual weights exiting
each SS neuron recreates the whole pattern that produces
the firing of each spiny neuron. We will use this strategy for
recalling the numerical pattern associated with each spiny
neuron throughout training and test whether the modeled
AD affects stored memories. In Results, we will see that when
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FI1GURE 3: Alphanumeric input patterns presented as inputs to the
koniocortex model.

simulating AD, the numerical patterns (recalled through these
virtual connections) degenerate, and neurons lose their spec-
ificity, firing in front of more than one number.

When inputting each numerical pattern (by making num-
bers appear at the output of the sensory neuron’s layer), this
input information should spread until reaching the SS neu-
rons. From the SS neuron’s layer, the information propagates
towards both the basket neurons’ layer and the input neurons’
layer (to the latter through the recurrent connections of the
ancillary network). For allowing sensory information propa-
gates across all layers, thereby producing a competitive inter-
action between spiny neurons, each numerical pattern should
remain at the input during eight iterations. In each iteration,
the program calculates the neuron’s outputs, weights, and
shifts, according to Equations (A.4) to (A.7) in the appendix.
It is important to emphasize that the koniocortex network
and the recurrent ancillary network update simultaneously
(all their weights and shifts update at the same iteration). It
is as if both networks constituted a single associative network
of the type shown in ([26], Figure 9).

In the present simulations, patterns were input to the
network sequentially, although they could also appear
randomly. We found that when patterns are sequential,
autapses are not necessary for a correct learning process.
However, for the emergence of competitive learning in the
case of random patterns, autapses are required (see the last
paragraph of Section 3.3 in [26]).

In this simulation, the learning factor £ (Equation (A.4))
was set to 0.0019, and the shifting velocity v (Equation (A.7))
to 0.0199. We obtained these optimal values by using a
genetic algorithm for optimizing WTA processes in the SS
neuron’s layer. Nonmodifiable weights were set to W ¢p

=0.98, Wi_;c =1.0, Wgp ¢ =0.5, and Wy ¢_0.85 in the
autapses. Modifiable weights from TC to SS neurons and
from SS to I neurons of the ancillary network start with neg-
ligible random values. The steepness factor k in the sigmoid
of all neurons except for basket neurons was set to k = 40.
The activation function of basket neurons (that have the stee-
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pest activation) is linear. All the sigmoidal function shifts
were set initially to 0.061.

In Results, we will analyze the computational processes
taking place in the koniocortex model that, when disrupted,
might lead the model to behave like the brain of patients in
the initial stages of AD (see Table 2). We will do this by using
the point of view of an ANN designer. Although most ANNs
are biologically implausible, some theoretical aspects of
ANNs are valid for any NN, either artificial or biological.
For example, we will study two crucial computational
processes mentioned in seminal treatises [89, 90]. The two
computational processes necessary for achieving successful
learning in competitive NNs are

(a) input pattern separation

(b) input pattern normalization

Regarding the first, when the angular separation between
input patterns is small, a winning neuron can win again for
many other input patterns, thereby precluding other compet-
itive neurons from winning. One way of separating input pat-
terns and preserving their distinctive features is to subtract
their mean (also called moving average), as shown in Figure 4.

In the case of the koniocortex model, this process occurs
at the level of thalamocortical neurons. This is related to IP,
explained in the appendix. According to Peldez et al. [26],
“Intrinsic plasticity is also highly important at the thalamo-
cortical neuron level (second layer). In this layer, intrinsic
plasticity contributes to subtracting the average neuron’s
activity level from current activity. The previous assertion
means that the average pattern is subtracted from each
incoming pattern, thus contributing to highlighting the
differences between input patterns.”

According to Martinello et al. [59], ACh from the para-
brachial nucleus induces IP in thalamocortical neurons,
thereby boosting the pattern separation process described
above. An age-related cholinergic impairment might hinder
this separation process so that, in the end, input pattern
separation no longer occurs.

The second computational process (see “computational
process” column in Table 2) for achieving successful learning
in the koniocortex is normalization. As mentioned in Subsec-
tion 1.3.3, shunting basket neurons (SB in Figure 2) produce
shunting/divisive inhibition of SS neurons through their
GABA-A synapses [88]. As explained in [87], prior to this
process, SB neurons perform a linear summation of their thala-
mocortical afferents. These two operations, division, and sum-
mation participate in a normalization process that consists of
dividing the weighted sum of thalamocortical outputs by their
11-norm (the sum of thalamocortical outputs), according to
Equation (A.3) in the appendix. This normalization of neuro-
nal input patterns is necessary for a fair competition between
spiny neurons. Shunting basket neurons are, therefore, respon-
sible for the process of normalization in the koniocortex
model (see the “computational process” column in Table 2).

This normalization process, when damaged (see “age-
dependent damage” and “computational failure due to age”
in Table 2), can impair competitive learning in the koniocor-
tex model.
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TaBLE 2: Here, we list the computational processes performed by each type of neuron in each layer of the koniocortex model. The
consequences of several lesions (due to age) in these different layers are also mentioned. When these lesions coincide with a reduction of
sensory stimulation, we expect a further degree of deterioration that resembles AD. In the last column, we enumerate some
pharmacological treatments to counteract the failures listed in previous columns.

Computational

Type of neurons . Age-dependent . Expected failure due to Pharmacological
. Computational process failure due to .
in each layer damage aging sensory loss & aging treatment
Neural loss, Discrimination
Basket neurons Neural competition GABA deficits Discrimination deficits
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. synaptic novel pattern forgetting, learning forgetting but preclude
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FIGURE 4: (a) One way of emphasizing the distinctive features of a set of vectors a, b, ¢, d consists in subtracting their average vector (as in the
case of vector b). (b) In this way, vectors become more separated (in terms of the angle between them).

