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Several neuroimaging methods have been proposed to assess the integrity of the corticospinal tract (CST) for predicting recovery
of motor function after stroke, including conventional structural magnetic resonance imaging (sMRI) and diffusion tensor
imaging (DTI). In this study, we aimed to compare the predicative performance of these methods using different neuroimaging
modalities and optimize the prediction protocol for upper limb motor function after stroke in a clinical environment. We
assessed 28 first-ever stroke patients with upper limb motor impairment. We used the upper extremity module of the Fugl-
Meyer assessment (UE-FM) within 1 month of onset (baseline) and again 3 months poststroke. sMRI (T1- and T2-based) was
used to measure CST-weighted lesion load (CST-wLL), and DTI was used to measure the fractional anisotropy asymmetry
index (FAAI) and the ratio of fractional anisotropy (rFA). The CST-wLL within 1 month poststroke was closely correlated
with upper limb motor outcomes and recovery potential. CST‐wLL ≥ 2:068 cc indicated serious CST damage and a poor
outcome (100%). CST‐wLL < 1:799 cc was correlated with a considerable rate (>70%) of upper limb motor function recovery.
CST-wLL showed a comparable area under the curve (AUC) to that of the CST-FAAI (p = 0:71). Inclusion of extra-CST-FAAI
did not significantly increase the AUC (p = 0:58). Our findings suggest that sMRI-derived CST-wLL is a precise predictor of
upper limb motor outcomes 3 months poststroke. We recommend this parameter as a predictive imaging biomarker for
classifying patients’ recovery prognosis in clinical practice. Conversely, including DTI appeared to induce no significant benefits.

1. Introduction

Stroke is a major disease that can lead to disability. Upper
limb motor impairment is common after a stroke and may
compromise patients’ quality of life and severely affect their
daily living [1, 2]. Predicting relevant upper limb motor out-
comes and recovery potential is challenging for rehabilita-
tion therapists and clinicians. Previous studies have
explored several clinical scales and imaging techniques to
identify the relevant predictors for motor recovery after

stroke. Early studies predicted motor outcome by clinically
assessing initial motor dysfunction [3]. Wegen et al. [4] pro-
posed that two simple movements, shoulder abduction and
finger extension, within 72 hours after stroke could predict
recovery of hemiplegic upper limb function at 6 months.
Increasing studies have tried to predict motor outcomes by
neuroimaging markers measuring the structural integrity of
the CST or the excitability of the motor cortex. For example,
task-related brain activation in functional magnetic reso-
nance imaging (fMRI) was correlated with hand function
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recovery [5]. fMRI activation in the supplementary motor
area obtained early after stroke provided independent pre-
diction of long-term motor outcome [6]. Several studies
have predicted recovery based on brain structural MRI
(sMRI) or diffusion tensor imaging (DTI) [7–11].

Early conventional sMRI (e.g., T1- or T2-based MRI)
showed that lesion size was correlated with motor dysfunc-
tion [7, 8, 12]. DTI-based studies further indicated that the
lesion location, especially those involving critical structures
such as motion-related cortical areas (primary and non-
primary motor areas), the corona radiata, the posterior limb
of the internal capsule (PLIC) [13], and the CST, could pre-
dict upper limb function recovery potential [9–11]. DTI-
derived metrics of the CST, specifically the fractional anisot-
ropy asymmetry index (FAAI) and the ratio of fractional
anisotropy (rFA) between ipsi- and contralesional CST, are
the most frequently used predictor variables in prognostic
studies [14, 15]. Some studies quantified lesion size and loca-
tion as the concept of lesion load—a combined measure of
the stroke lesion overlapped with a canonical CST [16, 17].
Feng et al. [16] reported that CST-wLL in the acute phase
was a strong predictor of upper limb motor recovery at 3
months.

Structural imaging analysis is usually based on DTI.
However, owing to its costs and hardware requirements,
DTI is not routinely performed in stroke and rehabilitation
units, especially in developing countries. T1- and T2-
weighted images are involved in early MRI scans after
strokes. Few studies have compared the performance of
sMRI-derived CST-wLL and DTI-derived metrics for pre-
dicting recovery of upper limb motor function. In this study,
we aimed to optimize the clinical prediction model protocol
in the clinical environment by comparing the performances
of different neuroimaging modalities. We focused on
whether including DTI would significantly benefit patients.
Thus, we quantitatively analyzed the CST-wLL, which is cal-
culated from the lesion volume in the T2 image overlaid on
the CST map from the standard template. Further, we
explored the relationship between the CST-wLL and upper
limb motor function after stroke and compared them with
other DTI-derived predictor variables. We hypothesized that
compared with DTI-derived metrics, CST-wLL can more
precisely predict upper limb motor recovery after stroke.

