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Unmanned autonomous helicopter (UAH) path planning problem is an important component of the UAH mission planning
system. The performance of the automatic path planner determines the quality of the UAH flight path. Aiming to produce a
high-quality flight path, a path planning system is designed based on human-computer hybrid augmented intelligence
framework for the UAH in this paper. Firstly, an improved artificial bee colony (I-ABC) algorithm is proposed based on the
dynamic evaluation selection strategy and the complex optimization method. In the I-ABC algorithm, the following way of on-
looker bees and the update strategy of nectar source are optimized to accelerate the convergence rate and retain the exploration
ability of the population. In addition, a space clipping operation is proposed based on the attention mechanism for constructing
a new spatial search area. The search time can be further reduced by the space clipping operation under the path planning result
within acceptable changes. Moreover, the entire optimization process and results can be feeded back to the knowledge database
by the human-computer hybrid augmented intelligence framework to guide subsequent path planning issues. Finally, the
simulation results confirm that a feasible and effective flight path can be quickly generated by the UAH path planning system
based on human-computer hybrid augmented intelligence.

1. Introduction

In recent years, the developments in automated and
unmanned flight technologies have been of high interest to
many military organizations throughout the world [1, 2].
Due to their outstanding capability to work in remote or haz-
ardous situations, the unmanned autonomous helicopters
(UAHs) have been widely used for many civil and military
applications [3]. Path planning is the key to ensure the suc-
cessful completion of UAHmissions [4]. This particular issue
is classified as an NP-Hard optimization problem in the high
dimension [5]. In the past few years, a variety of methods have
been proposed for the path planning problem of UAHs [6, 7].
Traditional methods, such as Voronoi diagram algorithm [8],
A∗ algorithm [9], artificial potential field algorithm [10], and
rapidly exploring random tree algorithm [11] were proposed
to process the path planning problem. However, most of these

methods exist the long search times and precociousness issues
when the UAH flight path has complex constraints.

Recently, with the development and application of meta-
heuristic algorithms, more and more swarm intelligence
algorithms have been widely applied to the complex optimi-
zation problems [12, 13]. As a kind of nature-inspired algo-
rithms, metaheuristic algorithms were originated from
imitating biological interactive behaviors or physical phe-
nomena [14], such as the particle swarm optimization
(PSO) algorithm [15], genetic algorithm (GA) [16], and dif-
ferential evolution (DE) algorithm [17]. In recent years, lots
of studies have been investigated on improving and modify-
ing the existing metaheuristic algorithms, such as wavelet
mutation strategy differential evolution (WMSDE) algorithm
[18], multistrategy-based coevolutionary DE (MPPCEDE)
algorithm [19], and multiple strategies quantum-inspired
differential evolution (MSIQDE) algorithm [20].
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Based on the existing research, recently, series of meta-
heuristic algorithms had been used to solve the UAH path
planning problem [21]. In [22], a modification of wolf pack
search (WPS) algorithm was presented for path planning of
the unmanned aerial vehicle (UAV). Similarly, a grey wolf
optimizer (GWO) was applied for path planning problem
in the battle field in [23]. In [24], an improved bat algorithm
(I-BA) was proposed to process the 3D path planning prob-
lems for unmanned combat air vehicles (UCAV). In [25],
the multiverse optimizer (MVO) was used for resolving the
2D path planning problem for the UAV. In [26], the discrete
particle swarm optimization (PSO) technique was enhanced
and used to the path planning problem for surface inspection
based on UAV vision.

In 2005, a novel global optimization algorithm based on
swarm intelligence called artificial bee colony (ABC) algo-
rithm was proposed by Karaboga [27]. Compared with other
intelligent algorithms, the principle of the artificial bee
colony (ABC) algorithm makes the algorithm has the advan-
tages of implementation and flexibility. With the continuous
in-depth study of the ABC algorithm, it has been widely
applied to resolve many engineering application and control
problems, such as system identification, task assignment, and
path planning. The ABC algorithm has a superior effect in
solving path planning problems. However, it is easy to fall
into a local optimal solution during the ABC algorithm iter-
ation. To this end, many improved ABC algorithms have
been proposed, such as Rosenbrocks rotational direction
strategy [28], Boltzmann selection strategy [29], DE-ABC
(differential evolution-ABC) [30], PSO-ABC (particle swarm
optimization-ABC) [31], and QE-ABC (quantum evolution-
ary-ABC) [32]. Although those modified ABC algorithms
have been widely used in various path planning problems,
they were limited by the inherent limitations of the heuristics.
Thus, the path planning results need to be further optimized
and improved.

Due to the open-ended nature of the path planning prob-
lems, no matter how intelligent computers are, they still can-
not completely replace humans. Unmanned systems still
need human supervision to take advantage of them. There-
fore, it is indispensable to utilize human cognitive capabilities
or human-like cognitive models into optimization layer to
exploit a new path planning system for the UAH [33]. In
recent years, with the development of artificial intelligence,
researchers have become interested in a new kind of tech-
nique called hybrid-augmented intelligence [34]. From the
actual situation, “hybrid-augmented intelligence” has been
widely used in the fields of industrial development deci-
sion-making, online intelligent learning, medical health care,
and human-computer codriving [35–37]. The idea of
human-computer integration provides a new research
approach for the path planning of the UAH. In this paper,
the human-computer hybrid augmented intelligence is
applied to the path planning system of the UAH. Combining
the human intelligent experience to compensate for the
shortcomings of the heuristic algorithm, a feasible flight path
can be calculated by the improved algorithm. Furthermore,
the search time of the flight path can also be further reduced
while ensuring that it meets all constraints.

To sum up, the ABC algorithm has great preponderance
in solving the multiconstraints optimization problem. Simi-
larly, the concept of hybrid augmented intelligence relies on
the characteristics of human-computer integration, enabling
the system to handle the complex and difficult problems. To
overcome the defects of the traditional ABC algorithm and
improve the quality of the flight path, a path planning system
is proposed based on human-computer hybrid augmented
intelligence framework for the UAH in this paper. The
innovations in this paper are summarized as follows.

(i) A new path planning system based on human-
computer hybrid augmented intelligence framework
for UAH is designed to improve the rapidity and
optimality of the automatic path planner. The used
human-computer hybrid augmented intelligence
framework combines the advantages of human and
computer for planning a high-quality flight path

(ii) An I-ABC algorithm is proposed based on the
dynamic evaluation selection strategy and the com-
plex optimization method for accelerating the con-
vergence rate and maintaining the exploration
ability of the population

(iii) A space clipping method is designed based on the
attention mechanism for reconstructing the spatial
search area. The space clipping operation further
reduces the subsequent search time of the flight path
for the path planning system

(iv) The simulation studies are executed to comprehen-
sively prove the effectiveness of path planning sys-
tem based on human-computer hybrid augmented
intelligence framework for UAH by various air
combat environment models

The remainder of the paper is organized as follows.
Section 2 demonstrates the problem statement. Section 3
investigates the framework of human-computer hybrid
augmented intelligence for path planning. Section 4 inves-
tigates an improved ABC algorithm. Section 5 investigates
the space clipping method based on human optimizing
attention mechanism. Section 6 provides the feasibility
and effectiveness of the system by simulation experiment.
Finally, the concluding remarks are involved in Section 7.

2. Problem Statement

As shown in Figure 1, the path planning is the critical part of
the UAH mission assignment system, and it is used to find
the optimal flight path under the constraints such as weather
threat, terrain threat, radars threat, and missiles threat. In
this paper, we mainly study the 2D path planning of the
UAH which execute the mission at the same flight altitude.
We assume that the UAH maintains constant flight speed
and altitude during its mission.