Another computational process that is important for
allowing learning processes in the koniocortex model is the
competition between SS neurons due to lateral inhibition
(see Figure 2). Basket neurons (whose activation function
was modeled as a linear function without IP) are involved
in this process by performing a conventional subtractive type
of inhibition.

Regarding learning, it is not possible without functional
NMDA channels in stellate neurons’ spines. For keeping
memories intact in NMDA synapses, even at the risk of pre-

cluding newer learning processes, NMDA synapses can be
“frozen” with NMDA blockers such as memantine, as
mentioned in the last column.

The other computational process impaired due to age is
the input vector separation process occurring in thalamocor-
tical neurons (recall comments to Figure 4). If, according to
Martinello et al. [59], ACh boosts IP, the reduction of ACh
would negatively affect IP by slowing down sigmoid shifting.
When the sigmoid is unable to follow the ANA (recall intro-
duction), this lack of synchronicity adversely affects pattern
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Ficure 5: Example of koniocortex continuous learning under physiological (not defective) conditions. Each of the six rows represents the
learning status at a selected epoch (iteration), being 1,000 the total number of epochs. In each of the six rows, ten synaptic weight matrices
are corresponding to each one of the ten spiny neurons in the simulation, being each spiny neuron identified by a number below each
matrix. The relative size of the fifteen green tiles in each matrix corresponds to the relative value of the weights of the recurrent virtual
connections from spiny to input neurons. When, at epoch 500, one of the training patterns, pattern one, was substituted by a new pattern,
pattern X, there is a process of weight reorganization for deciding which spiny neuron will fire in front of pattern X. At the end (see rows
corresponding to epochs 650 and 700), spiny neuron three fires in front of pattern X and spiny neuron ten fires when pattern two is
presented to the koniocortex model. In the bottom graph, we depict two curves: the red curve is the average output and the blue curve the
average shift along with iterations. Both curves exhibit stable and regular behaviors.
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F1GURE 6: Normal aging. The two columns of this table show the koniocortex model behavior while performing a short-term memory (STM)
task consisting of substituting one of the numerical patterns by pattern X. This substitution starts at 70% of epochs. In both experiments, the
levels of GABA-A and ACh levels are normal, and pruning is also normal (starting at 75% of epochs). “Mem =no” means that in these
experiments, we did not simulate the introduction of an NMDA blocker (memantine). At the bottom of each column, we show the
evolution of the average output (in red) and average shift (in blue) of all neurons. Experiment a.1: the label “S_R =no” at the header of the
first column means that there is no reduction of stimuli in this experiment. As seen in the block corresponding to 80% of training, the
network successfully learns pattern X. Experiment a.2: the label “S_R = 60%” at the header of the second column indicates that there was a
reduction of stimuli at 60% of repetitions. From this point, the average output and average shift experiment a sudden fall but stabilize rapidly.
The presentation of a new pattern X at 70% of epochs does not alter the ongoing network dynamics in any significant way. Labels: S_
R =sensory reduction; STM = short-term memory; Mem = memantine application; ACh = acetylcholine reduction in thalamocortical neurons.
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F1GURE 7: This table shows two cases without GABA-A signaling: the column on the left without sensory reduction and the column on the
right with sensory reduction. At the bottom of each column, we show the evolution of the average output (in red) and average shift (in blue) of
all neurons. Labels: S_R=sensory reduction; STM =short-term memory; Mem =memantine; ACh =acetylcholine reduction in
thalamocortical neurons. In experiment b.1 (left column), there is no reduction of stimuli, and we see that, although an episodic period of
acute output oscillations occurred, homeostatic mechanisms are capable of driving the network to equilibrium again. By examining the
blocks, we see that pattern recall was permanently impaired. However, acute oscillations related to hypermetabolism and disease
progression were extinguished. In experiment b.2, the withdrawal of GABA-A at 50% of epochs was the precondition for the production
of intense oscillations when the sensory reduction took place at 60% of epochs. At the same time, at 60% of epochs, neurons lost their
pattern specificity so that several neurons processed the same pattern (number 1). Sustained oscillations are associated with
hypermetabolism and the progression of AD.
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F1GURE 8: This table shows the koniocortex model behavior when the reduction of sensory stimuli takes place after a reduction in GABA-A. A
short-term memory (STM) learning task is shown in the first and second columns, consisting of learning an “X” pattern in substitution of one
of the numerical patterns that constitute the learning set. In the second column, we evaluate the usage of NMDA blockers like memantine. At
the bottom of each column, we show the evolution of all neurons’ average output (in red) and average shift (in blue). Experiment b.3: the
pattern “X” presented at 70% of repetitions is successfully learned. Despite this apparent success, the univocal correspondence between
patterns and neurons that were compromised at 60% of epochs did not return to normal. Notice that episodes of oscillation and
stabilization are intermingled and that learning a new pattern stabilizes the network, although this stable situation is usually transitory. In
experiment b.4, the administration of an NMDA blocker like memantine took place at 55% of epochs. Numerical pattern memories are
kept intact, but, when introducing pattern “X” at 70% of repetitions, the network was incapable of learning it. Stimulus reduction at 60%
in a GABA-A-depleted network contributed to the initiation of persistent oscillations. Labels: S_R = sensory reduction; STM = short-term
memory; Mem = memantine; ACh = acetylcholine reduction in thalamocortical neurons.
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FIGURE 9: In these experiments, we reduce the effect of ACh at 50% of epochs. Experiment c.1, in which no other modification is involved,
represents a control test for comparison with subsequent experiments. In this case, the bottom graph exhibits sparse oscillations of the
average output. Experiment c.2, in which stimulus reduction takes place at 60% of epochs, produced smaller but sustained oscillations that

are harmful to learning patterns. Labels: S_R=sensory reduction; STM = short-term memory; Mem = memantine; ACh = acetylcholine
reduction in thalamocortical neurons.
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separation and competitive learning. However, many
competitive networks do not use this preliminary process of
pattern separation and still do their job. Consequently, we
do not expect that slowing down sigmoid shifting (by reduc-
ing or zeroing factor v in Equation (A.7)) will significantly
impair learning.

