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Gamma oscillation in neural circuits is believed to associate with effective learning in the brain, while the underlying mechanism is
unclear. This paper aims to study how spike-timing-dependent plasticity (STDP), a typical mechanism of learning, with its
interaction with gamma oscillation in neural circuits, shapes the network dynamics properties and the network structure
formation. We study an excitatory-inhibitory (E-I) integrate-and-fire neuronal network with triplet STDP, heterosynaptic
plasticity, and a transmitter-induced plasticity. Our results show that the performance of plasticity is diverse in different
synchronization levels. We find that gamma oscillation is beneficial to synaptic potentiation among stimulated neurons by
forming a special network structure where the sum of excitatory input synaptic strength is correlated with the sum of inhibitory
input synaptic strength. The circuit can maintain E-I balanced input on average, whereas the balance is temporal broken during
the learning-induced oscillations. Our study reveals a potential mechanism about the benefits of gamma oscillation on learning
in biological neural circuits.

1. Introduction

The emergence of oscillations in neurophysiological signals
within different frequency bands is commonly observed in
mammal brain [1–4]. This cross-species phenomenon is
behaviorally relevant. When animals or humans are per-
forming different tasks or at the resting state, neural oscilla-
tions within specific frequency bands would be detected in
specific brain regions. For example, alpha oscillations can
be detected in occipital electroencephalography (EEG) signal
when humans are in an eye-closed state, but it transitions to
beta band when eyes are open [1].

Learning is the ability of acquiring new knowledge,
behaviors, skills, attitudes, preferences, etc. possessed by
humans and animals [5]. Physiologically, learning is believed
to accompany with structural changes of neural circuits in
the brain and is frequently observed to associate with the
emergence of gamma band oscillations [6–8]. Through learn-
ing processes, structural clusters are formed in neural net-
works in both the prefrontal cortex and hippocampus,
which are behaviorally relevant for the recall of short-term

memory and the later consolidation of long-term memory
[9, 10].

Although it is commonly accepted that gamma oscilla-
tions emerge during learning, their relation is not yet clear.
First, the mechanism underlying gamma oscillation in neural
circuits is still under active debate [8, 11–15]. Second, the
learning process in the neural circuit level is often phenome-
nally explained through plasticity mechanism [16–18], while
plasticity mechanisms in neural circuits are diverse and their
effects are elusive. Especially, how plasticity interacts with
neural dynamics is not well understood.

In this paper, we study learning in neural networks
through spike-timing-dependent plasticity (STDP), a widely-
observed phenomenon in experiments. It describes how syn-
aptic strength changes according to the spiking time difference
of neurons. STDP has become one of the learning rules widely
used for studying cluster formation in simulating learning
process in neural networks [19, 20]. Triplet STDP rule, hetero-
synaptic plasticity, and other plasticity rules are used together
in Zenke et al. [19] to study cell assemblies and memory recall.
Zenke et al. [19] and previous studies showed that triplet
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STDP rule can account for firing frequency dependence of
spiking [19, 21], which is not considered in traditional pair-
based STDP rule [22, 23], and heterosynaptic plasticity can
prevent explosive increase of synaptic weight [24, 25].
Excitation-inhibition neural circuit with synaptic kinetics can
allow fast network oscillation with a wide range of frequency
[6, 7, 11, 26–28]. Under suitable network parameters, such
networks can generate gamma oscillations. In recent studies,
gamma oscillation has been shown beneficial for coding input
signal through plasticity [29, 30], inducing the postneurons to
phase lock with the input signal [31], and is stable for transfer-
ring multiplexing signal [32]. However, these studies focus on
plasticity between external inputs and receiving neurons. How
gamma oscillation interacts with plasticity to form a stable
cluster within a recurrent circuit is not well understood. Here,
we used excitation-inhibition circuit of integrate-and-fire neu-
rons with synaptic kinetics to study the effects of plasticity
including STDP, heterosynaptic plasticity, and transmitter-
induced plasticity. We aimed to study how gamma oscillation
is generated and how it interplays with plasticity during the
learning process.

In neural networks with plasticity, the neural circuit
dynamic properties and the network structure (synaptic
strength) interact with each other (Figure 1(a)). Elucidating
the mechanism underlying this interaction is highly chal-
lenging due to their coevolution nature. In our study, we first
split this problem into two branches separately (Figure 1(a)).
The branch I (Figure 1(a), left) is to study how structure
influences dynamics. Specifically, we aimed to understand
how synaptic weight affects circuit properties such as firing
rate, synchrony, and oscillations, among others, under differ-
ent synaptic time constants and strengths of background
inputs. The branch II (Figure 1(a), right) is the contrary,
where we aimed to elucidate how diverse circuit properties
would affect synaptic weights through plasticity, while the
actual weight is not changed. Finally, the two branches were
considered together in self-organized circuit to study the
coevolution of network dynamics and structure simulta-
neously in the presence of plasticity.

The dynamics of neural circuits studied here can perform
differently in terms of firing rate and degree of synchrony,
consistent with previous studies [26, 33–37]. The key param-
eters governing these properties are the synaptic coupling
strength and the receptor time constants induced by different
neurotransmitters. By studying the effect of different artifact
spike train in shaping the structure of virtual networks
(branch II), we found that the firing rate and synchronous
properties of the spike train play a major role. We found that
network synchrony is beneficial while the bursting spike of
neurons is detrimental to synaptic potentiation. Moreover,
gamma oscillation is always accompanied by synaptic poten-
tiation during learning in circuits with plasticity where the
dynamics and structure coevolve. Furthermore, we showed
that the synchronous dynamics forms a special network
structure after learning. E-I balanced inputs received by
neurons are temporally broken during learning. In all, the
study here showed that gamma oscillation in E-I balanced
neural circuits has a beneficial role for effective learning
through STDP.