2.1. Modeling of UAH Path Planning. In this paper, the
starting point and the terminal point are defined as S and T .
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According to the method given in [38] which is shown in
Figure 2, we divided ST into ðD + 1Þ equal parts by D vertical
lines fLk, k = 1, 2,⋯,Dg, which intersect ST at each segment
point. A flight path is formed by connecting the series of
points on the new axis. To simplify the calculations, the
threat regions covered in this paper are assumed to be
circular projections. Therefore, the path planning problem
can be converted to the route point coordinate optimization
problem.

To simplify the calculation process, a new coordinate
frame need to be established. In this section, the segment S

T is considered as the new x-axis [39]. Each path point on
the original combat field gets transferred in the new axes as
defined in (1).

x′

y′

 !
=

cos θ sin θ

−sin θ cos θ

 !
, ð1Þ

where θ represents the angle between the x-axis of the inertial
frame and the x′ of the body-fixed frame direction, ðxs, ysÞ
correspond to the start point on the body-fixed frame.
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Figure 1: Schematic of UAH path planning mission.
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Figure 2: Schematic of 2D UAH battlefield model.
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The damage probability is determined by the distance
between the UAH and the threat center. Assuming that the
new coordinates of the threat center point are ðxi, yiÞ and
the threat radius are ri, then the threat area can be
expressed as [40]

x − xið Þ2 + y − yið Þ2 = r2i : ð2Þ

2.2. Cost Function and Performance Constraints. In this
paper, the performance evaluation index of the UAH flight
path is composed of the threat cost Jithreat and the fuel cost
Jifule. The total cost and the each cost are described as
follows [41].

J = 〠
D+1

i=1
τJithreat + 1 − τð ÞJifule
� �

, ð3Þ

where τ is the weighting parameter between 0 and 1.
The flight cost from the point along Li to the one along

Li+1 is calculated at five points (as shown in Figure 3). If the
flight path shown above falls into a threat region, the Jithreat
is calculated as follows.

JLi→Li+1
threat = li

5 · 〠
Nt

k=1
sk ·

1
dk0:1,i

+ 1
dk0:3,i

+ 1
dk0:5,i

+ 1
dk0:7,i

+ 1
dk0:9,i

 !" #
,

ð4Þ

where Nt is the total number of threats, li is the length of the
ith subtrack, dk0:1,i stands for the distance between the 1/10
point on the path and the kth threat center, and sk is regarded
as the grade of the kth threat.

Assume that the UAH is moving at a constant speed, the
Jifule is calculated as follows.

Jifule = 〠
D

i=1

li
v
η, ð5Þ

where li is the length of the ith subtrack, v is the speed of
the UAH, and η is the fuel consumption per unit time of
the UAH.

Considering the actual flight situation for the UAH, the
yawing angle constraints are introduced as follows.

φ j = arctan
yj+1 − yj
xj+1 − xj

 !�����
����� ≤ φmax, ð6Þ

where φj is the yaw angle of the jth node and φmax is the
maximum yawing angle.

3. Human-Computer Hybrid Augmented
Intelligence Framework for the
Path Planning

Introducing human intelligence to the loop of the path plan-
ning system can can tackle the fuzzy and uncertain problems

[42]. Hence, human and computer cooperate with each other
to form a double-sided information exchange and control.
The ′1 + 1 > 2′ hybrid augmented intelligence can be realized
by conforming human cognitive ability, computer comput-
ing, and storage capacities [43].

In this paper, a path planning system based on the
human-computer hybrid augmented intelligence framework
is designed. The new system integrates the artificial bee col-
ony (ABC) algorithm and human intelligence. Through the
human-computer cooperation, the intelligent process ability
of the path planning system will be enhanced, and the flight
path of the UAH will be efficiently improved. The framework
of the path planning system based on the human-computer
hybrid augmented intelligence is shown in Figure 4.

The core of the path planning system for the UAH is
mainly composed of the following two parts.

3.1. Computer Processing Module. When the new combat
mission is entered, the computer will calculate an original
flight path by the ABC algorithm according to the relevant
constraints [44]. This process will always be guided by the
experience of the expert knowledge database [45]. The origi-
nal flight path needs to be evaluated to determined if it
becomes the final result. However, it is initially difficult for
the traditional ABC algorithm to obtain a high confidence
flight path for the UAH path planning system.

3.2. Human Optimizing Module. When the original flight
path cannot meet the needs of the actual combat, the
human-computer hybrid augmented intelligence system will
decide whether the result needs human adjustment or human
intervention [46]. In this paper, the human optimization
module is mainly divided into the following two parts.

(i) Algorithm optimization layer

The ABC algorithm has a good effect in solving path
planning problems; however, it is easy to fall into a local opti-
mal solution during algorithm iteration. In the algorithm
optimization layer, the traditional ABC algorithm is
improved by the dynamic evaluation selection strategy and
the complex optimization method. The improved ABC (I-
ABC) algorithm raises the optimisation efficiency, avoids

Li+1
Li

Pi+1

Pi

1/10
3/10

5/10
7/10

9/10

Threat

Figure 3: Schematic diagram of flight cost computation.
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the algorithmic precocity, and plans a high confidence flight
path according to the actual task requirements.

(ii) Human computing layer

The path planning based on the I-ABC algorithm can
basically meet the mission demands. However, the time of
the flight path planning can still be further reduced to
improve the efficiency of the planning system. In the human
computing layer, the efficiency of the planning system can be
further improved by space clipping operation based on the
attention mechanism. This step can be used as empirical
knowledge to feed back into the expert knowledge base to
guide and monitor the entire path planning system, thus
enabling human-computer hybrid-augmented features.

4. UAH Path Planning Based on
I-ABC Algorithm

The ABC algorithm is the most important component of the
path planning system for the UAH. The rationality and effi-
ciency of the ABC algorithm in dealing with complex prob-
lems will directly affect the results of the path planning
system for the UAH. Although the ABC algorithm is widely
used at present, it still exposes many problems when it faces
complex multiconstraints optimization problems.

In this section, the traditional ABC algorithm will be
improved in the algorithm optimization layer to optimize
the path planning of the UHA. In the algorithm optimization
layer, there are mainly two optimization measures as follows.

(i) First, in order to prevent the ABC algorithm prema-
ture convergence problem, a dynamic evaluation
selection strategy is proposed to optimize the follow
way of on-looker bees for improving the searching
efficiency

(ii) Second, in order to improve the quality of the flight
path, the complex method is used to guide the opti-
mization of the swarm. The nectar source is updated
during each iteration, the search efficiency of the
nectar source is improved, and the algorithm conver-
gence is accelerated

The specific process of the I-ABC algorithm is as follows.

4.1. Initialization. There are three kinds of bees, i.e.,
employed bees, onlooker bees, and scout bees in the ABC
algorithm [27]. Accordingly, the triple search capability of
the ABC includes of three search phases: employed bee stage,
onlooker stage, and scout stage [28]. The position of the nec-
tar source (initial 2D track) is represented by a D ×NP
-dimensional matrix E = feijg, the vector in the ith row of
the matrix is represented as

Xi = xi1,⋯,xij,⋯,xiD
� �

, ð7Þ

where 1 ≤ i ≤Np, 2 ≤ j ≤ ðD − 1Þ, and xi1 = xiD = 0.
All theNP employed bees need to be randomly initialized

by equation (8) [27]. In other words, each track point is ran-
domly generated within a specified range in the feasible solu-
tion space.

xij = xmin
i + rand 0, 1ð Þ · xmax

i − xmin
i

� �
, ð8Þ

where xmin
i and xmax

i are the constraints of the ith parameter,
rand ð0, 1Þ is a random number range from 0 to 1.