The following is our eight-stage protocol:

(1) Initially, the network’s goal is to learn ten different
numerical patterns (Figure 3). Learning takes place
when each SS neuron fires only in front of one
specific numerical character. Simultaneously, each
SS neuron produces a copy of each current pattern,
as explained in this section. If the copy is identical,
learning is Ok. The more different the copy, the more
unsuccessful is the learning process

(2) At half the number of repetitions, we “age” the
network by either simulating GABA-A impairment
or a lack of ACh. GABA-A impairment is modeled
by eliminating the normalization operation
performed by shunting basket neurons. The lack of
ACh that precludes the sigmoid shift is simulated,
as previously explained, by setting parameter v to
zero in thalamocortical neurons

(3) At 60% of the total amount of repetitions, we apply
stimulus reduction by dividing each component of
the numerical patterns by two (“pixel value”/2).

(4) At 70% of the repetitions, we evaluate network
performance using a short-term memory task. In this
case, one of the numerical patterns (randomly selected)
is replaced by the letter “X.” The network’s performance
during the task of learning this new pattern can be
evaluated by the reader by conferring the numerical
learned by each neuron (as explained in stage 1)

(5) In some simulations (at 55% of the repetitions), we
test the situation of applying an NMDA blocker (like
memantine). We perform this test by preventing
synaptic weight modifications

(6) To assess hypermetabolism, we calculate the average
output of all modeled neurons (not counting sensory
neurons) over time. Hypermetabolism takes place
when the average output is persistently oscillatory

(7) We also assess the temporal evolution of the average
neurons’ firing threshold, that is to say, the average
shift (not counting sensory neurons). Hypermetabo-
lism is associated with average shift changes because
these changes involve intrinsic channel creation and
elimination

(8) When the number of iterations is higher than 75%,
synaptic pruning (see Section 1.3.1) starts running
in the network. According to Huttenlocher [55], at
the age of 74 (after a long period during which synap-
tic density stabilizes around 11.05x10%® synap-
ses/mm”) synaptic density begins a steady decay at
a rate of 18.63 x 10° synapses/mm” per year. Trans-
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lating these values to our artificial model, at 74% of
the iterations, we start a pruning process in which
1.7% of the synapses (those with the smallest synaptic
weights) are pruned at each iteration

3. Results

The koniocortex model used here for testing the AD has
fifteen neurons in its input layer, fifteen neurons in its thala-
mocortical neurons’ layer, ten neurons in the spiny stellate
neurons’ layer, and ten neurons in the upper basket neurons’
layer (Figure 2). The learning process of the koniocortex
model allows the recognition of a set of 10 numerical
patterns. A 5x3 grid displays these numbers. All these
numeric patterns are presented sequentially to the network
in each epoch. Once each number is input to the network,
its activation is “propagated” until all layers are activated.
One thousand epochs were enough for the NN to learn that
when a specific SS neuron strongly fires in front of one partic-
ular numerical pattern, the remaining neurons should
remain inactive. This WTA process occurs naturally as an
emergent consequence of the individual computation of each
neuron without the need to monitor the network externally.
Lateral inhibition and IP are the main driving forces for the
emergence of this WTA process.

To computationally test AD, we added one thousand
additional epochs. These repetitions were intended to simu-
late the reduction of sensory stimuli and the GABA-A and
ACh deficiencies that are customary in an aged brain. We will
also evaluate how the network behaves in a continuous learn-
ing task, after substituting one of the patterns by a completely
new one, an “X” pattern in the middle of typical training. We
intend to do this experiment under defective conditions of
the network so that we could evaluate how the capacity of
continuous learning of the network is affected by the different
types of impairment. For comparison purposes, we first pres-
ent to the reader the same experiment under physiological
conditions (without any kind of impairment). Each row of
Figure 5 represents the results of training the koniocortex
model along with a certain number of iterations (epochs). It
shows that each one of the ten spiny neurons becomes spe-
cialized in recognizing a specific numerical pattern. This fact
means that, when we present a numerical pattern to the net-
work, one single spiny neuron “fires” (i.e., is active) while the
other neurons remain muted. For example, only neuron
“one” fires when pattern zero is presented at epoch 450 (see
the first case in the first row). When spiny neuron “one” fires,
it “evokes” number zero in the form of a green pixels’ matrix,
each pixel corresponding to the weight of a recurrent connec-
tion from itself (spiny neuron 1) to the input neurons. This
process occurs at the recurrent ancillary network mentioned
in Section 2. In the case the matrix was ambiguous or defec-
tive, it would mean that either a change of pattern or a mem-
ory problem is occurring in that neuron.