2. Material and Methods

2.1. Neural Circuit Model

2.1.1. Network and Circuit Dynamics. Our model circuit is
composed of 2400 neurons, with 2000 excitatory (E), nE ,
and 400 inhibitory (I), nI , neurons. Neurons are connected
randomly with directed synapses with probability p = 0:2.
Each neuron receives background input from 400 indepen-
dent Poisson trains of rate f background = 2:5Hz. Neural
dynamics in the network is modeled by conductance-based
integrate-and-fire neurons [34] as
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Here, k = E or I denotes the neuron type, and ∂ki indicates
the k neighbors of i neuron. Vk

i ðtÞ is membrane potential of
neuron i, and tni is the nth spike of neuron i. wij is the
synaptic strength from presynaptic neuron j to postsynaptic
neuron i, and their initial values are set as
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During the simulation, gEE changes according to the
plasticity rules illustrated below. The synaptic time course is
described by a biexponential function with two characteristic
time constants, the rising time constant τkr and decay time
constant τkd , both depending on the type of presynaptic
neurons. It takes the form

Sk tð Þ = Θ t − τlð Þ
τkd − τkr

e
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τk
d − e

−t−τl
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 !
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where ΘðtÞ is the Heaviside function. We used excitatory
synaptic time constant ranging from τEd = 3 ~ 90ms. It is bio-
logically realistic because AMPA receptor has a smaller syn-
aptic time constant at about 5ms [38] and NMDA receptor
has a large synaptic time constant at around 100ms [39].
Thus, an effective combination of AMPA and NMDA recep-
tors gives the excitatory synaptic time constant lying in the
range we studied in this work, and the value of τEd is
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biologically determined by the ratio between these two recep-
tors. Furthermore, we used τId = 10ms, approximately the
time constant of a major inhibitory receptor, the GABAa
[40]. Different shapes of synaptic current (Eq. (3)) are shown
in Figure 1(b).

2.1.2. Short-Term Synaptic Plasticity. We adopt presynaptic
short-term plasticity (STP) in the model, which represents
the dynamics of neurotransmitter [41]. It is described by
two variables, the amount of neurotransmitter xiand its
release probability per spike ui, which are associated with
their time constants τD, the depression time constant, and
τF , the facilitation time constant. In general, τF ≫ τD holds.
These variables are governed by the following equations:

dui tð Þ
dt

=
U − ui tð Þ

τF
−U 1 − ui tð Þð ÞSi tð Þ,

dxi tð Þ
dt

= 1 − xi tð Þ
τd

− ui tð Þxi tð ÞSi tð Þ,
ð4Þ

where δðtÞ is the Dirac delta function and SiðtÞ =∑nδðt − tni Þ
is the spike train of neuron i. According to the firing history
of neurons, short-term potentiation or depression [41–44]
can be induced by the change (accumulation and release) of
neurotransmitter xi and the change of release probability ui
, which in turn temporal change the synaptic efficacy.

2.1.3. Plasticity Rule. This synaptic weight changes according
to the integrative plasticity mechanism, modeled by a triplet
spike-timing-dependent plasticity (STDP), plus a heterosy-
naptic plasticity and a transmitter-induced plasticity [19].
In our model, the plasticity rule is applied to all E to E

synapses in the recurrent network. That is, for two excitatory
neurons i, j, their synapse evolves according to
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In simulation, we set a lower bound of each synaptic
weight as 0.001 to prevent negative and zero value.

The plasticity modifies synaptic weight according to pre-
synaptic and postsynaptic traces. Each neuron i is accompa-
nied by two synaptic traces, the fast synaptic trace zi and the
slow synaptic trace zslowi . They increase by a unit when the
neuron has a spike and decays to zero with fast and slow time
constants, i.e., τSTDP, τSTDP slow , respectively. Apart from the
commonly used fast synaptic trace, we also adopt a slow syn-
aptic trace, which is first introduced in [21]. Slow synaptic
trace gives rise to the spiking frequency dependence of
plasticity, and it can better match with experimental result
[19, 21]. The first term in the right-hand side (RHS) of Eq.
(5) is the triplet STDP that potentiates synapse by an amount
of Azjz

slow
i every time a postsynaptic neuron fires and
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Figure 1: Schematic diagram of the study. (a) A paradigm of the interaction between network structure and dynamics. Branch I (left):
synaptic weights influence the circuit dynamical properties, and this influence depends on other dynamical parameters such as synaptic
time constant (τEd , τId) and background input f background. Branch II (right): the circuit dynamics influence the synaptic weights through

plasticity rule. (b) Illustration of the synaptic time course SkðtÞ, k = E, I in Eq.(3) with different decay time τkd .
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depresses synapse by an amount of Bzi every time a presyn-
aptic neuron fires, where A and B are long-term potentiation
and depression rates, respectively. In general, considering the
effect of a spike in presynaptic neuron at time tsppre and a spike
in postsynaptic neuron at time tsppost, the synapse linking these
two neurons are potentiated when tsppost − tsppre > 0 and
depressed when this difference is negative. Imposing a triplet
STDP alone is in general unstable in synapse evolution. This
is because, for STDP between excitatory neurons, potentiated
(depressed) synapses tend to induce more (less) spiking of
the postsynaptic neurons, which in turn potentiates (depress)
this synapse. Such a positive feedback effect makes the syn-
apse weights diverge. A solution to stabilize triplet STDP is
to let it works with other plasticity rules together. The general
rule that can stabilize STDP was introduced in [45, 46].
Zenke et al. [19] used heterosynaptic plasticity, described by
the second term on the RHS of Eq.(5), to stabilize triplet
STDP. Every time when a postsynaptic neuron spikes, the
heterosynaptic plasticity reduces the synaptic strength by
an amount ofβz3i ðwij − ~wÞ, with β being a learning rate and
~w being the target synaptic weight value. The heterosynaptic
plasticity rule was found in experiment [24, 25], which sug-
gests that it works in high spiking frequency domain; there-
fore, a cubic exponent for postsynaptic trace, z3i , is used.
Transmitter-induced plasticity, the third term in the RHS
of Eq. (5), prevents neurons from silence. It may represent
spine growth [47] or a kind of long-term potentiation to
counteract Hebbian long-term depression [48]. Its effect is
not crucial for our study here, since we study relatively short
simulation time ~100 s.