Then, the corresponding fitness is calculated as

fitness ið Þ =
1

1 + obj ið Þ½ � , obj ið Þ ≥ 0,

1 + obj ið Þj j, obj ið Þ < 0,

8><
>: ð9Þ
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Figure 4: Framework of the human-computer hybrid augmented intelligence.
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where objðiÞ represents the objective function value with
respect to Xi.

4.2. Employed Bee Phase. Each employed bee is related with
only one nectar source. The employed bee finds a new
candidate solution through changing the nectar source
position in its memory based on the local information. In
each iteration cycle, the employed bee adopts (10) to

search for the better nectar source Vij around the current
nectar source [27].

vij = xij + rand 1,−1ð Þ · xij − xkj
� �

, ð10Þ

where i = 1, 2,⋯,NP,  k ∈ f1, 2,⋯,NPg,  j ∈ f1, 2,⋯,Dg,
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Figure 5: Schematic model of the complex method for five nectar sources.

Figure 6: Flow diagram of the complex optimization method.
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k is a random integer different from i, j is a random integer,
and rand ð1,−1Þ is a random number range from −1 to 1.

During the neighborhood search process, when the loca-
tion of the nectar source searched by the employed bees
exceeds the search boundary constraint, the bee is selected
according to (11).

xij =
xmin
j + ∂ xmax

j − xmin
j

� �
, xij ≤ xmin

j ,

xmin
j − ∂ xmax

j − xmin
j

� �
, xij > xmin

j ,

8><
>:

∂ ∈ rand 0, 1ð Þ

ð11Þ

where xmin
j and xmax

j are the constraints of the jth parameter.

4.3. Onlooker Bee Phase. In the onlooker bee phase, the
amounts and positions of their nectar sources will be
transmitted by the employed bees to onlooker bees. Then,
the onlooker bee evaluates all the information of nectar
sources transmitted by employed bees, and chooses one

nectar source site according to the probability value pi for-
mulated as [27]

pi =
fitness ið Þ

∑NP
j=1fitness ið Þ

, ð12Þ

where NP represents the number of bees.
However, the traditional following selection method overly

focus on the development of excellent nectar sources. Ignoring
other potential nectar sources will cause the algorithm’s global
search capability to decline and reduce the algorithms solution
efficiency. For solving this problem, we propose a dynamic
evaluation selection strategy instead of the traditional method
to follow the location of the nectar sources.

(1) Defining the nectar source dynamic evaluation
integral value

In this section, the dynamic evaluation integral values of
nectar sources are defined as Ψ1ðiÞ and Ψ2ðiÞ. When the

Start

Initialize the ABC algorithm

Discover the new honey sources?

Greedy criterion determines whether
to accept new nectar sources

Replace the original nectar sources

Update the new path by complex method

Record the best path
search by all bees

Iter=iter+1

Iter>Lmax?

Output the optimal path

End

Employed bees neighborhood searching

N

Y

Y

NDiscocer the new honey sources?

Greedy criterion determines whether
to accept new nectar sources

Replace the original nectar sources

Calculate the following probability of
onlooker bees by

dynamic evaluation criteria

Onlooker bees turn into scout bees for
neighborhood searches

N

Y

Figure 7: Flow diagram of the I-ABC.
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nectar source i maintains unchanged, Ψ1ðiÞ is calculated
according to equation (13), and Ψ2ðiÞ is 0. When the nectar
source position i is replaced by a better one, Ψ2ðiÞ is calcu-
lated according to equation (14), and Ψ1ðiÞ is 0.

Ψ1 ið Þ =
Ψ1 ið Þ + step, Ψ1 ið Þ < limitd ,
limitd , Ψ1 ið Þ ≥ limitd ,

(
ð13Þ

Ψ2 ið Þ =
Ψ2 ið Þ + step, Ψ2 ið Þ < limitd ,
limitd , Ψ2 ið Þ ≥ limitd ,

(
ð14Þ

where Ψ1ðiÞ is the number of searching near the nectar
source i but the position has not changed, Ψ2ðiÞ is the num-
ber of searching near the nectar source i and the position has
changed, and limitd is the dynamic update limit parameter,
step is the search unit length.

(2) Building the dynamic evaluation function

Considering that there will be more greater possibility
of finding excellent nectar sources near the continuously
optimized nectar sources. The dynamic evaluation func-
tion FðiÞ is constructed according to the dynamic evalua-
tion criteria which is written as

F ið Þ =
ζ 1 − Ψ1 ið Þ

limitd

	 

, Ψ1 ið Þ ≠ 0,

ζ 1 + Ψ2 ið Þ
limitd

	 

, Ψ1 ið Þ = 0,

8>>><
>>>:

ð15Þ

where ζ is the base score of the nectar source.

(i) WhenΨ1ðiÞ = 0, this nectar source may be trapped in
a local optimum. Onlooker bees should try to avoid
selecting this type of nectar source for further
development

(ii) WhenΨ1ðiÞ ≠ 0, this nectar source has been continu-
ously optimized multiple times. Onlooker bees need
to try to select this type of nectar source for neighbor-
hood search

The evaluation integral value of the nectar source is cal-
culated by the evaluation function FðiÞ. The basic score of
the nectar source is ζ, and the selection possibility of all indi-
viduals is guaranteed. The scores of nectar sources with con-
tinuously changing positions are more than ζ, which has a
greater possibility of being followed. The optimized selection
probability is calculated by (16).

p′i =
F ið Þ

max F ið Þð Þ : ð16Þ

4.4. Scout Bee Phase. In each iteration cycle, the exhausted
nectar source will be checked by ABC algorithm after all
the employed bees and onlookers complete their searches.
If the new position Xi is not improved continuously for a cer-
tain time, then the corresponding nectar source will be aban-

doned by the employed bee. At this time, this employed bee
will become a scout bee. According to (10), a new nectar
source vij will be generated by the scout bee.

In order to improve the efficiency of the nectar source
and the quality of the flight path, a complex optimization
method is used to guide the swarm. The complex optimiza-
tion method is a direct search algorithm for finding con-
strained optimization problems [47]. In solving nonlinear
problems, by virtue of its freedom from the constraints of
the research problem and the objective function, it has a wide
range of applicability and can be embedded in many other
algorithms to guide the problem to an optimal or suboptimal
solution.

From the nectar sources before the end of each iteration,
u nectars are selected to construct the complex geometry,
which is ordered as ðX1, X2,⋯XuÞ according to the size of
the objective function value from best to worst (as shown in
Figure 5). The process of the complex optimization method
is as follows.

Step 1. Centroid calculation

Xc =
1

u − 1〠
u−1

i=1
Xi: ð17Þ

Step 2. Reflection point calculation

Xr = Xc + α Xc − Xuð Þ, ð18Þ

where α ∈ ð0, 1Þ is the reflection coefficient. If Xr is better
than Xu, Xu will be replaced by Xr ; otherwise, go to Step 4.

Step 3. Extension point calculation

Xe = Xr + β Xr − Xcð Þ, ð19Þ

where β ∈ ð0, 1Þ is the extension coefficient. If Xe is better
than Xu, Xu will be replaced by Xe; otherwise, go to Step 4.

Step 4. Systolic point calculation

Xs = Xu + χ Xc − Xuð Þ, ð20Þ

where χ ∈ ð0, 1Þ is the systolic coefficient. If Xs is better than
Xu, Xu will be replaced by Xs; otherwise, go to Step 1.