In this physiological example, when we reach 50% of the
total number of epochs (500 epochs), we remove a numerical
pattern, in this case, pattern 1, from the training set, and put
the letter X in place. At epoch 550, we see that spiny neuron
three and spiny neuron ten are “evoking” unclear, ambiguous
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patterns. This fact means that neurons are readjusting their
weights for recognizing the new pattern X and forgetting
the older pattern one. At epoch 600, the weights of spiny neu-
ron 3 (that formerly “evoked” pattern two) evolve to repre-
sent pattern X. At epoch 600, the weights of spiny neuron
10 are still under transformation. This transformation is com-
plete at epoch 650 when the recurrent weights from spiny neu-
ron 10 evolve to represent pattern two. In this way, neuron ten
that previously fired in front of pattern one now fires when pat-
tern two is input to the network. At the same time, neuron three
that fired when pattern two was input to the network, now fires
in front of pattern X. At epochs 650, and epoch 700, the prop-
erty of continuous learning of the koniocortex allowed the
network to forget pattern 1 and learn pattern X. The bottom
graph exhibits two curves, one curve in red and the other in
blue representing the evolution of the average output and
the average shift, respectively (without including sensory neu-
rons). Both curves are stable and regular, although the blue
curve exhibits small continuous oscillations.

As previously announced, this same short-term memory
(STM) test will be performed in some of the simulations
when training reaches 70% of epochs under nonphysiological
(defective) conditions.

Figures 6-11, will show the different tests performed in
the koniocortex model. Each column header will indicate
the type of alteration performed in the network and the per-
centage of epochs when the alteration took place. The mean-
ings of the abbreviations inside the headers are as follows:

(a) Pruning = 75% means that the elimination of weak
connections occurs from 75% of iterations

(b) GABA — A =50% means that, at 50% of training
epochs, the normalization resulting from GABA-A
activity is eliminated

(¢) ACh =50% means that a reduction of ACh occurs at
50% of repetitions. In computational terms, this
means that the sigmoid function stops shifting when
parameter v becomes zero

(d) S_R=60% means that there is a reduction of sensory
stimuli (S_R) at 60% of all repetitions

(e) STM =70% means that a short-term memory test
(STM) is performed by replacing a randomly selected
pattern with the “X” pattern at 70% of the repetitions

(f) Mem = 55% means that synaptic weight modification
is prevented due to the use of memantine (Mem) at
55% of the repetitions

As synaptic pruning is present in every aging person (>75
years of age), all experiments run with pruning. The descrip-
tion of the performed tests and their corresponding parame-
ters are summarized in Table 1.

We repeated each of the experiments 20 times. Since the
initial weights and neuron firing thresholds are random, dif-
ferent results are produced until the network stabilizes. This
type of variation mainly occurs during the first 100 epochs.
After this number of epochs, the experiments evolve similarly
and become consistent across repetitions. For this reason, we
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randomly selected one of the repetitions as a representative of
each experiment (see Figures 6-11).

Under each one of the headers, there is a column of
blocks. Inside each block, there are ten different numerical
patterns. From left to right and from top to bottom, each of
the ten numbers represents the patterns that are recalled by
the ancillary network when each one of the ten stellate spiny
neurons fires. For example, the block that appears in a row
labeled 70 represents the ten patterns that are recalled by
the ten SS neurons at 70% of repetitions. In this block, for
example, the third numerical pattern in the upper row is
the pattern recalled by the third SS neuron.

Finally, the bottom curves represent the evolution of the
average output and shift of neurons, in terms of the percent-
age of epochs. These graphs help in the identification of
hypermetabolism, which is the preliminary manifestation of
AD. Hypermetabolism appears when there are intense and
persistent oscillations both in the average output and average
shift. Persistent oscillations are associated with a continuous
process of allocation and elimination of intrinsic channels in
the neuron’s membrane.

Now, we proceed to explain the behavior in each column
of the tables.

Let us start with Figure 6, which shows the experiments
modeling healthy aging. In experiment a.1, we simulate the
case of a healthy normal koniocortex in which we blocked
neither GABA-A, ACh, nor NMDA. Pruning follows the
normal statistical tendency described in the last paragraph
of Materials and Methods, thereby starting at 75% of the total
epochs. The task of learning a new pattern at 70% of repeti-
tions is successful, as can be seen in the block at 80% in which
we substitute a random numerical pattern (in this case num-
ber 4) by pattern “X.”

The evolution of the average output (in red) and average shift
(in blue) of all modeled neurons appears at the bottom of each
column. In the case of healthy aging, the oscillations observed
in the output when substituting the pattern are negligible.

In experiment a.2 (also corresponding to healthy aging),
stimuli diminish at 60% of the epochs (S_R = 60%). As previ-
ously explained, we do this by dividing each component of
the numerical patterns by two (pixel value/2). Starting at
the block corresponding to 70% of epochs, we see that the
patterns recalled by each one of the neurons become fainter.
Immediately after stimulus reduction, there is a temporary
shift stabilization that quickly leads to a regime of discrete
oscillations of the average shift. Although there are a few
oscillations during the initial iterations, which is the normal
expected behavior, the average output in (red) remains stable
in all subsequent iterations.