2.1.4. Learning and Memory Encoding. We encoded the
memory into the network during learning by adding stimulus
to a subset of neurons in addition to background input,
which facilitates the formation of a cluster structurally by
these neurons. Unless otherwise specified, at t = 30s, an extra
stimulation input representing a learning signal is applied to
200 chosen excitatory neurons to model the coding of a single
memory. For those chosen neurons, their background rate is
increased from f background to f stim = As × f background, where As
is an augment factor. This extra stimulation input lasts until
t = 100s, and the background rate of the chosen neurons is
tuned to 0:5f background lasting for 2 s to remove persistent
activity [41, 49]. After that, their background input is tuned
back to the default rate f background and the simulation is ended
at t = 110s.

The biological meaning and value of parameters in our
model is summarized in Table 1.

2.2. Statistical Index and Analysis

2.2.1. Spike Count Series. For analyzing neural dynamics, we
first constructed the neuron spike train series as follows.
The time axis is first divided into consecutive time windows
with sizes Δt ms. The number of spikes of neuron i are then
counted in each window to obtain a discrete sequence NiðtÞ,
which is designated as the spike count series of neuron i with
time window size Δt.

Furthermore, we defined a binary spiking series BiðtÞ = 0,
if NiðtÞ = 0 and BiðtÞ = 1, if NiðtÞ > 0 for each neuron.

The number of spikes of the whole neuron population
can be counted in each window. This constructs the popula-
tion spike count series NαðtÞ for the E and I populations,
respectively. Furthermore, qαðtÞ =NαðtÞ/nαΔt is the popula-
tion averaged firing rate series.

2.2.2. Synchrony Index. We used a synchrony index to
quantify the synchronized spiking of neurons in the circuit
[34] as

SIij =
∑tBi tð ÞBj tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑tBi tð Þ∑tBj tð Þ

q , ð8Þ

where BiðtÞ is the binary spike series binned with Δt = 3ms. If
the two neurons i, j are completely synchronous, then SIij = 1,
and if they are completely asynchronous, SIij = 0.

2.2.3. Gamma Power. The power spectrum density of net-
work oscillation is calculated by Fourier transform of the
mean-detrended population firing rate qαðtÞ constructed
with Δt = 600ms. We define the gamma power as the integra-
tion of the power spectrum density from 28Hz to 40Hz [27,
28].

In circuits with plasticity, high firing neurons within the
200 coding neurons, which are defined here as neurons hav-
ing spike in 95% of bins in the firing rate series with width
Δt = 50ms, are picked for calculating frequency, firing rate,
synchrony, and oscillation. This is because we are interested
in the properties related to plasticity and the synaptic poten-
tiation/depression are concentrated at synapses of high firing
neurons (synapses of low firing neurons only change
slightly). No significant conclusion can be drawn if we take
all the neurons into account.

3. Results

3.1. Circuit Dynamics without Plasticity. We considered a
randomly connected conductance-based excitatory-
inhibitory neuronal circuit [34] together with triplet STDP,
heterosynaptic plasticity [19], and transmitter-induced plas-
ticity. We studied the process of memory encoding with
learning. Details of the model are presented in Methods. In
this section, we investigated the circuit dynamical properties
without plasticity mechanism. The analysis in this subsection
is carried out for the 20 neurons with the highest firing rates.

First, we studied the effect of different excitatory synaptic
time constants (τEd) and the excitatory synapse weight g

EE on
the network dynamics. Before the extra learning stimulation
(at t = 30s), the circuits with different τEd are in low firing rate,
low synchrony, and without apparent network oscillations
(Figures 2(a) and 2(b)). After applying the extra stimulation,
the dynamic feature of circuit becomes apparent, and circuits
with smaller τEd tend to support synchronous spiking
(Figures 2(a) and 2(b)).

Second, we explored how synaptic weight affects the
dynamics regarding synchrony, oscillation, and firing rate.
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Generally, smaller coupling strength gEE or smaller excit-
atory synaptic time constant τEd induces lower firing rates
(Figure 2(c)). The synchrony index (Figure 2(d)) and gamma
power (Figure 2(e)) (details in Methods) have similar depen-
dence on synaptic strength. They increase as gEE increases
or τEd decreases. Interestingly, there is a sharp change in these
dependence relations when τEd is close to τId , which inspires
us to roughly distinguish two network states as follows.
When τEd is smaller than τId , the synchrony and gamma
power are relatively strong. In this case, we termed the
dynamics under stimulation input as synchronous dynamic
state. In contrast, when τEd is larger than τId , synchrony and
gamma power are weak, and we termed the dynamics under
stimulation input as asynchronous dynamic state. Finally, we
will also explore the dynamic states withmoderate synchrony
when τEd is close to τId . These definitions apply to the
following study of networks with or without plasticity.

3.2. The Effect of Spiking Dynamics on Plasticity. In neural
circuits with plasticity mechanism, the synaptic weights are
shaped by network dynamic properties, especially, the degree
of synchrony and firing rates. To understand the effect of net-
work spiking dynamics on plasticity, we first studied the neu-
ral circuit without plasticity and with extra stimulation
starting at t = 30s. Next, the plasticity rule is applied to arti-
fact spike trains generated by manipulations of the spike
trains of 200 coding excitatory neurons obtained from this
network simulation. Then, we imposed the plasticity rule
with these artifact spike trains on a virtual network with the
same topology connection as in the original circuit, to see
how the synaptic weights can be changed. Note that here
we did not consider how this change of synaptic weights in
turn shapes the network dynamics. In this way, we separated
the coevolution of dynamics and synapses and only consid-
ered the impact of dynamics properties on the evolution of
synapses under plasticity (Figure 1(a), right).

Table 1: Parameter used in neural circuit.

