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Depression is a common psychological and mental disorder, characterized by low mood, slow thinking and low will, and even
suicidal tendencies in severe cases. It imposes a huge mental and economic burden on patients and their families, and its
prevention and treatment have become an urgent public health problem. It is worth noting that there is a significant gender
difference in the incidence of depression. Studies have shown that females are far more likely to suffer from depression than
males, confirming a close relationship between estrogen and the onset of depression. Moreover, recent studies suggest that the
brain-derived neurotrophic factor- (BDNF-) mammalian target of rapamycin complex-1 (mTORC1) signaling pathway is a
crucial target pathway for improving depression and mediates the rapid antidepressant-like effects of various antidepressants.
However, it is not clear whether the BDNF-mTORC1 signaling pathway mediates the regulation of female depression and how
to regulate female depression. Hence, we focused on the modulation of estrogen-BDNF-mTORC1 signaling in depression and
its possible mechanisms in recent years.

1. Introduction

Depression is a kind of mood disorder characterized by per-
sistent depression, slow thinking, and decreased will activity.
It is worth noting that the incidence of depression has signif-
icant gender differences. Because of the physical and social
characteristics, the number of women suffering from depres-
sion worldwide is about twice that of men [1]. After puberty,
females are more likely to suffer from depression than males,
and the prevalence rate of females is significantly higher than
men [2]. Other studies have shown that females exhibit
depressive-like behaviors during periods of rapid estrogen
decline, such as premenstrual, prenatal, postpartum, and
perimenopausal periods [3–5]. Therefore, the function and
regulation of estrogen are inevitably closely involved in the
incidence of depression.

There is convincing scientific evidence that estrogen has
neuroregulatory and neuroprotective effects, which are
directly related to emotion. Studies have shown that estrogen
levels in depressed females are lower than those in normal
females, and persistently low levels of estrogen are closely

related to the occurrence of depression. Estrogen can directly
act on related brain regions and regulate the expression of
target genes related to emotional and cognitive functions
through classical nuclear receptor pathways. Preclinical stud-
ies have shown that bilaterally ovariectomized mice can be
used as an effective estrogen deficiency-induced depression
animal model and show a significant increase in depressive-
like behaviors in the forced swimming test [6, 7]. 17β-Estra-
diol increased the expression of brain-derived neurotrophic
factor (BDNF) in the prefrontal cortex (PFC), alleviated
despair, and enhanced pleasure in ovariectomized female
mice [8]. Depressive behaviors in females during the rapid
decline of estrogen levels are closely related to the widespread
distribution of estrogen receptors in emotionally related brain
areas such as the hippocampus, PFC, and amygdala [9, 10]. At
the same time, the antidepressant-like effects induced by 17-
estradiol were absent in estrogen receptor β knockout mice
but did not show significant changes in α-receptor knockout
mice [11]. The increase of depression-like behavior in mice
induced by estrogen deficiency was mainly related to the
estrogen receptor. Clinically, the susceptibility to depression
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increases during the transitional period of menopause and
early after the last menstruation [12]. Moreover, the quality
of life of postmenopausal depression patients is significantly
lower [13]. But evidence from clinical studies suggests that
hormone treatment, especially estradiol, has successfully alle-
viated depression [14, 15]. Depressive symptoms in young
men were also involved with elevated estradiol levels [16].
These data further support the view that estrogen levels are
critical in the pathobiology of affective disorders.

2. BDNF-mTORC1 Signaling Pathway

BDNF is a member of neurotrophic factors, a family of pro-
teins that are essential for the growth and survival of neurons.
It is playing an increasingly pivotal part in the pathophysiol-
ogy of depression and the therapeutic mechanism of related
antidepressants. Preclinical studies have shown that bilateral
ovariectomy as an effective depression model induced by
estrogen deficiency significantly decreased BDNF levels in
the hippocampus and PFC [9, 10]. This suggested that
increased depressive-like behaviors in mice induced by estro-
gen deficiency are primarily related to ERβ. Further studies
found that the BDNF level in the brain of estrogen receptor
β knockout mice was remarkably reduced, while that in the
brain of estrogen receptor α knockout mice was little changed
[17]. Therefore, the estrogen receptor β-BDNF signaling path-
way may mediate the regulation of depressive-like behaviors
in female mice.