Let us continue with Figure 7 and Figure 8 showing the
experiments that model aging associated with impaired
GABA-A receptors. In experiment b.1, we withdrew normal-
ization (due to GABA-A shunting neurons) at 50% of repeti-
tions. In this experiment, there is neither stimulus reduction
nor an STM task. This experiment was performed to demon-
strate the impact of GABA-A reduction alone, without the
presence of other concomitant factors. In this case, the first
column in Figure 7 shows an episodic pattern recall impair-
ment from around 60% of epochs. At the same time, the
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F1GURE 10: This table shows the koniocortex model response when GABA-A levels are normal, and we reduce ACh at 50% of repetitions.
Sensory reduction also takes place at 60% of total repetitions, and a memory test is performed at 70%. Experiment c.3: an NMDA blocker
(like memantine) is not used. Oscillations are present initially when ACh is reduced and, especially afterward, during the process of
learning the new pattern X. Experiment c.4: an NMDA blocker (like memantine) is applied at 55% of epochs. In this case, plasticity is
eliminated; the network remains at its former stability level (without oscillatory activity) although it is not able to learn the testing pattern X.
Labels: S_R = sensory reduction; STM = short-term memory; Mem = memantine; ACh = acetylcholine reduction in thalamocortical neurons.
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FiGurE 11: This table presents a case in which GABA-A normalization is recovered despite the usual process of network aging. After the
elimination of GABA-A normalization that occurred at 50% of epochs, pattern learning was impaired; that is to say, patterns were poorly
recovered, and neurons lost their pattern specificity. With the reduction of sensory stimuli at 60% of epochs, the average shift and output
started an intense oscillatory dynamic that suddenly disappeared when GABA-A normalization was reinstalled at 75% of repetitions. After
this recovery, the network was capable of learning pattern X, while the recovery of the remaining numerical patterns was damaged. At this
later stage, in which many of the connections were pruned, learning is a difficult process requiring much more repetitions than in an
intact network. Labels: S_R=sensory reduction; STM =short-term memory; Mem = memantine; ACh =acetylcholine reduction in
thalamocortical neurons.
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average output (see bottom graph) exhibited a transitory
abrupt oscillation that quickly ended due to compensatory
factors (intrinsic and synaptic plasticity). Although oscilla-
tions ceased, the impairment in patterns’ recalling was
permanent. This case means that although GABA-A deficit
alone does not have catastrophic consequences in terms of
hypermetabolism (because oscillations cease), there could
be some sequels in terms of memory deficits.

In experiment b.2, besides normalization due to GABA-
A withdrawal at 50% of repetitions, stimulus reduction
occurred at 60% of epochs. When running the program, we
see that at 50% of training, each neuron still processes a
different numerical pattern, as expected. From this moment
in which GABA-A normalization stopped, patterns’ recalling
was impaired. Patterns’ memorization worsens, and neurons
lost their specificity for patterns; that is to say, several neu-
rons fire in front of the same pattern.

Experimentb.3 is shown in the first column of Figure 8 and
is similar to the previous one (b.2): each neuron had learned to
identify a specific numerical pattern, and, at 50% of epochs, we
eliminate the normalization performed by GABA-A. Like in
the previous case, the lack of normalization impaired learning
so that the univocal correspondence between neurons and pat-
terns was lost. As before, with stimulus reduction at 60% of
epochs, abrupt oscillations appeared in the shifts and outputs.
Despite this, at 70% of epochs, we applied the task of substitut-
ing one of the patterns by pattern X. The network learned pat-
tern X, but the univocal correspondence between patterns and
neurons continues impaired. It seems that learning a new
pattern contributes to stabilization because the oscillations
dampen during pattern X presentation.

Experiment b.4 is like the previous one but with the
introduction of an NMDA blocker at 55% of repetitions.
Although the network did not forget the numerical patterns,
it was not able to learn the new pattern “X” when introduced
at 70% of epochs. Differently from the previous case, the pre-
sentation of pattern X does not dampen the oscillations.

In summary, an NMDA blocker contributes to preserve
older memories but is not capable of preventing the oscilla-
tory dynamics due to stimulus reduction.

The experiments of Figure 9 (c.1 and c.2) and Figure 10
(c.3. and c.4) are designed for testing whether ACh deficit
alone is able to produce AD symptoms. Let us recall that
the ACh deficit (due to an impairment of the parabrachial
nucleus) weakens the preliminary process of input vector
separation that takes place in thalamocortical neurons.
Experiment c.1 represents a control test for comparison with
the next ones. The graph at the bottom of the table shows
sparse bursts of oscillations in the outputs and shifts. When
we analyzed learning, epoch by epoch, we noticed that during
these bursts, the association between neurons and learned
patterns is impaired.

In experiment c.2, stimulus reduction is applied at 60% of
epochs. In this case, stimulus reduction, instead of increasing
the oscillations, seems to dampen them. These sustained
oscillations are responsible for the learning impairments seen
in the following blocks along training epochs.

In experiments c.3 and c.4, we use the combination of
features of experiment c.2 with a short-term memory exper-
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iment (STM) for evaluating the use of an NMDA blocker
(i.e., memantine). As in previous cases, the STM test consists
of substituting a randomly selected pattern by pattern X at
70% of epochs. When this test is done in experiment c.3 with-
out an NMDA blocker application, the NN learned pattern
X, but the process was slower and generated intense oscilla-
tions. In the experiment c.4, oscillations are abolished when
using an NMDA blocker at the expense of not being able to
learn pattern X.

Experiments c.1 to c.4 shows that when GABA-A inhibi-
tion is normal, ACh deficit produces oscillations that are
sparser and weaker than in the case of the association of
GABA-A and stimulus reduction. In the cases of ACh deficit,
many strategies contribute to abolishing the oscillations, like
the NMDA blocker application. Even the reduction of stimuli
(that was catastrophic in the case of GABA-A deficit) can
help to dampen the oscillations. In contrast (as shown in
experiment c.3), STM stimulation can be counterproductive,
especially in the absence of memantine. It seems that the
cognitive stimulation (STM test) can be either beneficial or
harming depending on whether there is either a GABA-A
deficit or an ACh deficit, respectively.