Description Symbol Value

Numbers of E, I neurons NE ,NI 2000, 400

Network connection probability p 0.2 [26]

Background input connection number NO 400

Default firing rate of background input (per connection) f background 2.5Hz

Augment factor As 3.5

Axonal delay τl 1ms [26]

Leakage potential VL -70mV [26]

Threshold potential V th -50mV [26]

Rest potential V rest -60mV [26]

Membrane time constant for E, I neurons τE , τI 20ms, 10ms [26]

Refractory period for E, I neurons tErefratory, t
I
refratory 2ms, 1ms [26]

Reversal potential of E, I neurons EE , EI 0mV, -70mV [26]

Input conductance from background to E, I neurons gEO, gIO 0.05, 0.05
(normalized by leakage conductance)

Input conductance from E to E, I to E, E to I, I to I gEE , gEI , gIE , gII
0.1, 0.6,
0.84, 0.48

(normalized by leakage conductance)

Decay time constant of excitatory, inhibitory current τEd , τ
I
d 3ms, 8ms

Rising time constant of excitatory, inhibitory current τEr , τ
I
r 0.5ms, 0.5ms [26]

Facilitation time constant in STP τF 1500ms [41]

Depression time constant in STP τD 200ms [41]

Initial neural transmitter release probability in STP U 0.2 [41]

Learning rate for LTP A 0.001 [21]

Learning rate for LTD B 0.001 [21]

Transmitter plasticity strength δ1 1 × 10−5 [19]
Learning rate for heterosynaptic plasticity β 0.01 [19]

Heterosynaptic plasticity parameter ~w 0.1

Characteristic time constant for synaptic trace τSTDP 20ms [21]

Characteristic time constant for slow synaptic trace τSTDP_slow 100ms [21]
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We aimed to explore how the change of (virtual) syn-
aptic strength depends on the firing rate and synchrony
index of the spiking series with the following approaches.
(1) To examine the effect of different degree of synchroni-
zation, we randomized a portion of spike time within
every 100ms interval. This can generate spike trains with
different synchrony index while almost keeping the aver-
age firing rate (in a short time scale of 100ms) of neurons.
(2) To investigate the effect of different average firing

rates, we insert empty bins with a certain length Tem into
the spike trains every 100ms. This can generate spike
trains with different firing rate (in a short time scale)
while keeping the synchrony index. Note that this manip-
ulation changes the time ranges of the spike trains. (3) We
also tried the combination of the above two schemes (i.e.,
inserting empty bins together with randomizing some
spikes) that simultaneously changes the firing rate and
synchrony index.
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Figure 2: Dynamical properties of the circuits without plasticity. (a, b) Raster plot of the spiking time of 200 stimulated neurons (extra
stimulation onset at = 30s for gEE = 0:1. (a) Highly synchronous state with τEd = 6ms. (b) Asynchronous state, τEd = 90ms: (c–e) Circuit
properties with respect to synaptic strength during extra stimulus. The cases of different τEd values are plotted in different colors, and the
τEd values corresponding to different colors are shown in the bar. (c) Network firing rate. (d) Synchrony index. (e) Gamma power. Other
parameters are set as τId = 8ms, As = 2:5:
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When applying plasticity to the spike trains from highly
synchronous dynamics in the presence of extra stimulations
(small τEd), the synaptic weight quickly increases and stabi-
lizes to a large value (Figure 3(e), dashed line). When spikes
are randomized to decrease the synchrony, the final average
stabilized synaptic weights, the gamma power, and the time
required for stabilizing the synaptic weight get smaller
(Figure 3(a)). Next, by inserting empty bins, we found that
a lower firing rate would produce lower finalized synaptic
weight (Figure 3(f)), lower gamma oscillation power
(Figure 3(b)), and longer stabilizing time. Moreover, if the
firing rate is low enough, the role of synaptic plasticity
changes from potentiation to depression (Figure 3(f)).

In the asynchronous dynamics, neurons often fire in a
burst way (Figure 2(b)), that is, a neuron can have several
spikes in a very short time period (see distribution of instan-
taneous rate in Figure S1 in the Supplementary Material
where in the asynchronous dynamics, there is a peak at
high firing rate up to 200 to 300Hz). In the asynchronous
state, the spike time randomization does not change the
synchrony index (Figure 3(c)) since the correlation is
already very low, but it does change the synaptic weight
evolution. Different from the case of synchronous
dynamics, here, the synaptic strength increases when a
larger portion of spikes is randomized (Figure 3(g)). This is
because the high instantaneous firing rate due to neuron
bursts can strengthen the heterosynaptic plasticity (the z3i
term in Eq. (5) will become very large) that suppresses
synaptic potentiation, and bursts are destroyed by spike
time randomization. Furthermore, the final stable synaptic
strength increases only slightly with the reduction of the
firing rate by inserting empty bins (Figure 3(h)). This may
be because the effect of inserting empty bins for destroying
bursts is not as strong as randomization.

By combination of the randomization of spike times and
the insert of empty bin, spike trains with different combina-
tions of firing rate and synchrony index can be generated.
We found that for synchronous dynamics, the final stable
synaptic weight depends mainly on firing rate but slightly
on synchrony index (See Figure S2C in the Supplementary
Material), since a too high instantaneous firing rate would
activate heterosynaptic plasticity and a too low firing rate
would favor triplet STDP depression. Thus, the synaptic
weight potentiation requires a suitable range of firing rate.
Besides, synchrony index and gamma power are
accompanied on synaptic potentiation (Figures 3(a) and
3(b)). However, for asynchronous dynamics, synaptic
weight can only potentiate slightly (See Figure S2A in the
Supplementary Material) due to the burst spiking nature of
the neurons.

3.3. Circuit with Plasticity. In the following, we study the
interplay between structure and dynamic properties as a
whole in the E-I circuit with plasticity, where the synaptic
weights and dynamics patterns self-organize through coevo-
lution. We referred the results in section 3.2, where the spik-
ing dynamic is not influenced by the updated network
structure, to as the manipulation results.