2. Methods

2.1. Study Participants. This prospective study included
patients with first-onset stroke exhibiting varying degrees
of unilateral limb motor impairment. Clinical and neuroim-
aging assessments were performed within 1 month after the
stroke (baseline), and motor function recovery was followed
up at least 3 months after the stroke. All participants were
inpatients at the Department of Physical and Rehabilitation
Medicine, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, between 2017 and 2021, who under-
went 1-month inpatient rehabilitation treatment including
standard physical therapy and occupational therapy
(Figure 1). The clinical trial was conducted in accordance
with the Helsinki Declaration after approval by the Ethics

Committee of the Sir Run Run Shaw Hospital and Zhejiang
University School of Medicine. All relevant procedures were
conducted with patients’ full understanding and receipt of
their written consent. Inclusion criteria were (1) cerebral
hemisphere infarction (ischemic) confirmed via routine
MRI scanning, (2) first-onset stroke, (3) hemiplegia of one
limb within 1 month after onset, (4) stroke subtype based
on TOAST criteria: large vessel atherosclerotic disease, and
(5) age > 18 years. Exclusion criteria were (1) infarcts in both
cerebral hemispheres, (2) cerebral hemorrhage or hemor-
rhage after stroke, (3) disturbance of consciousness, (4)
unstable vital signs or failure of vital organs, (5) inability to
remain in a supine position for 20 minutes, (6) MRI contra-
indications, (7) previous history of other neurological or
orthopedic diseases that may have affected upper limb func-
tion, and (8) history of severe dementia or depression not
controlled by medication. Patients were reassessed 3 months
after their stroke.

2.2. Clinical Measures. The upper extremity (UE) module of
the Fugl-Meyer assessment (UE-FM) was conducted within
the baseline period (within 1 month of onset) and 3 months
after the stroke. The UE-FM scale contains 33 items to com-
prehensively quantify upper limb motor impairment. The
therapist, who was blinded to the imaging results, observed
30 voluntary UE motions and 3 tendon tap responses and
provided an ordinal rating
(2 = approximate to normal ability/response, 1 = partial
ability, and 0 = unable to perform/no response). The scores
were added to obtain a total score and recorded (66 maxi-
mum). Higher scores indicated less limb impairment; lower
scores indicated more limb impairment. The scale has excel-
lent intrarun and interrun reliability, test-retest reliability,
and internal consistency [18].

2.3. Image Processing and Data Analysis. The GE Discovery
750W 3.0 THD dual-gradient 16-channel MRI system with
an 8-channel head and neck combined coil was used for the
MRI. T1-weighted high-resolution imaging, T2 fluid-
attenuated inversion recovery (FLAIR) imaging, and DTI
were performed. Structural T1-weighted images were
obtained using fast gradient echo sequencing prepared via
three-dimensional (3D) magnetization (repetition time:
8.5ms; echo time: 3.9ms; 150 slices; voxel size: 1 × 1 × 1m
m3). Additional neuroimaging sequencing parameters were
T2 FLAIR (repetition time: 11000ms; echo time: 125ms;
31 slices; voxel size: 0:49 × 0:49 × 6:50mm3) and DTI (32
directions; b-value: 1000 seconds/mm2; 60 slices; voxel size:
1:75 × 1:75 × 1:75mm3, TR = 8000ms, TE = 80:7ms). Neu-
roimaging data were analyzed by radiologists who were
blinded to all clinical data.

2.4. Calculation of CST-wLL. Images were preprocessed with
FSL 5.0.9 (https://fsl.fmrib.ox.ac.uk/fsl/) [19]. Lesion areas
were manually drawn on the T2 image, which was linearly
matched with the respective T1-weighted image and then
transformed to the lesion mask. The CST-wLL was calcu-
lated using MATLAB with homemade script as previously
described [17]. In contrast to Lin et al. [17], the canonical
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Meet the inclusion criteria (N = 95)
Excluded (N = 32):
(i) Meet the exclusion criteria (N = 29)
(ii) Declined to participate (N = 3)

Included in the study (N = 63)

(i) Withdrawn due to stroke recurrence or
other diseases (N = 9) 

(ii) Unable to come for reassessment (N = 15)

Within 1 month after stroke (Baseline):
Completed clinical assessment (N = 63)

Completed MRI (N = 52)

3 Months after stroke (3M):
Completed clinical assessment (N = 28)

Figure 1: Flowchart of the recruitment process.