The purpose of Figure 11 is to simulate a possible recov-
ery from hypermetabolism when GABA-A signaling returns
to normal levels. In this experiment, there was no ACh defi-
cit. Hypermetabolism was manifested by the persistent oscil-
lations of the average shifts and outputs. These oscillations
were the consequence of GABA-A deficit followed by stimu-
lus reduction, as shown in examples b.2, b.3, and b.4. At 75%
of epochs, GABA-A levels were restored. From this moment,
there was a moderate recovery of the patterns recalling
capacity, and when an STM test was introduced with pattern
X at 85% of epochs, the test was successful. Despite this, the
process of synaptic pruning that started at 75% altered the
usual course of learning, which, in this case, took longer than
in a normal situation and did not end until reaching 100% of
epochs. This experiment shows that when GABA-A levels
return to normal, there is a real possibility of recovery
(although this would depend on the severity of further dam-
age due to beta-amyloid plaque accumulation).

It would be possible to create new alternative computer
experiments for testing different therapies like combining
NMDA blockers, cognitive stimulation, cholinesterase inhib-
itors, etc. In these alternative experiments, the correct sched-
uling of each treatment would be of great importance.
Testing these therapies first in the computer and, afterward,
with real subjects will be extremely useful and will contribute
to the development of an optimal therapeutic strategy.

4. Discussion

The experiments presented here show that it is possible to
evaluate the evolution of AD with a computational model
of a brain structure with learning capabilities under different
scenarios. We created these scenarios by combining the
effects of neuromodulators, pharmacological drugs, and
sensory patterns. In this study, we chose the koniocortex
because, as mentioned in Introduction, AD begins in sensory
cortices [27-29] (although appearing in its mildest form).



20

Besides, this structure is directly associated with sensory
stimuli, which we were interested in assessing. Another
advantage of the modeled koniocortex is that it exhibits
successful emergent learning so that we can test the effects
of AD along with a learning task.

As seen in Results, we decided to exhibit neurons’ average
output and their firing thresholds (shifts) over 2,000 training
epochs (as mentioned, the presentation of the whole set of
numbers constitutes one epoch).

We also presented the appearance of the memorized
patterns over epochs. In this way, we displayed three crucial
variables related to AD: first, the red curves allow us to study
neurons’ average firing probability and identify hypermetab-
olism. Secondly, the blue curves enable us to see the shifting
of the firing threshold and infer the amount of intrinsic chan-
nel allocations in neurons’ membranes (the smaller the shift,
the higher the number of intrinsic channels). Thirdly, the
appearance of memorized patterns over the epochs allows
us to monitor long and short-term memory in the network.
We assessed these variables by altering the input stimuli or
simulating a treatment. Our interest in monitoring the possi-
ble oscillatory activity in the average firing and shift related to
hypermetabolism is because hypermetabolism is the prelude
to the more harmful consequences of AD: 3-amyloid plaque
creation and memory impairments. Hypermetabolism would
be the consequence of continually placing and deleting
intrinsic channels when the neuron’s firing threshold (activa-
tion function’s shift) tries unsuccessfully to reach an equilib-
rium point. Although hypermetabolism and neuronal
activity are related concepts, hypermetabolism can be easily
monitored in human patients using PET and MRI scans.

The main result derived from our model is that, although
stimulus reduction is innocuous in a young, healthy brain, it
ignites hypermetabolism in a brain with GABA-A signaling
deficits. ACh impairments are also able to produce hyperme-
tabolism more moderately. This is because we discovered
that GABA-A and ACh are involved in computational
processes that facilitate pattern normalization and pattern
separation, respectively, during the learning processes
performed in the brain [26]. In this way, disruption of the
algorithms involved in learning processes in the brain seems
to be at the origin of the destructive processes of AD. Regard-
ing learning, brain structures like the koniocortex adjust their
synaptic weights so that they acquire stable values through
homeostatic processes in which IP compensates for weight
variations [22]. In a previous article, we suggested that
impairments in IP are a crucial factor for the onset of AD
[91]. The importance of IP in learning and AD has been
corroborated by Dunn and Kaczorowski [92]. Calcium
homeostasis processes underlying AD are also discussed in
Popugaeva et al. [93].

The explanation behind the oscillatory behavior triggered
when stimulus reduction takes place in a GABA-A-deficient
brain is that GABA-A shunting basket neurons produce a
sort of pattern normalization (see Section 1.3 and explana-
tion of Equation (A.3) in the appendix) over incoming
sensory patterns. When these basket neurons correctly per-
form their normalizing function, the resulting computation
is as if all sensory patterns were always similar in size. In this
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case, GABA-A represents a protective factor that acts even in
the case of reduced stimuli (which, due to GABA-A, are
resized, i.e., normalized). When the protective factor of
GABA-A is not present, reduction of stimuli (like in macular
degeneration, deafness, and retirement) triggers a process in
which neurons lower their firing threshold through IP to
adequately respond to weaker stimuli (recall explanations of
Equations (A.6) and (A.7) in the appendix). For this process,
extra intrinsic channels are allocated in the cellular mem-
brane, having this process a high metabolic cost. Although
in an ideal situation, neurons would adjust their firing
thresholds until they gradually reach a new lower threshold,
in our simulations, these adjustments take place in an oscilla-
tory manner. In this case, firing threshold adjustments take
place along a continuous recurrent process of allocation
and elimination of intrinsic channels. Repeating these pro-
cesses, thousands of times would produce a much higher cost
in metabolic terms than when intrinsic channels are simply
gradually allocated.

During intrinsic channel allocation processes, the intense
firing of neurons is another process that contributes to
enhancing hypermetabolism. Besides impaired neural
homeostatic processes, intense firing has been considered
another cause of S-amyloid plaque deposition [94, 95]. Thus,
the preemptive usage of low doses of antiepileptic drugs like
diazepam [96] and levetiracetam [97] has been shown to
have a neuroprotective effect in AD.