First, we examined the synaptic weight evolution. In the
case of synchronous dynamics, the coevolution dynamics
induce a slightly lower final stable average synaptic weight
(Figure 4(a)) compared with the manipulation results. This
is because, under coevolution dynamics, neurons can be
more excited after the potentiation of the synapses, produc-
ing a higher firing rate that supports stronger heterosynaptic
plasticity to reduce the potentiation. However, the synaptic
weight evolution under asynchronous dynamics does not
show much difference (Figure 4(b)) compared with manipu-
lation results.

Below, we investigated how gamma power evolves in the
self-organized plastic circuit. We calculated the gamma
power (see Method) from the population spike train of high
firing neurons from simulation result for every short period
with a length of 600ms. The initial gamma power is very
weak (around 10−3 to 10−2) with weak background inputs,
and it undergoes a jump (Figures 4(c) and 4(d)) when extra
stimulus starts. In circuits with synchronous dynamics, the
synaptic weight potentiates and gamma oscillation increases
significantly together (Figure 4(c)). In circuits with asynchro-
nous dynamics, the increases of gamma oscillation and the
synaptic weight are both tiny (Figure 4(d)).

We further tested the performance of supporting work-
ing memory of the network after learning under different
dynamics modes. Under synchronous dynamics, the signifi-
cant potentiation of synaptic weights facilitates the mainte-
nance of working memory (Figure 4(e)) after initial recall,
whereas for asynchronous dynamics, the network after learn-
ing is not potentiated enough for the robust maintenance of
working memory (Figure 4(f)).

Furthermore, we were curious about how fast the synap-
tic weight can be stabilized, which reflects the learning speed.
We explored the stabilizing times (defined as the time
required for reaching half maximum synaptic weight) in cir-
cuits with plasticity under different initial dynamics states (at
the time right after extra stimulation onset) such as different
firing rates and synchrony using both different τEd and As.
Under synchronous dynamics, it is found that stabilizing
time in circuits with plasticity is inversely proportional to
the initial firing rate (Figure 5(a)), as well as to the initial syn-
chrony index (Figure 5(b)). There is a linear relationship
between the initial firing rate and synchrony index
(Figure 5(c)). Thus, the increase of firing rate is important
to stabilize the synapses quickly. As the stabilized synaptic
weights are different for synchronous and asynchronous
state, we further studied the speed of synaptic potentiation
with respect to firing rata and synchrony, and we recorded
the synaptic weight change in different synaptic weight inter-
vals (shown above Figures 5(d)–5(i)). A higher initial firing
rate produces a higher initial synaptic weight change
(Figure 5(d)). Potentiated synapses generate higher firing
rate and in turn trigger stronger heterosynaptic plasticity
and thus more depression (Figures 5(e) and 5(f)). Conse-
quently, the stabilized synaptic weight would be less
(Figure 4(a)) but also takes less time to stabilize. In contrast,
asynchronous state stabilizes quickly (<600ms), and the syn-
apses are only potentiated slightly (Figure 4(b)). The higher
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initial firing rate due to bursting in the asynchronous state
(Figure 5(g)) causes strong heterosynaptic plasticity to pre-
vent the synapses from further potentiation (Figures 5(h)
and 5(i)). However, the speed of synaptic potentiation, that
is, the amount of potentiation in unit time, is higher under
synchronous dynamics (Figures 5(d) and 5(g)).

In circuits without plasticity, it was found that the
increase of synaptic weight results in increased firing rate
(Figure 2(c)). This relation does not hold in the presence of
plasticity, as too high firing rate would induce synaptic
weight depression due to heterosynaptic plasticity. First, the
initial firing rate and gamma power of the network (in the
beginning stage of extra stimulus onset, Figures 6(a) and
6(b)) is positively correlated to those after learning
(Figures 6(e) and 6(f)). In general, we found that high
synchrony index and gamma power facilitates the increase
of synaptic weight (Figures 6(a)–6(d)), whereas the effect of
firing rate is not pronounced relatively. It suggests that
synchrony and gamma oscillation are beneficial for synaptic
potentiation in the plastic E-I networks.

The above studies suggest that there should be essential
differences in the network structures after learning under dif-
ferent dynamic states. To investigate the essential features
about this structure changes, we performed various shuffling
of the connectivity matrix of the subgroup of excitatory neu-

rons for memory encoding adopted from the plastic circuits
when they have evolved into the stable state. Then, we
simulated the whole network dynamics without plasticity
after shuffling this sub connectivity matrix with stimulation
input applying at 30 s. In particular, we focused on exploring
whether the structure can still support synchronous dynam-
ics after shuffling.

The major finding is that the network can preserve syn-
chronous dynamics when the incoming connections of the
memory-coding neurons are shuffled (total input is preserved)
(Figure 7(c)). On the contrary, the network cannot preserve
synchronous dynamics when the outgoing connections of the
neurons are shuffled (total input is changed) (Figure 7(d)). If
the row of the submatrix is further randomized (rows are
moved as a whole) after shuffling the incoming connections,
synchronous dynamic is destroyed (Figure 7(e)). However,
synchronous dynamics can be preserved if the randomization
of row is performed in the whole connectivity matrix
(Figure 7(f)), that is, preserving the inhibitory inputs in this
randomization. Taken together, it implies that the ability for
network supporting synchronization is related to the sum of
incoming synaptic weights.

Interestingly, we found that there is a high correlation
among the sum of excitatory and the sum of inhibitory
synaptic weights in the learning-stabilized matrix under
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synchronous dynamics (Figure 7(a)), suggesting that neurons
receiving strong inhibitory synapses (these inhibitory synap-
ses are without plasticity) also receive stronger excitatory
synapses (these synapses are with plasticity). This special net-
work structure is not present under asynchronous dynamics
(Figure 7(b)). To further confirm networks with such struc-
tural features really favors synchronous spiking dynamics, a
random circuit with similar synaptic weight sum distribution
is generated and we found that the generated circuit indeed
supports synchrony dynamics (See Figure S3C in the
Supplementary Material).