mTORC1 is amajor growth regulator, whose signal pathway
is closely related to synaptic plasticity; that is, it affects dendrites
and dendritic spines by controlling the synthesis of proteins
related to synaptic formation [18]. Hence, the mTORC1 signal-
ing pathway is closely related to the synaptic structure and
function plasticity. Researchers found that inhibition of the
mTOR signal delayed the onset of puberty in female rats to some
extent [19]. Moreover, expression decrease of mTORC1 and its
upstream or downstream proteins, as well as inhibition of
1synaptic growth and regulation, in brain regions such as the
hypothalamus, PFC, and hippocampus of ovariectomized
murine, was reversed by estrogen administration [20–22]. These
mean that the mTOR signaling pathway is indeed related to the
regulation of estrogen, particularly in the central nervous system
(CNS). Beyond that, downregulation of the mTORC1 pathway
and synaptic changes have also been found in a variety of other
models of depression in murine [23–25]. Likewise, clinical
studies have also found decreased levels of mTORC1 expression
and decreased synaptic formation in the PFC of depressed
patients [26]. All of these indicate that the antidepressant effects
mediated by themTORC1 signaling pathwaymay also be closely
related to the classical neural circuit.

Although there is no evidence to suggest a specific mech-
anism by which estrogen regulates mTORC1, BDNF is a key
regulator. Recent researches have led to discoveries that the
considerable upstream pathways of mTOR in the brain are
PI3K/Akt/mTORC1 [27], MEK/ERK/mTORC1 [28], and
LKB1/AMPK/mTORC1 [29]. As the upstream of LKB1
activation, the role of extracellular BDNF is realized by the
upregulation of intracellular cAMP [30]. Meanwhile, chronic
restraint stress reduced levels of mTORC1 and its downstream

effectors such as 4E-BP-1 and p70S6K in the rat hippocampus,
which is antagonized by antidepressants, escitalopram and
paroxetine [31].

BDNF has been shown to affect the nervous system
through the BDNF-mTORC1 pathway. In several reports,
ketamine and scopolamine enhance the number and maturity
of synapses by activating the BDNF-mTOR pathway to upreg-
ulate the expression of various synapse-related proteins, while
blocking mTOR signals can completely interrupt the occur-
rence and behavioral response of these synapses [32–35]. It
may be a unique fast-acting antidepressant mechanism. Stud-
ies have also manifested that hypidone hydrochloride activates
pyramidal neurons by relieving the inhibitory effect of 5-HT1A
receptors on GABAergic neurons and then acts on the BDNF-
mTORC1 pathway to exert an antidepressant role [36, 37].
These findings makemTORC1 an attractive therapeutic target
for depression. For example, NV-5138, a novel antidepressant
(a mTORC1 activator), enhances mTORC1 signaling and
increased the number, function, and protein levels of synapses
in the PFC, in which BDNF is required to participate [38]. In
turn, the fast-acting antidepressant effects of ketamine and its
active metabolite (2R,6R)-hydroxyketamine were blocked by
BDNF function-blocking antibody or rapamycin [39, 40], a
classical inhibitor of the mTORC1 [41], suggesting that
researches on mTORC1 will help in the further development
of antidepressants.

3. Role of BDNF-mTOR1 Signaling
Pathway in Depression

3.1. BDNF-mTORC1 Signaling Pathway and Rapid
Antidepressant Effects. Briefly, the potential mechanism of
rapid antidepressant action of the BDNF-mTORC1 signaling
pathway may be as follows: first, glutaminergic neurons
release glutamate by inhibiting the activity of GABA inter-
neurons; then, the AMPA receptor and VDCC were further
activated to promote the release of BDNF; finally, the release
of BDNF activates TrkB, Akt, ERK, AMPK, etc., and then
activates the mTORC1 pathway, which promotes increases
in proteins involved in synaptic formation (e.g., GluA1 and
PSD95) and further increases the frequency and amplitude
of the excitatory postsynaptic current (EPSC), thus promot-
ing the growth of neurons and synapses to play an
antidepressant-like role [34, 42, 43]. Although the mTORC1
pathway is considered to be an effective therapy for depres-
sion at present, there is still a separate report in which
mTORC2, but not mTORC1, is required for hippocampal
mGluR-LTD and associated behaviors [44], and further
research is needed to investigate the role of mTORC2.