When instead of a GABA-A deficit, there is ACh deple-
tion, the preliminary process of input vector separation is
affected, as explained in Figure 4. Without this vector’s sepa-
ration process, the subsequent WTA operation requires more
epochs to be accomplished. This is manifested in the short-
term memory test performed in experiment c.3, in which
the modest oscillations associated with ACh deficits grew
significantly. It seems that in this case, cognitive stimulation
is counterproductive and could contribute to exacerbating
hypermetabolism. In experiment c.4, we see that by using
an NMDA blocker, oscillations completely disappear at the
expense of not being capable of learning the new pattern X.
This fact could justify the success of treatments combining
NMDA blockers (memantine) and acetylcholinesterase
inhibitors (donepezil) [98] in a background of milder oscilla-
tions related to an ACh deficit [99].

In the case of GABA-A deficit, the oscillations that appear
after stimulus reduction are much higher in frequency (see
curves in experiments b.2, b.3, b.4, and d.1) than those related
to ACh impairment (experiments c.2 and c.3). The existence
of a relationship between GABA interneuron malfunction
and intense neural oscillatory activity was pointed out by
Verretetal. [100] when working in AD animal models. Regard-
ing a possible AD treatment, experiment d.1 is designed to test
whether the complete recovery of GABA-A functionality at
75% of epochs can stop the oscillations. We see that not only
the intense oscillatory activity completely disappears but also
the learning capability of the network is wholly recovered so
that it was possible for the network to learn a new pattern (pat-
tern X) that was presented at 85% of computer iterations (in
Figure 11, the tiles in green show that this pattern was learned
entirely at 100% of epochs by number one stellate neuron).
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These computational results support recent pharmaco-
logical studies focusing on GABA-A neurons’ protecting
drugs [101-103]. Experiment a.2 shows that when GABA-A
functionality is preserved, no oscillations take place even in
the case of stimulus reduction. As mentioned in Section
1.3.3, the ingestion of nutrients like fisetin (strawberries,
tomatoes, oranges, and cucumber) and terpenoids (salvia,
peppermint, ginger, Curcuma longa, cinnamon, cloves, and
mustard) collaborates in the synthesis and expression of
GABA-A receptors.

Although the results of the present experiment are
encouraging, we should acknowledge, however, that we
assessed AD by modeling a particular brain structure and
that other brain structures related to learning also deserve
evaluation. It is possible that the same computational process
that seems impaired in the koniocortex, i.e., pattern separa-
tion and pattern normalization, might also be defective in
other parts of the brain, thereby generating an abnormal
oscillatory dynamic. These prospective assessments per-
formed in more comprehensive models might contribute to
support our hypothesis that AD is a consequence of stimulus
reduction in a brain with GABA-A deficit. Although, as men-
tioned in Introduction, we prefer to perform such tests on
models whose functionality is clear to us, we do not underes-
timate the potential of existing realistic models of the entire
brain [14, 17]. We believe that the most significant drawback
presented by these comprehensive models is that most of
them surprisingly fails to use the property of IP. We believe
that by incorporating IP into these models, new functionali-
ties would emerge from them, such as learning and pattern
completion capabilities, in such a way that they could also
be used to model the cognitive impairments of AD.

5. Conclusions

As mentioned in Introduction, AD is a multifaceted illness in
which the factors involved are usually separately analyzed. In
this work, we combine many of these factors, interacting
dynamically inside a computational model of the cerebral
koniocortex, the first cortical relay station to process sensory
information, and also one of the early nervous system struc-
tures that are affected by AD.

We tested this hypothesis with the koniocortex model
engaged in the task of learning ten numerical patterns. The
model underwent a short-term memory test by substituting
one random pattern by pattern X in the middle of learning.
Another situation performed with the koniocortex simula-
tion was to stop the synaptic weight adjustment as when
using an NMDA blocker. During these scenarios, we assessed
whether the network exhibits hypermetabolism, which is a
common feature during the initial stages of AD. Due to the
possibility of an increment in computational complexity,
instead of metabolism, we evaluated a related measurement:
the average output of all koniocortex neurons.

The computation shows that the onset of AD is related to a
reduction of sensory/cognitive stimuli (like in deafness, mac-
ular degeneration, or retirement) when there is a preexistent
deficit in GABA-A. In computational terms, the lack of pat-
tern normalization due to the divisive inhibition of basket
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neurons leads to an oscillatory behavior of the neurons’ out-
puts and their firing thresholds. In real neurons, the continu-
ous adjustment of the neuronal firing threshold by allocating
and eliminating intrinsic ion channels exhausts neurons’ met-
abolic resources, driving them to the phase of beta-amyloid
plaque deposition that is beyond the scope of our study.

Although our hypothesis should be tested in animal
models and, afterward, with real patients, we suggest that in
the meantime, for preserving elders’ health, their caregivers
should be on alert in front of scenarios that contribute to
the reduction of the sources of stimuli. A confinement situa-
tion for epidemic contention could be a nowadays example of
these scenarios. In this type of situation, it would be desirable
to look for alternative sources of cognitive and sensory
stimuli for this group of people.

Appendix

Mathematical Foundations of
Koniocortex Network

In this section, we describe the equations used in the konio-
cortex model in which the neurons’ output yields a probabil-
ity value ranging from 0 to 1. For simplicity, we do not model
neurons’ axon cable phenomena.