Table 1: Patient characteristics. N (%) for categorical variables; mean ± SD for continuous variables. UE-FM outcome groups: severe: 3M
UE-FM score, ≤25; mild-moderate: 3M UE-FM score, 26–66. p value: the statistical difference between two groups of patients.

Variable All (n = 28) UE-FM outcome groups
Severe (n = 9) Mild-moderate (n = 19) p value

Sex

Male 19 (67.9%) 8 (88.9%) 11 (57.9%) 0.20

Female 9 (32.1%) 1 (11.1%) 8 (42.1%)

Age (years) 62:8 ± 9:7 60:3 ± 10:2 63:9 ± 9:5 0.39

Education (years) 8 ± 2:9 9 ± 3:7 7:6 ± 2:5 0.32

Days of baseline MRI 19:8 ± 6:1 21 ± 6:3 19:2 ± 6:1 0.49

Days of baseline UE-FM 16:6 ± 6:8 17:7 ± 7:1 16:2 ± 6:8 0.60

Days of 3M UE-FM 112 ± 16:4 114:9 ± 20:5 110:7 ± 14:5 0.59

Baseline UE-FM score 19:6 ± 16:4 6:3 ± 3:0 25:9 ± 16:4 <0.001
3M UE-FM score 39:4 ± 19:9 13:6 ± 5 51:6 ± 9:5 <0.001
FM Pct (%) 47:5 ± 30:5 12 ± 8:7 64:3 ± 20:8 <0.001

Table 2: MRI statistics. Mean ± SD and median (P25, P75) for continuous variables. UE-FM outcome groups: severe: 3M UE-FM score,
≤25; mild-moderate, 3M UE-FM score, 26–66. p value: the statistical difference between two groups of patients. Log-lesion size: log-
transformed lesion size.

Variable All (n = 28) UE-FM outcome groups
Severe (n = 9) Mild-moderate (n = 19) p value

Lesion size (cc) 4.906 (3.539, 11.732) 24.080 (10.052, 34.955) 3.964 (2.853, 6.213) 0.002

Log-lesion size 0:803 ± 0:521 1:286 ± 0:503 0:575 ± 0:351 0.002

LL (cc) 1:372 ± 0:947 2:128 ± 0:996 1:013 ± 0:695 0.011

CST-wLL (cc) 1:431 ± 1:464 2:714 ± 1:789 0:823 ± 0:760 0.013

PLIC-rFA 0:747 ± 0:158 0:592 ± 0:139 0:820 ± 0:106 0.001

PLIC-FAAI 0:155 ± 0:111 0:265 ± 0:108 0:103 ± 0:065 0.002

CST-rFA 0:795 ± 0:126 0:666 ± 0:119 0:856 ± 0:072 0.001

CST-FAAI 0:119 ± 0:081 0:205 ± 0:078 0:079 ± 0:042 0.001
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CST used in this study was determined by nonlinearly regis-
tering the CST template from the Natbrainlab (http://www
.natbrainlab.co.uk/atlas-maps) [20] into the T1-weighted
images. Images were visually checked at each step for quality
control of the image registration. The weighted overlap was
introduced with consideration of the narrowing of the CST
as it descends from the motor cortex to the PLIC. The
weighted factor in each slice was calculated by multiplying
the lesion-tract overlap on each slice by the ratio of the max-
imum cross-sectional area of the tract to the cross-sectional
area of the tract on that particular slice. For a particular slice,
z, containing nðz, IÞ voxels with intensity ≥ I, the weighted
factor f ðz, IÞ was calculated as

f z, Ið Þ = n z∗, Ið Þ
n z, Ið Þ , ð1Þ

where nðz∗, IÞ indicates the number of voxels on slice z∗

containing the most voxels of intensity ≥ I. For each patient,
the wLL volume was calculated using

Vweighted = 〠
mmax

m=1
V raw∙f z mð Þ, I mð Þð Þð , ð2Þ

where mmax is the total number of intersecting voxels
between the lesion map and CST map, IðmÞ is the intensity
of the mth voxel located on slice zðmÞ, and f ðzðmÞ, IðmÞ is
the weighting factor for the voxel.