3.2. BDNF-mTORC1 Signaling Pathway and Autophagy.
Autophagy is a conservative process of maintaining cellular
energy and protein homeostasis [45]. It can effectively elimi-
nate damaged proteins and organelles associated with certain
diseases [46], but overactivated autophagy can also damage
cells. Therefore, whether autophagy plays a positive or nega-
tive role in regulating neurological diseases is still a matter of
debate [47]. What is certain is that autophagy dysfunction
may lead to a variety of neurological disorders, such as
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depression, epilepsy, and Alzheimer’s disease [48–50].
mTORC1 is a key molecule in autophagy, which can inhibit
autophagy by competitively occupying ULK1 [51]. Its
activated pathways such as Akt andMAPK signaling pathways
inhibit autophagy, while negatively regulated pathways such as
AMPK and P53 signaling pathways promote autophagy [52–
54]. This indicates that mTOR is a key regulatory component
in the relationship between depression and autophagy. And
the mTOR signaling pathway indeed exerts neuroprotective
effects by regulating autophagy and inducing nerve regenera-
tion by promoting protein synthesis [55].

According to studies, autophagy regulates depression
bidirectionally. On the one hand, obvious excessive autoph-
agy activation during some depression results in the decline
of the survival rate of neurons and glial cells and neuronal
apoptosis [56]. Some antidepressants effectively function by
improving this activated autophagy through the mTOR path-
way [57]. Patchouli alcohol can inhibit excessive autophagy,
repair synapses, and restore hippocampal autophagy flux by
activating the mTOR signaling pathway, thus preventing
depressant-like behaviors induced by CUMS [58]. Interest-
ingly, BDNF promotes neuron survival by activating mTOR
signaling to improve excess autophagy flux [59]. Besides,
the BDNF-TrkB pathway also participates in the regulation
of autophagy. For instance, the BDNF-TrkB pathway regu-
lates antidepressant-like actions of H2S and fluoxetine by
enhancing hippocampal autophagy [49, 60]. The neuropro-
tection of BDNF in vitro is also performed by inhibiting
autophagy through the PI3K-Akt-mTOR pathway [53]. The
regulation of autophagy by local BDNF-mTOR may also
affect synaptic plasticity since the suppression of mTOR in
stimulated neurons causes AMPA receptor degradation in
spines through autophagy [52].

On the other hand, it has also been proved that autophagy
between neurons is impaired in depression, which can be alle-
viated by pharmacologic enhancement of autophagy [61]. The
majority of antidepressants may kick in through the upregula-
tion of autophagy [62]. Ketamine, a quick-acting antidepres-
sant, is an example [63], although its enhancement of mTOR
activity has been confirmed. As one of the most abundant
and bioactive constituents in vitamin E, α-tocopherol showed
antidepressant-like effects on mice through the upregulation
of autophagy mediated by the mTOR-AMPK pathway [54].
Trehalose may work on depression due to its ability to enhance
autophagy as well [64]. Therefore, the BDNF-mTORC1 path-
way can indeed regulate depression through autophagy, but
its specific mechanism remains to be studied.

3.3. BDNF-mTORC1 Signaling Pathway and Monoamine
Neurotransmitters. According to the monoaminergic hypoth-
esis, lack of monoamine neurotransmitters such as 5-HT, DA,
and NE in the brain may cause depression [65]. Estrogen
deficiency has been shown to have significant effects onmono-
aminergic systems, including 5-HT, DA, and NE [66]. As an
instance, the anxiety-like behavior caused by food restriction
may be mediated by the decreased activation of estrogen
receptor β in the serotonergic dorsal raphe nucleus neurons,
which may be due to the decrease of the estrogen level [67].
It has been found that the disturbance of estrogen balance

during menopause results in the imbalance of the BDNF-5-
HT2A signal and the decrease of synaptic plasticity, which puts
the brain in a depressed state [17]. Furthermore, 17β-estradiol
preferentially acts as an antidepressant by regulating levels of
multiple neurotransmitters, dopaminergic receptors, seroto-
nergic receptors, and the sigma-1 receptors expressed in the
CNS to regulate neurotransmitter systems [68–70]. Thus, the
monoaminergic system exerts the vital regulatory part in
female depression.