Synapses potentiation leads to burst firing when excita-
tion is strongly over inhibition (see Figure S3A in the
Supplementary Material). When a neuron gets burst, its
synapses would be suppressed by heterosynaptic plasticity.
Therefore, neuron stays synchrony with only a few bursting
events. As neurons receiving stronger inhibitory current
need more excitation for burst firing to happen, their
synapses can potentiate more before the heterosynaptic
plasticity sets in. Hence, the correlation between excitatory
and inhibitory inputs is developed. We should note that it
is not related with the number of incoming excitatory
connections but the sum of the incoming excitatory weights.

3.4. The Moderate Synchronous Dynamics. From the compar-
ison between synchronous and asynchronous states, we have
seen that the effect of learning depends significantly on the
background dynamics. This raises a question: whether there
are special properties on the boundary between these two
dynamics regimes, that is, the moderate synchronous state.
We found that under moderate synchronous dynamics, the
transient network activity can switch between asynchronous
burst and weak synchronization. Therefore, such a switching
state should have both features in synchronous and asyn-
chronous states. In static networks without plasticity, this
switching dynamic is a long-lasting property (data not shown
here). In networks with plasticity, this switching state is only
temporal and the network will finally evolve into synchro-
nous dynamics (Figure 8(c)).

We first tested the effect of manipulation spike trains
from circuit of moderate synchronization on shaping a vir-
tual network structure with similar methods in Figure 3.
For spike time randomization, the stable synaptic weights
are almost unchanged with synchrony index (Figure 8(a)).
When inserting an empty bin to reduce the firing rate, the
stable synaptic weight is first kept unchanged and then starts
to reduce and even becomes depressed (Figure 8(b)) when
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Figure 4: Properties of circuits with plasticity. (a, b) Synaptic weight evolution. Blue curves are results from networks with plasticity, whereas
orange curves are from virtual networks in Figure 3. (c, d) The evolution of gamma oscillation and synaptic weight in different dynamical
state. (e, f) The ability of working memory maintenance after recalling in the network after learning. Extra stimuli (As = 5) are applied to
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checked. The insets compare the firing rate of the memory-coding group and the firing rate of other neurons during the persistent period.
(a, c, e) Synchronous state. τEd = 6ms: (b, d, f) Asynchronous state. τEd = 90ms. The other parameters are set as τId = 8ms, As = 3:5:

9Neural Plasticity



the firing rate is lower than a level. Next, we studied the net-
work with plasticity under moderate synchronous dynamics.
Interestingly, the transient synaptic weight evolution in plas-
tic network differs strongly compared with manipulation
results (Figure 8(d)). The synaptic weight increases during
temporally synchronous periods and recovers during asyn-
chronous periods, but this switching period is transient.
The circuit will finally evolve into a fully synchronous state

(e.g., from t = 80s in Figure 8(c)), and the synaptic weight
increases after that until reaching the maximum
(Figure 8(d)). The gamma oscillation increases gradually
during the time period with switching synchronous and
asynchronous spiking (Figure 8(f)), where the gamma oscil-
lation power and synaptic weight have large fluctuations.
Once the circuit reaches the synchronous state, both synaptic
weights and gamma oscillation power increase to the stable
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Figure 5: The process of synaptic stabilizing in circuits with plasticity. (a) The relation between stabilizing time and firing rate. (b) The
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value quickly. Neurons in moderately synchronous circuit
can perform differently with respect to the amount of inhib-
itory input they receive, as shown in Figure 8(c) (neurons
sorted according to total inhibitory synaptic weights). The
evolution of the mean excitatory synaptic weight is also plot-
ted in Figure 8(c). For neurons receiving too many inhibitory
inputs, they do not have enough instantaneous excitatory
current to overcome inhibitory suppression and they fire
sparsely. In contrast, neurons receiving relatively fewer
inhibitory inputs can overcome the inhibitory suppression
and have the potential to perform like synchronous state,
with a similar mechanism described above for the synchro-
nous state.

A special relationship between excitatory and inhibitory
current causes moderately synchronous state to switch
between synchronous and asynchronous because its excit-
atory current is both high in amplitude (not as high as syn-
chronous state) and long lasting (not as long as
asynchronous state), as τEd is in between that of synchronous
and asynchronous state. Once neurons are synchronized,
inhibitory neurons can be activated by synchronized excit-
atory current to induce strong inhibition and terminate the
synchrony event. Therefore, the circuit becomes asynchro-
nous again and neurons which receive few inhibitory inputs
may start to burst, and this process underlies the temporal

switching between synchronous and asynchronous states.
When plasticity is applied, synapses are potentiated during
synchrony and depressed during asynchrony (Figure 8(c)).
However, when the synapses are potentiated to a large
enough value, the excitatory current is too strong that
inhibitory current cannot terminate the synchrony anymore
and the circuit starts to develop strong synchrony.

3.5. Other Dynamic Properties during Learning. We simu-
lated circuits with plasticity under different background
dynamics, to study the transient evolution of dynamic
properties. Every time, we checked the corresponding
dynamic properties of a static circuit sharing the same
average synaptic weight but without plasticity, to examine
their difference. Here, the synaptic weight, average firing
rate, and synchrony index among high firing neurons in
every 600ms periods during the coevolution process are
considered and compared with the firing rate and syn-
chrony index among the same number of highest firing
neurons in a static circuit with different gEE in the range
[0.1, 1.2]. It was found that the coevolution dynamics of
synchronous and asynchronous plastic circuits are very
close to that of static circuit at different coupling strength
gEE (Figures 9(a) and 9(c)), suggesting that although the
network architecture is changed by plasticity, but it does
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Figure 6: The relationship between synaptic potentiation and network dynamics in circuit with plasticity. (a, b) The relationship between the
final stable synaptic weight (represented by color) and initial firing rates and gamma power. (c, d) The relationship between the final stable
synaptic weight and final firing rates and gamma power. In general, there is a positive correlation between the gamma power/synchrony index
and the stable synaptic weight. Stars represent the results in asynchronous states whereas dots represent results in synchronous and moderate
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not significantly alter the plastic network dynamics in
these two states. However, the moderately synchronous
circuit is strongly different from the corresponding static
circuit (Figure 9(b)). In the static circuit, it is switching
between asynchronous and synchronous state in all synap-
tic strength tested (0.1-1.2), and the synchrony index is
relatively small. However, in the self-organized plastic cir-
cuit, it differs from the dynamics of static circuit, and it
becomes synchronous monotonically at last (Figure 8(c)).
Therefore, it suggests that the plasticity has significantly
changed the dynamics.