The koniocortex is a competitive model in which the neu-
ron’s net-input is calculated by a vector projection. For this
calculation, we compute the inner product of weight vectors
and the normalized input patterns (lowercase notation
meaning vector normalization):

v
1 =

(A1)

The type of normalization used here is the 11-norm:

. n
Iil- S
i=1

(A2)

One way of interpreting neurons’ weights is as if they

—J =]
were the components of a vector prototype T so that T =
— J
W =[W;, Wp, -+, W,,]. In this way, the net-input of neu-
rons can be calculated as net; = [|W - i|[=|[T - i||=|T7|

which is the projection of prototype T over the ongoing
input pattern. Although in NNs models the net-input value
is dimensionless, it is conceptually equivalent to the postsyn-
aptic activation that in electrophysiology is measured in volts.

In the case of spiny neurons (which undergo competi-
tion), we calculate this same result another way:

7]

(A3)
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FIGURE 12: (a) Shape of curves obtained with real neurons for different initial synaptic weights w;. In this case, the experiment consisted of
injecting current in the presynaptic neuron and measuring the postsynaptic voltage. The point where curves cross the horizontal axis is called
the long-term potentiation threshold. (b) Family of curves obtained in the computer model through the presynaptic rule (adapted from Figure
2 in [105]). Both graphs exhibit metaplasticity: the rightward elongation of the curves along the horizontal axis for higher values of initial
synaptic weights. For a more detailed explanation of how the curves were obtained, we suggest the reader to study References ([105]

(Section 2), ([22] (Section3.2)).

where the numerator is the weighted input from excitatory
thalamocortical neurons. The denominator corresponds to
the operation produced by a shunting basket neuron when
performing a sequence of two operations (a) the calculation

of an 11-norm, ||7||, by summing the thalamocortical inputs
and (b) placing this result in the denominator according to
the shunting/divisive type of inhibition of GABA-A neurons.

The incremental version of the presynaptic rule was used
in the koniocortex model for altering synaptic weights:

AW =EI(0-W), (A.4)
where O and I are postsynaptic and presynaptic action
potential probabilities and & is a small positive constant, the
so-called “learning factor.” This learning factor value was
set to 0.0019. Synaptic plasticity freezing due to an NMDA
blocker was simulated by setting this value to 0.

The plasticity curves yielding the variation of synaptic
weight in terms of postsynaptic voltage that were empirically
obtained by Artola et al. [104] (see Figure 12(a)) are very sim-
ilar to the curves depicted in Figure 12(b) obtained by using
the presynaptic rule equation [22, 105]. The presynaptic rule
also models metaplasticity [106, 107], a property of biological
synapses that elongates the plasticity curves rightwards for
higher initial synaptic weights, as shown in both graphs of
Figure 12.

The function that relates the neuron’s output in terms of
its postsynaptic activation can be modeled in different ways
(like a linear, sigmoidal, and Gaussian function). In the case
of the koniocortex, inhibitory neuron activation functions
were modeled as linear functions. For modeling sensory,
thalamocortical, and spiny neurons, we used the following
equation yielding the output of the neuron, O;, in terms of

j
its net-input (postsynaptic activation):

Oj=———, (A.5)

where s; is the shift of the activation function ranging from 0
to 1 and k is a steepness factor whose value depends on the
type of neurons.

Biological neurons exhibit a property called intrinsic
plasticity (IP) [32]. According to this property, the sigmoidal
activation function gradually shifts rightwards or leftwards,
leveling the activation of highly or scarcely activated neurons,
respectively (see Figure 1). The so-called shift parameter s,

ranging from zero to one, is used to model the sigmoidal
curve rightward shift. The shift value corresponds to the
steepest point of the sigmoid curve and is equivalent to the
classical concept of “firing threshold.” We can formulate
the activation function as

J
T

ous(

According to Desai ([33], p.398), the activation function

relates a neuron’s output (its firing rate) to its input (the
synaptic current it receives). If the input is too low, the cell
will hardly ever fire, because of the spike threshold [The
firing threshold.]; if it is too high, the firing rate will saturate,
because there is some physical limit on how fast a neuron can
fire. Between the two is a sensitive region, where the neuron’s
output is a function of its inputs. One strategy for dealing
with fluctuations in input - caused, for example, by synapse
formation or Hebbian potentiation - is to shift the position
or slope of the f-I curve so that the sensitive region always
corresponds well with average input.

We proposed the following equation [22] for calculating
the shift of the activation function, s, at time ¢ in terms of
the shift and output probability of the neuron at time ¢-1:

, sj) . (A.6)

_ 00 5
= —

v+l (47)

where v is a small factor that adjusts the shifting speed of the
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F1Gure 13: When a time series f (x) is placed at the single input of a neuron with intrinsic plasticity property, the output of the neuron is the

same time series f(x) but with its moving average removed.

activation function. Its value is 0.0199 in the koniocortex
simulation. The initial shift, s, was 0.061 in all neurons. When
neurons are highly activated, the tendency of the shift factor,
s, is to increase, thereby shifting the activation function right-
wards. When neurons are less activated, the tendency of the
shift factor, s, is to decrease, so that the activation function
is shifted leftwards (see Figure 1).

One compelling case that occurs in thalamocortical neu-
rons refers to a single input neuron, where IP contributes to
removing the moving average of a series of input values
([26], section 2), making the neuron behave like a high-pass
filter (see Figure 13).

When, instead of a single neuron, there is a matrix of
neurons receiving patterns (like the case of thalamocortical
neurons), subsequent patterns undergo the subtraction of
their moving average (which is also a pattern), thereby mak-
ing patterns more separated from each other, like in Figure 4.
This input vector separation effect stops when we eliminate
the movement of the sigmoid by zeroing factor v. In the real
koniocortex, this happens when ACh neurons are blocked or
die, thereby losing their boosting effect over intrinsic thala-
mocortical plasticity.
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