Studies have shown that the rapid activation of the
mTOR pathway is a significant medium for the rapid antide-
pressant action of ketamine and scopolamine [34]. Other
studies have revealed that selective stimulation of the 5-
HT1A receptor in the medial PFC has also been shown to alle-
viate depressant-like behaviors [71, 72]. This may be through
the activation of the AMPA receptor-BDNF-mTOR signal,
thereby enhancing the synaptic function of mPFC [73]. In
another study, scopolamine can increase the concentration
of 5-HT and dopamine neurotransmitter system in the brain
and cause delirium symptoms, while selective 5-HT1A antag-
onist reverses it to some extent through the induction of
PI3K-Akt-mTORC1 [74]. Besides, the inhibition of rapamy-
cin on the Akt-mTOR pathway blocked the change of 5-
HT2AR signal transduction mode [75]. 20(S)-Protopanaxa-
diol and liquiritigenin may also have antidepressant effects
through normalization of monoamine neurotransmitter
and corticosterone (CORT) levels and enhancement of the
BDNF-mTOR pathway [76, 77]. The interaction between
the 5-HT6 receptor and mTOR pathway was also found; that
is, 5-HT6 receptor activation can increase mTOR signal in
rodent PFC. In connection with cognitive impairment, rapa-
mycin, an mTOR inhibitor, can reverse the increase of
mTOR activity in PFC like a 5-HT6 antagonist, thus improv-
ing cognitive disorder induced by 5-HT6 agonists [78]. All
these demonstrated the interaction between the BDNF-
mTORC1 pathway and the monoaminergic system in the
occurrence and treatment of depression.

3.4. BDNF-mTORC1 Signaling Pathway and Neuroendocrine
System. Hyperactivity and stress feedback disorder of the
HPA axis is particularly considerable in the pathogenesis of
depression, which may be improved by regulating the homeo-
stasis of the HPA axis. On the one hand, there is a close rela-
tionship between the activities of the hypothalamic-pituitary-
adrenal (HPA) axis and the hypothalamic-pituitary-gonad
(HPG) axis, and they interact in estrogen-mediated affective
disorders. CNS regulates the synthesis and secretion of
estrogen through the HPG axis, while estrogen regulates the
functions of the pituitary and hypothalamus through the
HPA axis in a feedback way, thus affecting the levels of stress
hormones like corticotropin- (ACTH-) releasing hormone,
ACTH and CORT [79], and thereby relieving the emotional
stress of postmenopausal women [80].

On the other hand, studies have confirmed that neurotro-
phins such as BDNF are involved in neuroendocrine regula-
tion [81]. An early study in adult rats found that continuous
BDNF administration into the ventricle affected activity and
biological rhythm of the HPA axis [82]. In a later study,
knockdown of BDNF by siRNA in rats inhibited the expression
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of endogenous BDNF in different brain areas as well as weak-
ened the growing level of ACTH and CORT caused by normal
stress [83]. A recent study found that patients with two separate
BDNF single nucleotide polymorphism alleles (rs2049046 and
rs11030094), beneficial alleles associated with antidepressant
responses, had significantly lower cortisol responses to dexa-
methasone suppression/CRH tests at discharge [84]. These
prove the vital function of BDNF in regulating the HPA axis.
Furthermore, some drugs exert antidepressant-like and neuro-
protective effects in this way. The improvement of Apelin-13
in chronic stress depressive-like behaviors was achieved
through upregulation of BDNF by improving the HPA axis
and hippocampal glucocorticoid receptor disorder [85]. The
reduction of depressive-like behavior inmice treated with CSDS
can be alleviated by dammarane saponin through the restora-
tion of monoamine neurotransmitter levels and HPA axis,
which is achieved in part by increasing the BDNF-mTOR
pathway [86]. Similarly, water extract of Vaccinium bractea-
tum leaf showed neuroprotective effects by increasing
phosphorylation of CREB in CORT-induced cell damage
mediated by the mTOR signaling pathway [87]. Cortisol
induces PC12 cell injury by blocking autophagy mediated by
the AMPK-mTOR pathway [88, 89]. Autophagy activated
AMPK activator metformin and mTOR inhibitor rapamycin,
and chlorogenic acid significantly reduced CORT-induced
PC12 cytotoxicity by activating autophagy [88, 89]. The
potential regulatory role of the estrogen-BDNF-mTORC1
signaling pathway in depression is shown in Figure 1.

4. Conclusion

Overall, there are more and more innovative researches on
the pathogenesis of depression, which offers hope for the

quality of life for patients. The BDNF-mTORC1 signaling
pathway is considered to be an important target pathway
for rapid antidepressant therapy, which plays a beneficial role
in female depression. Next, further search for drugs acting on
the BDNF-mTORC1 pathway or allosteric modulators of
mTORC1 is of great significance to improve its role in the
pathology of depression, which will greatly improve the
situation of female patients.
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