Biological neural circuits are reported to work in an
excitation-inhibition (E-I) balanced condition [50, 51]. Our
model can maintain an overall E-I balanced current input
(the time-average E/I ratio in our model is close to 1) on aver-
age, and this property can maintain after applying the strong
extra stimulus. Asynchronous dynamics can best support E-I
balanced input (Figures 9(d) and 9(e)). Considering the tran-
sient balance, for moderate synchronous and synchronous
dynamics, there is a temporally strong imbalance correspond-

ing to gamma oscillations during learning (Figures 9(d) and
9(e)). It suggests that the temporal imbalance is beneficial to
effective learning.

Next, we examined whether the network is stable, and the
balance can be restored when extra stimulus stops after learn-
ing. To check whether the network connectivity still changes
significantly with plasticity under normal background input,
the L2 norm difference between the connectivity (reshaped to
1d and then normalized, with value in [0, 2]) among the cho-
sen neurons for memory encoding right after the removal of
extra stimulus input and 10 s later is measured. It was found
that the connectivity only changes slightly (Figure 9(h)).
Firing rate (Figure 9(g)) and average E/I ratio (Figure 9(f))
are also returned to the levels similar as the circuit before
learning with the stimulation.

4. Discussion

In this work, we studied the dynamics of plasticity neural
circuit under the learning process with the combination of
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Figure 7: Special circuit structures formed by plasticity. (a, b) The relation between the sums of incoming excitatory and inhibitory synaptic
weight of different neurons in the plastic circuit after learning, sorted according to the ascending order of inhibitory weight sum. Parameters
are set as τId = 8ms, As = 3:5. (a) Synchronous with τEd = 6ms. (b) Asynchronous with τEd = 90ms. (c–f) Illustration of shuffling schemes. Each
figure represents a connectivity matrix. In (c–e), we shuffled the elements of the connectivity sub-matrix of the chosen excitatory neurons (to
encode the memory). (c) The input elements of each neuron (each row) are shuffled (total input is preserved). (d) The output elements of each
neuron (each column) are shuffled (total input is changed). (e) The elements of each row are first shuffled and then the row is randomly
shuffled (total excitatory input is preserved, but total inhibitory input is changed). The shuffling scheme of (f) the elements of each row of
the submatrix of excitatory neurons is first shuffled, and then, the row of the entire matrix is randomly shuffled (total excitatory and
inhibitory input are preserved). If the shuffled matrix results in synchronous/asynchronous dynamics, then it is marked in a red/black box.
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triplet plasticity, heterosynaptic plasticity, and transmitter-
induced plasticity, with particular focus on the role of
gamma oscillation. To tackle the challenging coevolution
of network structure and dynamics, we first separately
explored the effect of structure on dynamics and vice
versa. We then unified these understandings to elucidate

the principles of dynamics state-dependent learning in E-
I neural circuit with plasticity.

4.1. Summary of the Finding. We first studied the static
circuit without plasticity and found that networks with small
τEd show higher synchrony. Furthermore, synchrony in
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Figure 8: The dynamic properties of learning under moderate synchronous state. (a, b) Effect of firing rate and synchrony on synaptic weight
evolution under plasticity with spike manipulation. (a) The effect of spike time randomization. (b) The effect of empty bin inserting. (c) Raster
plot. Neuron number is sorted in an increasing order of inhibitory input connections. Red curve is the mean excitatory synaptic strength of
high firing neurons, which increases during synchronous windows and decreases during asynchronous windows. Green curve is the mean
excitatory synaptic strength of low firing neurons. (d) The synaptic weight evolution. (e) Sum of incoming excitatory and inhibitory
synaptic weight of neurons in the plastic circuit after learning, sorted according to the ascending of inhibitory sum. (f) The evolution of
gamma oscillation and synaptic weight in moderately synchronous states.
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network spiking and gamma oscillation power increase
together with coupling strength gEE throughout these cases.

Through studying the effect of spiking dynamics on shap-
ing a virtual network structure through plasticity, we found
that firing rate plays a crucial role. Firing rate needs to be
in a suitable range in order to induce potentiation. Synaptic
potentiation is restricted by heterosynaptic plasticity in the
case of too high firing rate and by triplet plasticity rule in

the case of too low firing rate. Synchrony index and gamma
power show greater value when potentiation happens.

These understandings from the separate studies shed
light on the properties of coevolution of dynamics and synap-
tic weights in plastic circuit. Increasing synchrony (higher
gamma power and synchrony index) is always beneficial to
synaptic potentiation, but there is no such relation on firing
rate. It thus suggests that gamma oscillation may be more
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Figure 9: Other dynamic properties. (a–c) Blue curves are the evolution dynamics in circuits with plasticity starts from strength 0.1. Red
diamond represents the start of simulation, and green diamond represent the start of extra stimulus. Orange curves are the results of static
circuits with different synaptic strengths. (a) Synchronous dynamics with τEd = 6ms. (b) Moderately synchronous dynamics with τEd = 10ms
. (c) Asynchronous dynamics with τEd = 90ms. The other parameters: τId = 8ms, As = 3:5. Transient excitatory and inhibitory current ratio
in early stage of stimulus (d) (<5 s after applying extra stimulus input at t = 30s) and late stage of stimulus (e) (after synaptic weight
stabilized). (f) Average E/I ratio before extra stimulus and after the removal of stimulus. (g) Firing rate before and after extra stimulus. (h)
L2 norm of the difference of the connectivity matrices (reshaped to 1d and normalized) at the removal of the extra stimulus and 10 s later
under normal background input.
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important for synaptic potentiation in learning process in
biological E-I circuits. Furthermore, the circuit structure after
learning depends on the original basic dynamic states (differ-
ent degrees of synchrony). The effective learning where the
synaptic weights are potentiated is accompanied by a tempo-
ral deviation from E-I balance to the case of slight dominance
in excitation. The E-I balance can be restored after learning
when extra stimulus input is removed.