In this paper, the purpose of the complex optimization
method is to emphasize the “replacement” effect, not the tra-
ditional “search for excellence.” So when the convergence ter-
mination condition is setted, it is only necessary for the
algorithm to reach the required number of iterations, which
is related to the number of selected nectar sources. The con-
vergence termination is as follows.

Ncomplex = u: ð21Þ

The flow diagram of the complex optimization method is
shown in Figure 6.

By the complex optimization method, the original u
worst nectar sources in the search space are replaced.
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The complex geometry keeps reflecting, extending, and
contracting in the above ways to make the nectar source
approach the optimal location. Since the nectar source is
updated during each iteration, the problem of dimension-
ality reduction due to failure to take into account the
correlation and number of points of the initial complex
is avoided.

To overcome the defects exposed by the traditional ABC
algorithm in dealing with the path planning of the UAH, an
I-ABC algorithm is proposed based on the dynamic evalua-
tion selection strategy and complex optimization method in
the algorithm optimization layer. The I-ABC algorithm
avoids the premature convergence problem, reduces the
algorithm search time, and improves the quality of the flight

1: initialize solution population using (8)
2: set trialðiÞ = 1ði = 12,⋯NPÞ
3: for iter = 1 : MCN do
4: for item = 1 : SN do
5: generate positions for employed bees by (10)
6: evaluate and greedily select employed bees
7: if better position is found then
8: trialðitemÞ⟵ 1
9: else
10: trialðitemÞ⟵ trialðitemÞ + 1
11: end if
12: end for
13: calculate the dynamic evaluation probability p′i by (16)
14: set item = 1
15: while item < SN do
16: generate positions for employed bees by (10)
17: evaluate and greedily select employed bees
18: if position is changed then
19: trialðitemÞ⟵ 1
20: else
21: trialðitemÞ⟵ trialðitemÞ + 1
22: end if
23: end while
24: if trialðitemÞ ≥ Limit then
25: initialize the position by (8)
26: end if
27: while item < u do
28: calculate centroid Xc by (17)
29: calculate reflection point Xr by (18)
30: if FðXrÞ < FðXuÞ then
31: Xu = Xr
32: calculate extension point Xe by (19)
33: if FðXeÞ < FðXuÞ then
34: Xu = Xe
35: end if
36: else
37: calculate systolic point Xs by (20)
38: if FðXsÞ < FðXuÞ then
39: Xu = Xs
40: item = item + 1
41: end if
42: end if
43: end while
44: if trialðitemÞ ≥ Limit then
45: initialize the position by (8)
46: end if
47: record current best solution
48: iter⟵ iter + 1
49: end for
50: output global optimal solution

Algorithm 1: The I-ABC algorithm.

9Neural Plasticity
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path. The flow diagram of the I-ABC algorithm is shown in
Figure 7.

During the iteration, if an employed bee searches glob-
ally but finds no better nectar source, or if an onlooker
bee searches around an employed bee and finds no better
nectar source, the invalid trail time trial plus one. On the
other hand, when any better nectar source can be searched
by the ith employed bee, the relevant trialðiÞ is set to zero
immediately. At the end of each iteration, it is necessary to
determine whether any trialðiÞ outpaces a certain threshold
Limit. If trialðiÞ > Limit, the ith employed bee will be dia-
metrically replaced by a scout bee. A scout bee still uses
(8) to point to a randomly initialized location in the food
source. The pseudocode of the I-ABC algorithm are shown
in Algorithm 1.

Remark 1. The I-ABC algorithm can be divided into two
phases. As the first phase of the program, the initialization
phase is executed one time at the start, and the other phases
are executed in each cycle. The computational complexity is
mostly affected by the phase of the algorithm.

The computation is applied to the population with size of
N , the individuals’ position in population is a vector with size
of D, and O is the asymptotic time complexity. The comput-
ing complexity TðnÞ of each phase is shown as follows:

(i) Initialization phase

T1 nð Þ =max O 1ð Þ,O N ·Dð Þ½ � =O N ·Dð Þ: ð22Þ

(ii) Optimization phase

T2 nð Þ =max O N2 ·D
� �

,O N ·Dð Þ,O N ·Dð Þ,O N ·Dð Þ� �
=O N2 ·D
� �

:

ð23Þ
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Therefore, the maximum computing complexity of the I-
ABC algorithm is shown as

T nð Þ = T1 nð Þ + T2 nð Þ =max O N ·Dð Þ,O N2 ·D
� �� �

=O N2 ·D
� �

:
ð24Þ

So it proves that this algorithm owns fast execution
speed.

5. Space Clipping Operation Based on
Attentional Mechanism

As shown in Figure 8, the incorporation of human intelli-
gence is an important feature of the human-computer hybrid
augmented intelligence framework. In order to further
reduce the flight path search time and improve the efficiency
of the UAH path planning system, a human computing layer
is designed for the refinement operation of the flight path.
Combined with the prior knowledge and human intelligence,
the UAH flight space will be clipped by the spatial attention
mechanism.

5.1. Attentional Mechanism. The main idea of the human
computing layer presented in this paper is the space clipping
based on the attention mechanism. The attention mechanism
is a brain signal processing mechanism that is unique to
humans [48]. The flight space clipping operation mimics
the process by which the human brain rapidly sifts high-
value information from large amounts of data through lim-
ited attentional resources [49]. The principle of the mecha-
nism is shown in Figure 9.

The division of the threat areas will be determined by the
degree of association between the flight path and the threat.
Eventually, the spatial area of the path planing will be
redrawn.

5.2. Space Clipping Operation. In order to meet the constraint
of minimizing the length of the path, the flight path can only
through the safe space between a part of the threat areas.
Numerous studies show that the unrelated threats will
increase the search time of the swarm intelligence algorithm
and reduce the efficiency of the path planning system. There-
fore, it is crucial to distinguish different threat areas by the
human computing layer. Combining the priori path planning
results knowledge, the UAH flight space can be clipped by
following steps.

(1) Voronoi diagram construction

The Voronoi diagram is widely used in terrain processing
and other areas of division [8]. The points on each edge of the
Voronoi diagram polygon are equidistant from the corre-
sponding two threat points. In other words, all points on
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Figure 16: Diagram of new spatial search area.
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the edge of the Voronoi diagram are as far away as possible
from the threat.

Step 1. As shown in Figure 10(a), the threat region is consid-
ered as a point tn, and all threat regions form a scatter set T of
finite distances, that is, T = ft1, t2,⋯, tng.

Step 2. As shown in Figure 10(b), construct Delaunay tri-
angles by connecting discrete points tn into triangles. Find
the edges of the Voronoi diagram by traversing the trian-
gle chain table and draw the Voronoi diagram based on
the final result.

The Voronoi diagram divides the flight path planning
space into n convex polygons viði = 1, 2,⋯, nÞ centered on
the threat area, and the Voronoi diagram composed of V =
fv1, v2,⋯, vng satisfies the following two conditions.

(1) Each convex polygon includes one and only one
threat area, that is, ∀vi ∈ V , ∃!t j ∈ T , where t j ∈ vi, ∀
tk ∈ Tðk ≠ jÞ, tk ∉ vj.

(2) Suppose that dðx, yÞ is the Euclid distance on ℝ2, if
t j ∈ vi, so that ∀t ∈ vi, ∀tk ≠ t j, where dðx, xjÞ ≤ dðx,
xkÞ, i, j = 1, 2⋯ , n.

(2) Threat areas classification

Assume that the flight path is Cpath, the edge between
threat ti and threat t j is Lvi, j , the intersection of the flight path

and the edge of the convex polygon is Ξk
i,j, where i ≠ j and

i, j = 1, 2,⋯, n, and k is the number of the intersection.
The guidelines for determining the type of threat areas
are as follows.

(i) If Cpath intersects Lvi, j and the intersection point is Ξ
k
i,j

(k ≥ 1), threat ti and threat t j are defined as associated
threats. When the position of Ξ is located at the inter-
section of the three edges of the convex polygon,
Ξ = Ξk

h,i,jðh ≠ i ≠ j, h, i, j = 1, 2,⋯, n, k = 1Þ; threat th,
threat ti, and threat t j are defined as associated threats

(ii) If there is no intersection between Cpath and Lvij , that

is, Ξk
ij does not exist, threat ti and threat t j are defined

as unrelated threats

As shown in Figure 11, the flight space includes 11 threat
areas (T = ft1, t2,⋯, t11g), and the Voronoi diagram divides
them into 11 convex polygons (V = fv1, v2,⋯, v11g).

According to the above theory, the threat areas in Figure 11
can be judged as follows.

(i) Part I

Cpath and Lv1,2 intersect at Ξ1
1,2 and Ξ2

1,2; threat t1 and
threat t2 are associated threats; Cpath and Lv1,4 intersect at

Ξ1
1,4; threat t1 and threat t4 are associated threats.

(ii) Part II

Cpath and Lv4,8 intersect at Ξ1
4,8 and Ξ2

4,8; threat t4 and
threat t8 are associated threats.

Simulation
experiments

Part 1: spare threat environment Part 1: dense threat environment

Path planning system
verification

Algorithm optimization

Human computing optimization

Figure 17: Structure of the simulation.

Table 1: The information of threat areas.

Threat number Threat center (km) Threat radius (km)

t1 [125,-50] 50

t2 [95,70] 60

t3 [250,-110] 50

t4 [230,7] 50

t5 [240,160] 90

t6 [310,50] 30

t7 [360,-45] 60

t8 [420,90] 70

Table 2: The information of threat areas.

Threat number Threat center (km) Threat radius (km)

t1 [0,-150] 90

t2 [60,-60] 40

t3 [70,80] 55

t4 [150,-90] 38

t5 [130,0] 30

t6 [210,160] 90

t7 [230,7] 50

t8 [250,-110] 50

t9 [330,80] 60

t10 [360,-50] 60

t11 [500,-170] 110

t12 [440,60] 40

t13 [420,230] 100
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(iii) Part III

Cpath and Lv4,7 and Lv4,8 and Lv7,8 at Ξ
1
4,7,8; threat t4, threat

t7, and threat t8 are associated threats.

(iv) Part IV

Cpath and Lv7,10 intersect at Ξ
1
7,10; threat t7 and threat t10

are associated threats.

(v) Part V

Cpath and Lv10,11 intersect at Ξ
1
10,11; threat t10 and threat t11

are associated threats.

In summary, as shown in Figure 12, the associated con-
vex polygonal areas set is Vassociated = fv1, v2, v4, v7, v8, v10,
v11g, and the associated threat set is Tassociated = ft1, t2, t4, t7,
t8, t10, t11g.

5.3. Search Space Construction. The new spatial search area
consists of a closed-loop space connected in sequence by
the mission starting point S, the boundary docking points,
and the mission end point T . The key of constructing a
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new spatial search area are to find the reasonable boundary
docking points and determine the spatial search boundary.
In order to ensure that the results of the path planning in
the new spatial search area remain largely optimal and the
computation time of the swarm intelligence algorithm can
be reduced. The spatial search area and the boundary dock-
ing point should satisfy the following properties.

(i) The spatial search area is a closed loop area

(ii) The spatial search area contains all associated threats
Vassociated

(iii) The positions of the boundary docking points
should be on the associated threats’ borders

To simplify the calculation, according to the properties of
the space search boundary, the method for determining the
boundary docking points is designed as follows.

(i) r1 = r2

Case 1. Shown in Figure 13, make the tangent line LR1 of the
threat circle 1 through S (start or end point), and the tangent
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Figure 21: Threat space division.

Table 3: Results comparison for three algorithms.

Algorithms PSO ABC I-ABC
Performances Value Time(s) Value Time(s) Value Time(s)

Optimal 3:39 28.03 2:82 15.38 2:71 14.36

Worst 6:96 39.81 3:64 19.75 3:28 15.71

Mean 5:02 29.86 3:23 17.3 2:99 15.07
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point A is the boundary docking point of the start/end point
to the associated threat, where AR1⊥LR1, ∠AR1S = ζ.

Case 2. Shown in Figure 14, cross point R1 to make the verti-
cal line l of SR1, find the symmetrical point A′ of A with
respect to l, and the point A′ is the boundary docking point
on the associated threat.

Case 3. Different associated threats have different threat
radius. According to the radius of adjacent associated threats,
the location of the boundary docking point can be divided
into three situations.

As shown in Figure 15(a), straight line l′ is the vertical
bisector of line segment R1R2, and point B is the symmetry
point of A′ with respect to l′. For r1 = r2, the point B must
be on the boundary of threat 2, so point B is the boundary
docking point of associated threat 1 to associated threat 2.

(ii) r1 < r2

As shown in Figure 15(b), straight line l′ is the vertical
bisector of line segment R1R2, and point P is the symmetry

point of A′ with respect to l′, where P is within the threat
2. Crossing point P to make the vertical line A′P of R1R2,
and the intersection point B with threat 2 is the boundary
docking point of associated threat 1 to associated threat 2,
where ∠AR1R2 = ∠BR2R1 = ζ.

(iii) r1 > r2

As shown in Figure 15(c), straight line l′ is the vertical
bisector of line segment R1R2, and point P is the symmetry
point of A′ with respect to l′, where P is out of the threat 2.
Crossing point P to make the vertical line A′P of R1R2, and
the intersection point Bwith threat 2 is the boundary docking
point of associated threat 1 to associated threat 2, where ∠A
R1R2 = ∠BR2R1 = ζ.

Table 4: Associated convex polygons and threats.

Intersection
points

Associated convex
polygons

Associated
threats

Ξ1
1,2 v1, v2 t1, t2

Ξ1
1,4 v1, v4 t1, t4

Ξ2
1,4 v1, v4 t1, t4

Ξ3
1,4 v1, v4 t1, t4

Ξ1
3,4 v3, v4 t3, t4

Ξ2
3,4 v3, v4 t3, t4

Ξ1
4,6 v4, v6 t4, t6

Ξ1
6,7 v6, v7 t6, t7

Ξ1
7,8 v7, v8 t7, t8

Table 5: Boundary docking points.

Associated
threats

Boundary docking
points

Distribution coordinates
(km)

t1
A 77:45,−65:45½ �
A′ 160:4,−85:36½ �

t2
B 41:54,97:24½ �
B′ 148:5,97:24½ �

t3
C 209:6,−117:8½ �
C′ 308:4,−117:8½ �

t4
D 207:3,51:55½ �
D′ 252:7,51:55½ �

t6
E 296:4,76:73½ �
E′ 323:6,76:73½ �

t7
F 317:6,−87:43½ �
F ′ 402:4,−87:43½ �

t8
G 370:5,139:5½ �
G′ 489,101½ �
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Due to the location of the associated threats and the mis-
sion start/end point were known, the boundary docking
point and the search boundary information can be deter-
mined by the prior knowledge. The new spatial search area
is shown in Figure 16.

6. Simulation Experiments

In this section, for verifying the feasibility and effectiveness of
the path planning system based on human-computer hybrid
augmented intelligence framework for the UAH, a complete
set of simulation experiments are designed. The simulation
experiment process is shown in Figure 17.