4.2. Gamma Oscillation. The origin of gamma oscillation is
still under debate in the literature. It is suggested that gamma
oscillation is due to inhibitory loops [11]. Another study
found that controlling long-range synaptic weight, synchro-
nization between two columns of E-I neural circuits [36]
can generate gamma oscillation in the cross-correlograms
between the two E-I circuits’ population firing rates. It is
known that mediated by synaptic kinetics, E-I balanced neu-
ral circuits can support such fast oscillation out from low fir-
ing rate [26, 34], which is the way to produce gamma
oscillation in our study.

Furthermore, it was discovered that long-range axonal
delay can modulate oscillation between gamma and beta
[52]. In the moderate synchronous state, we observed the
switching dynamics between asynchronous spiking and syn-
chronous spiking. If the switching frequency is in theta band,
it is highly similar to the spindle [6, 53, 54] observed in the
hippocampus during sleeping, which has been assumed to
relate to memory consolidation. It is also found in an exper-
imental study that U1 snRNA overexpression mice, having
weaker gamma oscillation than normal mice due to reduc-
tion in inhibition-related proteins, have deficit in learning
[55]. It may be possible to further explore the phenomena
related to sharp-wave ripple and its functional benefits in
our model.

4.3. The Role of Plasticity in Learning. It has been shown that
heterosynaptic plasticity can prevent explosive synaptic
weight potentiation [24, 25]. However, it is unclear what kind
of circuit structure can be formed by heterosynaptic plastic-
ity. Our model uses a combination of three plasticity roles.
The triplet STDP is mainly responsible for synaptic potenti-
ation, bounded by the heterosynaptic plasticity rule, while
the transmitter-induced plasticity does not play a significant
role since our simulation time is not long enough. Thus, the
final stable network structure is mainly shaped by heterosy-
naptic plasticity. We found that heterosynaptic plasticity
shapes the circuit into a structure where the sum of excitatory
input weights of a neuron is correlated/uncorrelated with the
sum of inhibitory input weights of a neuron under the condi-
tions of synchronous/asynchronous background dynamics,
respectively.

4.4. Learning with Gamma Oscillation in Biological Neural
Circuits. Our work using a biologically plausible E-I circuit
confirmed several previous studies and provided a new
understanding. Cell assembly formation through spike-
timing-dependent plasticity has been studied previously
[19, 56–59]. It has been shown that during learning, plasticity
shapes the circuit synaptic weights and spiking correlation

[45, 60–62]. The research of learning in biological neural net-
works has mainly focused on the recall reliability of working
memories and the usage of the network for performing clas-
sification tasks, but seldom considered the effect of gamma
oscillation in learning process, although gamma oscillations
have been widely observed to accompany learning in experi-
ments [6, 7, 11, 27, 28]. Here, we found that the increase of
gamma power and synchrony always facilitates potentiation
in plasticity circuits, providing the understanding behind
the experimental observations. The synchrony during
gamma oscillations within suitable firing rate is beneficial to
synaptic potentiation, which in turn forms a network struc-
ture better support gamma oscillations. Thus, gamma oscilla-
tion is important for forming cell assemblies, leading to
efficient learning.

We have considered the variation of excitatory synaptic
time constant (τEdÞ on the dynamical modes of the circuits.
AMPA receptor has a smaller synaptic time constant ~5ms
[38], and NMDA receptor has a large synaptic time constant
~100ms [39]. Thus, the value of τEd used in the network is
biologically determined by the ratio between these two recep-
tors. Experiments show that AMPA and NMDA receptors
exist extensively in synapses, and their ratio varies in differ-
ent brain region [63–65]. For example, the number of
NMDA receptor is larger in the prefrontal cortex [63] than
in the visual cortex. Thus, the fact that neural circuits in dif-
ferent brain systems favor different τEd sheds light on the dif-
ferential functional role of different brain systems in learning.

4.5. Outlook. In this study, we did not consider inhibitory
plasticity, which is mainly thought of as a kind of homeo-
static plasticity that works in a longer timescale [19, 35]. It
was shown that this kind of plasticity helps to maintain tight
E-I balance automatically after learning under a wide range
of initial parameters. However, how inhibitory plasticity
changes the circuit structure is not yet clear. This deserves
further study in the future.

So far, we have considered the encoding and retrieval of a
single memory cluster. We have preliminarily tested to
encode multiple memory clusters successively whose connec-
tions are nonoverlapping with each other in the network and
found that the learning processes of different clusters work
almost independently with each other (data not shown). This
issue needs further exploration in future work. This is consis-
tent with our results that the learned circuit is structurally
stable under plasticity with weak background input. An
interesting extension is to consider overlapping memories
which may interfere with each other and generate more com-
plicated interaction between gamma oscillations within each
cluster and their learning process.

How to analytically predict the stable synaptic weights
after learning through STDP is a challenging issue. Existing
theory [66, 67] tended to use mean-field approximation to
analyze the mean firing rate, mean synaptic trace, and their
covariance. However, the heterosynaptic plasticity rule used
in our model involves a cubic exponent of synaptic trace
and thus requires high-order covariance, which induces large
errors in the corresponding approximation. An effective
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theory to analyze the effect of heterosynaptic plasticity is still
lacking and deserves further study.
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