The simulation experiments are conducted in two-
dimension (2D) field. In the 2D field, the size of the UAH flight
space is 700km ∗ 400km. The start point is set to [0,0]. The tar-
get point is set to [500,0]. We assume that the threats in the
planning space are denoted by several circular areas. The
related information of the threats is shown in Tables 1 and 2.

6.1. Algorithm Optimization Simulation Comparison Results.
To show the superiority of the I-ABC algorithm improved in
the algorithm optimization layer, the PSO algorithm, the
ABC algorithm, and the I-ABC algorithm are simulated
and compared under the same environment model. The
maximum iteration number is set as 500, the dimension D

The comparative path planning results
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Figure 23: The comparative results for two different spatial search areas.
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Table 6: Results comparison for two spatial search areas.

Original spatial search area New spatial search area
Performances Cost value Time (s) Cost value Time (s)

Optimal 1.957 14.36 1.912 9.05

Worst 3.409 15.71 3.135 12.34

Mean 2.813 15.07 2.613 11.69

17Neural Plasticity



is set as 40, and the population size NP is set as 60. The
results are averaged 20 independent runs, and the results of
the simulation are illustrated in Figures 18, 19, and 20. The
comparison result is listed in Table 3. In this table, the mean,
worst, and optimal represent the mean fitness value, the
worst fitness value, and the optimal fitness value, respectively.

Figure 18 shows that the intuitive differences of the
experimental results between three algorithms in the 2D
planning field. We can determine that the result planned by
I-ABC algorithm can satisfy the requirements of the UAH
path planning. The flight path planned by the PSO algorithm
and the standard ABC algorithm have touched and crossed
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the edge of the threats, and the result of the PSO algorithm is
oscillatory.

The convergence curves of the three algorithms are
shown in Figure 19. It can be obviously seen from these
curves that the convergence effect of the I-ABC algorithm is
better than other algorithms. The I-ABC algorithm attains
the global optimal value in iteration 221. But the standard
ABC algorithm approaches to their optimal value in iteration
278. What is worse is that the PSO algorithm still cannot find
its optimal value when the number of iterations is reached.

The intuitive quantitative statistical results are shown in
Figure 20 and Table 3. The statistical results of the PSO algo-
rithm are poor, the optimal value is 3:39, the worst value is
6:96, and the average running time is 29.86 s. For the stan-
dard ABC algorithm, the optimal value is 2:82, the worst
value is 3:64, and the average running time is 17.3 s. Com-
pared with the ABC and PSO algorithms, the planning results
of the I-ABC algorithm has smaller cost value and average
running time. These denote that the I-ABC algorithm can
search for the optimal path stably and also verify the superior
performance of the algorithm optimization layer in improv-
ing the traditional standard ABC algorithm.

6.2. Human Computing Optimization Simulation Comparison
Results. To further reduce the search time of the flight path
and keep its feasibility, the flight space needs to be clipped
according to the prior knowledge for constructing a new spa-
tial search space. The process of the space clipping operation
is demonstrated in Figures 21 and 22 and Tables 4 and 5. The
results are averaged 20 independent runs in the different
search spaces, and the results of the simulation are demon-
strated in Figures 23 and 24 and Table 6.

Figure 21(a) shows that the original spatial search space
was divided into 8 parts include v1, v2,⋯v8 by Voronoi dia-
gram. According to the intersections of the flight path and
the boundary of the convex polygon, the associated threats
can be determined. Shown in Figures 21(b)–21(g)) and
Table 4, the intersection point set is Ξ1

1,2, Ξ
1
1,4, Ξ

2
1,4, Ξ

3
1,4,

Ξ1
3,4, Ξ

2
3,4, Ξ

1
4,6, Ξ

1
6,7, and Ξ1

7,8, the associated convex polygons
are v1, v2, v3, v4, v6, v7, and v8, and the associated threats are
t1, t2, t3, t4, t6, t7, and t8. Table 5 shows the coordinates of
the boundary docking points, by connecting the start/end
points with the boundary docking points, we can get the
new search space construction as shown in Figure 22.

Figure 23(a) shows the path planning results of the I-
ABC algorithm in two different spatial search areas. From
the planning results, we can intuitively find that the final
results planned by the I-ABC algorithm have almost no dif-
ferences in two different spatial search areas. The conver-
gence curves of two spatial search areas are illustrated in
Figure 23(b). Similarly, from these curves, it can be find that
the convergence effect by I-ABC algorithm in the new spatial
search areas is slightly better than the original spatial search
areas; however, the differences can be almost ignored in prac-
tical applications. In other words, the flight path result in the
new spatial search area still maintains its optimality in the
original spatial search area.

The difference between the flight path of two spatial
search areas can be found through the data in Figure 24.
For the original spatial search area, the optimal value is
1.957, the worst value is 3.409, and the mean value is 2.813.
The optimal search time of the I-ABC algorithm witch runs
20 times is 14.56 s, the worst search time is 15.71 s, and the
mean search time is 15.07 s. For the new spatial search area,
the optimal value is 1.912, the worst value is 2.778, and the
mean value is 2.346. The optimal search time of the I-ABC
algorithm witch runs 20 times is 9.05 s, the worst search time
is 12.34 s, and the mean search time is 11.69 s. By the compar-
ison, the change in cost value is minimal. And the smooth-
ness and feasibility of the flight path have not changed in
the new spatial search area. These denote that the space clip-
ping operation in the human computing layer can indeed
reduce the search time of the flight path under the planning
result within acceptable changes. Furthermore, the efficiency
of the path planning system can be improved.

6.3. UAH Path Planning System Simulation Results. To
further verify the effect of the space clipping operation for

Statistical cost value
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New spatial search area

5

4

3

Optimal value Worst value Mean value
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Figure 26: The statistical results of two different spatial search areas.

Table 7: Results comparison for two spatial search areas.

Original spatial search
area

New spatial search
area

Performances Cost value Time (s) Cost value Time (s)

Optimal 2.912 19.56 2.754 13.6

Worst 4.021 23.3 3.698 19.81

Mean 3.576 21.01 3.026 16.94
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the path planning in the complex environment, a compli-
cated environment model with more threats will be used
for the simulation. The information of the threats in new
environment is shown in Table 2. The maximum iteration
number of the I-ABC algorithm is set as 500, the dimension
D is set as 40, the population size NP is set as 60. The simu-
lation results of the path planning system for the UAH in the
new map are shown as Figures 25(a)–25(e) and 26 and
Table 7.

Figure 25(a) shows that the path planning result by the I-
ABC algorithm in the original spatial search area. We can see
that the result planned by I-ABC algorithm avoids all threat
areas, and it can meet the constraints of the UAH path
planning.

Figures 25(b) and 25(c), respectively, show the process of
the threat area classification and the search space construc-
tion. As shown in Figure 25(b), the associate threats can be
identified as t2, t3, t4, t5, t7, t8, t9, t10, and t12. The new spatial
search area consists of associated threats and black spatial
search boundaries (as shown in Figure 25(c)).

Figure 25(d) shows the path planning results of the I-
ABC algorithm in the new spatial search area. Compare with
Figure 25(a), the flight path planned in the new spatial search
area is similar to the flight path planned in the original spatial
search area, both in terms of path smoothness and flight
length. The convergence curves of the two spatial search
areas are displayed in Figure 25(e). According to these
curves, it can be obviously found that the convergence effect
by I-ABC algorithm in the new spatial search areas is also
similar to the original spatial search areas.

The difference between the planning results of two spatial
search areas can be found through the data in Figure 26. For
the original spatial search area, the optimal value is 2.912, the
worst value is 4.021, and the mean value is 3.576. The optimal
search time of the I-ABC algorithm witch runs 20 times is
19.56 s, the worst search time is 23.32 s, and the mean search
time is 21.01 s. For the new spatial search area, the optimal
value is 2.754, the worst value is 3.698, and the mean value
is 3.026. The optimal search time of the I-ABC algorithm
witch runs 20 times is 13.62 s, the worst search time is
19.81 s, and the mean search time is 16.94 s. By the compari-
son, the space clipping operation can maintain the excellent
performance of the previous flight path planned by I-ABC
algorithm. Moreover, the search time of the path planning
system can be further reduced.

7. Conclusion

In this paper, a path planning system is presented based on
human-computer hybrid augmented intelligence framework
for improving the rapidity and optimality of the UAH path
planner. At first, the proposed I-ABC algorithm optimizes
the follow way of on-looker bees and the update strategy of
nectar source. The dynamic evaluation selection strategy
and complex optimization method accelerate the conver-
gence rate and maintain the exploration ability of the popu-
lation. In addition, the space clipping operation based on
the attention mechanism reconstructs the spatial search area
of the UAH. Unlike adjusting the number of iterations or

modifying the parameters of the algorithm, the space clip-
ping operation is directly applied to the optimal solution
searched by the I-ABC algorithm. Benefit from this opera-
tion, the subsequent search time of the flight path for the path
planning system is further reduced. Eventually, the experi-
mental results show that the path planning system based on
human-computer hybrid augmented intelligence framework
for the UAH can combine the advantages of human and
computer for planning a high-quality flight path. This study
provides promising results for actual military mission.

Data Availability

The experimental data of this study are included within the
article.

Conflicts of Interest

All authors declare no conflict of interest.

Acknowledgments

This work was supported in part by the National Science
Fund for Distinguished Young Scholars (61825302), in part
by the Key R & D Projects (Social Development) in Jiangsu
Province of China (Grant BE2020704), and in part by Jiangsu
Province “333” Project (Grant BRA2019051).

References

[1] F. Santoso, M. A. Garratt, and S. G. Anavatti, “State-of-the-art
intelligent flight control systems in unmanned aerial vehicles,”
IEEE Transactions on Automation Science and Engineering,
vol. 15, no. 2, pp. 613–627, 2018.

[2] W. Liu, Z. Zheng, and K.-Y. Cai, “Bi-level programming based
real-time path planning for unmanned aerial vehicles,” Knowl-
edge-Based Systems, vol. 44, pp. 34–47, 2013.

[3] C. Sun, Y.-C. Liu, R. Dai, and D. Grymin, “Two approaches for
path planning of unmanned aerial vehicles with avoidance
zones,” Journal of Guidance, Control, and Dynamics, vol. 40,
no. 8, pp. 2076–2083, 2017.

[4] Y.-C. Du, M.-X. Zhang, H.-F. Ling, and Y.-J. Zheng, “Evolu-
tionary planning of multi-UAV search for missing tourists,”
IEEE Access, vol. 7, pp. 73480–73492, 2019.

[5] W.-L. Liu, Y.-J. Gong, W.-N. Chen, Z. Liu, H. Wang, and
J. Zhang, “Coordinated charging scheduling of electric vehi-
cles: a mixed-variable differential evolution approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21,
no. 12, pp. 5094–5109, 2020.

[6] R. Thangaraj, M. Pant, A. Abraham, and P. Bouvry, “Particle
swarm optimization: hybridization perspectives and experi-
mental illustrations,” Applied Mathematics and Computation,
vol. 217, no. 12, pp. 5208–5226, 2011.

[7] F. J. Rodriguez, C. Garcia-Martinez, and M. Lozano, “Hybrid
metaheuristics based on evolutionary algorithms and simu-
lated annealing: taxonomy, comparison, and synergy test,”
IEEE Transactions on Evolutionary Computation, vol. 16,
no. 6, pp. 787–800, 2012.

[8] Y. V. Pehlivanoglu, “A new vibrational genetic algorithm
enhanced with a Voronoi diagram for path planning of

20 Neural Plasticity



autonomous UAV,” Aerospace Science and Technology, vol. 16,
no. 1, pp. 47–55, 2012.

[9] I. S. AlShawi, L. Yan, W. Pan, and B. Luo, “Lifetime enhance-
ment in wireless sensor networks using fuzzy approach and A-
star algorithm,” IEEE Sensors Journal, vol. 12, no. 10,
pp. 3010–3018, 2012.

[10] Y.-b. Chen, G.-c. Luo, Y.-s. Mei, J.-q. Yu, and X.-l. Su, “UAV
path planning using artificial potential field method updated
by optimal control theory,” International Journal of Systems
Science, vol. 47, no. 6, pp. 1407–1420, 2014.

[11] M. Kothari and I. Postlethwaite, “A probabilistically robust
path planning algorithm for UAVs using rapidly-exploring
random trees,” Journal of Intelligent & Robotic Systems,
vol. 71, no. 2, pp. 231–253, 2013.

[12] D. Manjarres, I. Landa-Torres, S. Gil-Lopez et al., “A survey on
applications of the harmony search algorithm,” Engineering
Applications of Artificial Intelligence, vol. 26, no. 8, pp. 1818–
1831, 2013.

[13] W. Guo, M. Chen, L. Wang, Y. Mao, and Q. Wu, “A survey of
biogeography-based optimization,” Neural Computing and
Applications, vol. 28, no. 8, pp. 1909–1926, 2016.

[14] M. T. Younis and S. Yang, “Hybrid meta-heuristic algorithms
for independent job scheduling in grid computing,” Applied
Soft Computing, vol. 72, pp. 498–517, 2018.

[15] J. Kennedy and R. Eberhart, “Eberhart particle swarm optimi-
zation,” in Proc. IEEE Int. Conf. Neural Netw, pp. 1942–1948,
Piscataway, 1995.

[16] J. D. S. Arantes, M. D. S. Arantes, and C. F. M. Toledo, “Heu-
ristic and genetic algorithm approaches for UAV path
planning under critical situation,” International Journal on
Artificial Intelligence Tools, vol. 26, no. 1, pp. 1793–6349,
2017.

[17] R. Storn and K. Price, “Differential evolution a simple and effi-
cient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[18] W. Deng, J. J. Xu, Y. J. Song, and H.M. Zhao, “Differential evo-
lution algorithm with wavelet basis function and optimal
mutation strategy for complex optimization problem,” Applied
Soft Computing, no. article 106724, 2020.

[19] Y. J. Song, D. Q. Wu, W. Deng et al., “MPPCEDE: multi-
population parallel co-evolutionary differential evolution for
parameter optimization,” Energy Conversion and Manage-
ment, vol. 228, 2021.

[20] W. Deng, J. J. Xu, X. Z. Gao, and H. M. Zhao, “An enhanced
MSIQDE algorithm with novel multiple strategies for global
optimization problems,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, pp. 1–10, 2020.

[21] Y. Zhao, Z. Zheng, and Y. Liu, “Survey on computational-
intelligence-based UAV path planning,” Knowledge-Based Sys-
tems, vol. 158, pp. 54–64, 2018.

[22] C. Y. Bo, M. Y. Song, Y. J. Qiao, S. X. Long, and X. Nuo,
“Three-dimensional unmanned aerial vehicle path planning
using modified wolf pack search algorithm,” Neurocomputing,
vol. 266, pp. 445–457, 2017.

[23] S. Zhang, Y. Zhou, Z. Li, and W. Pan, “Grey wolf optimizer for
unmanned combat aerial vehicle path planning,” Advances in
Engineering Software, vol. 99, pp. 121–136, 2016.

[24] G. G. Wang, H. E. Chu, and S. Mirjalili, “Three-dimensional
path planning for UCAV using an improved bat algorithm,”
Aerospace Science and Technology, vol. 49, pp. 231–238, 2016.

[25] P. Kumar, S. Garg, A. Singh, S. Batra, N. Kumar, and I. You,
“MVO-based 2D path planning scheme for providing quality
of service in UAV environment,” IEEE Internet of Things Jour-
nal, vol. 5, no. 3, pp. 1698–1707, 2018.

[26] M. D. Phung, C. H. Quach, T. H. Dinh, and Q. Ha, “Enhanced
discrete particle swarm optimization path planning for UAV
vision-based surface inspection,” Automation in Construction,
vol. 81, pp. 25–33, 2017.

[27] Z. Yin, X. Liu, and Z. Wu, “Amultiuser detector based on arti-
ficial bee colony algorithm for DS-UWB systems,” The Scien-
tific World Journal, vol. 13, Article ID 547656, 454 pages, 2013.

[28] F. Kang, J. Li, and Z. Ma, “Rosenbrock artificial bee colony
algorithm for accurate global optimization of numerical func-
tions,” Information Sciences, vol. 181, no. 16, pp. 3508–3531,
2011.

[29] D. Haijun and F. Qingxian, “Artificial bee colony algorithm
based on boltzmann selection strategy,” Computer Engineering
and Applications, vol. 45, no. 32, pp. 53–55, 2009.

[30] Y. Li, Y. Wang, and B. Li, “A hybrid artificial bee colony
assisted differential evolution algorithm for optimal reactive
power flow,” International Journal of Electrical Power and
Energy Systems, vol. 52, pp. 25–33, 2013.

[31] M. S. Kiran and M. Gunduz, “A recombination-based hybrid-
ization of particle swarm optimization and artificial bee colony
algorithm for continuous optimization problems,” Applied
Soft Computing, vol. 13, no. 4, pp. 2188–2203, 2013.

[32] H. Duan, Z. Xing, and C. Xu, “An improved quantum evolu-
tionary algorithm based on artificial bee colony optimization,”
Advances in Computational Intelligence, vol. 116, pp. 269–278,
2009.

[33] S. Mehdizadeh, F. Fathian, and J. F. Adamowski, “Hybrid arti-
ficial intelligence-time series models for monthly streamflow
modeling,”Applied Soft Computing, vol. 80, pp. 873–887, 2019.

[34] N. N. Zheng, Z. Y. Liu, P. J. Ren et al., “Hybrid-augmented
intelligence: collaboration and cognitionility,” Frontiers of
Information Technology & Electronic Engineering, vol. 18,
no. 2, pp. 153–179, 2017.

[35] W. Zeng, J. Yuan, C. Yuan, Q. Wang, F. Liu, and Y. Wang,
“Classification of myocardial infarction based on hybrid fea-
ture extraction and artificial intelligence tools by adopting
tunable-Q wavelet transform (TQWT), variational mode
decomposition (VMD) and neural networks,” Artificial Intelli-
gence in Medicine, vol. 106, article 547656, 2020.

[36] H. Yu, L. Zhu, L. Cai et al., “Variation of functional brain con-
nectivity in epileptic seizures: an EEG analysis with cross-
frequency phase synchronization,” Cognitive Neurodynamics,
vol. 14, no. 1, pp. 35–49, 2020.

[37] H. Jianfeng and M. Jianliang, “Automated detection of driver
fatigue based on EEG signals using gradient boosting decision
tree model,” Cognitive Neurodynamics, vol. 12, no. 4, pp. 431–
440, 2018.

[38] X. Chunfang, H. Duan, and F. Liu, “Chaotic artificial bee col-
ony approach to Uninhabited Combat Air Vehicle (UCAV)
path planning,” Aerospace Science and Technology, vol. 14,
no. 8, pp. 535–541, 2010.

[39] B. Alatas, “Chaotic bee colony algorithms for global numerical
optimization,” Expert Systems with Applications, vol. 37, no. 8,
pp. 5682–5687, 2010.

[40] F. Yangguang, M. Ding, and C. Zhou, “Phase angle-encoded
and quantum-behaved particle swarm optimization applied
to three-dimensional route planning for UAV,” Systems,

21Neural Plasticity



Man and Cybernetics, IEEE Transactions, vol. 42, no. 2,
pp. 511–526, 2012.

[41] H. Duan, S. Liu, and J.Wu, “Novel intelligent water drops opti-
mization approach to single UCAV smooth trajectory plan-
ning,” Aerospace Science and Technology, vol. 13, no. 8,
pp. 442–449, 2009.

[42] M. Francia, M. Golfarelli, and S. Rizzi, “A-BI+: a framework
for Augmented Business Intelligence,” Information Systems,
vol. 92, article 101520, 2020.

[43] K. Meng, Y. Cao, X. Peng, V. Prybutok, and K. Youcef-Toumi,
“Smart recovery decision-making for end-of-life products in
the context of ubiquitous information and computational
intelligence,” Journal of Cleaner Production, vol. 272, article
122804, 2020.

[44] J. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt,
“A systematic review of immersive virtual reality applications
for higher education: design elements, lessons learned, and
research agenda,” Computers and Education, vol. 147, article
103778, 2020.

[45] K. Vartia, J. Taponen, J. Heikkinen, and H. Lindeberg, “Effect
of education on ability of AI professionals and herd-owner
inseminators to detect cows not in oestrus and its relation with
progesterone concentration on day of re-insemination,” Ther-
iogenology, vol. 102, no. 10, pp. 23–28, 2017.

[46] A. D. Duru and M. Assem, “Investigating neural efficiency of
elite karate athletes during a mental arithmetic task using
EEG,” Cognitive Neurodynamics, vol. 12, no. 1, pp. 95–102,
2018.

[47] F. Erdogdu, S. E. Zorrilla, and R. P. Singh, “Effects of different
objective functions on optimal decision variables: a study using
modified complex method to optimize hamburger cooking,”
LWT - Food Science and Technology, vol. 38, no. 2, pp. 111–
118, 2005.

[48] A. A. Abbasi, L. Hussain, I. A. Awan et al., “Detecting prostate
cancer using deep learning convolution neural network with
transfer learning approach,” Cognitive Neurodynamics,
vol. 14, no. 4, pp. 523–533, 2020.

[49] L. Gang and G. Jiabao, “Bidirectional LSTM with attention
mechanism and convolutional layer for text classification,”
Neurocomputing, vol. 337, pp. 325–338, 2019.

22 Neural Plasticity


	Path Planning of Unmanned Autonomous Helicopter Based on Human-Computer Hybrid Augmented Intelligence
	1. Introduction
	2. Problem Statement
	2.1. Modeling of UAH Path Planning
	2.2. Cost Function and Performance Constraints

	3. Human-Computer Hybrid Augmented Intelligence Framework for the Path Planning
	3.1. Computer Processing Module
	3.2. Human Optimizing Module

	4. UAH Path Planning Based on I-ABC Algorithm
	4.1. Initialization
	4.2. Employed Bee Phase
	4.3. Onlooker Bee Phase
	4.4. Scout Bee Phase

	5. Space Clipping Operation Based on Attentional Mechanism
	5.1. Attentional Mechanism
	5.2. Space Clipping Operation
	5.3. Search Space Construction

	6. Simulation Experiments
	6.1. Algorithm Optimization Simulation Comparison Results
	6.2. Human Computing Optimization Simulation Comparison Results
	6.3. UAH Path Planning System Simulation Results

	7. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