2.5. FAA Estimation of CST and PLIC. The CST (or PLIC)
fractional anisotropy asymmetry (FAA) is defined as the
mean rFA between the affected (FAaff) and the unaffected
(FAunaff) CST (or PLIC): rFA = FAunaff /FAaff . The FAAI
was computed as a ratio: FAAI = ðFAunaff − FAaffÞ/ð
FAunaff + FAaffÞ [21]. Before calculating the FAA of each
patient’s CST and PLIC, the diffusion MRI data were pre-
processed in TORTOISE to correct for motion, eddy current,
and geometric distortion [22, 23], and the diffusion data (the
B0 image) were registered into respective T1-weighted
images. We then estimated the diffusion tensor using a non-
linear least squares method in TORTOISE and generated a
map of FA values.

The CST determined by calculating the weighted lesion-
CST overlap was also used here. The MNI152 T1 template
with 2mm resolution was nonlinearly registered into
patients’ T1-weighted images, and the generated 3D defor-
mation field was used on the PLIC template from JHU
(http://neurovault.org/) to transform it to each patient’s
T1-weighted image space. Finally, the FAA estimations of
CST and PLIC were calculated in MATLAB using a home-
made script.

2.6. Statistical Analysis. The primary outcome was the UE-
FM score 3 months after the stroke (3M UE-FM), and the
secondary outcome was the UE-FM recovery percentage
(UE-FM Pct). The mean and standard deviation (SD) were
used to express normally distributed data; the median
(P25–P75) and interquartile range were used to express non-
normally distributed data. Student’s t-test and analysis of
variance were used for normally distributed variables; the
Mann-Whitney U test was used for asymmetrically distrib-
uted variables. Normally distributed variables were analyzed
via Pearson correlation, and all others were analyzed via
Spearman’s rank correlation. Univariate and multivariate
regression analyses were conducted to assess the factors
influencing 3M UE-FM or UE-FM Pct. Feng et al. [16]
defined UE‐FM scores ≤ 25 at 3 months as poor motor out-
comes. The UE-FM recovery percentage was defined as UE
− FMPct = ½ð3MUE‐FMÞ – ðbaseline UE‐FMÞ�/½66 − ð
baselineUE‐FMÞ� [24]. Receiver operating characteristic
(ROC) curve analysis was used to evaluate the cut-off point
for CST-wLL on the baseline with the greatest sensitivity
and specificity for predicting UE-FM 3 months poststroke
and the UE-FM recovery percentage. The DeLong test was
used to estimate the difference between ROC models. Statis-
tical analyses were conducted in SPSS for Windows version
25.0 (SPSS Inc., Chicago, IL, USA) and software R (version
4.0.5). Statistical significance was defined as p < 0:05.

3. Results

3.1. Patient Characteristics. Twenty-eight patients completed
the imaging and clinical assessments at both the baseline and
3-month follow-up (Figure 1). Table 1 summarizes the clin-
ical characteristics and baseline assessments. Patients’ ages
ranged from 46 to 83 years. Patients were assessed at 7–29
days after stroke onset and reassessed at 90–191 days. MRIs
were scanned 10–31 days after onset. From a possible high

Table 3: Correlation analysis. ∗∗p < 0:001, ∗p < 0:05.

3M UE-FM UE-FM Pct

Log-lesion size −0.67∗∗ −0.645∗∗

LL −0.623∗∗ −0.614∗

CST-wLL −0.688∗∗ −0.615∗∗

PLIC-rFA 0.739∗∗ 0.62∗∗

PLIC-FAAI −0.739∗∗ −0.628∗∗

CST-rFA 0.774∗∗ 0.677∗∗

CST-FAAI −0.788∗∗ −0.691∗∗

Table 4: Univariate regression analysis.

3M UE-FM UE-FM Pct
R2 p value R2 p value

Lesion size 0.271 0.005 0.224 0.011

LL 0.388 <0.001 0.377 <0.001
CST-wLL 0.473 <0.001 0.378 <0.001
PLIC-rFA 0.546 <0.001 0.384 <0.001
PLIC-FAAI 0.546 <0.001 0.394 <0.001
CST-rFA 0.599 <0.001 0.458 <0.001
CST-FAAI 0.62 <0.001 0.477 <0.001

4 Neural Plasticity

http://www.natbrainlab.co.uk/atlas-maps
http://www.natbrainlab.co.uk/atlas-maps
http://neurovault.org/


Lesion sizeLesion size

CST-wLLCST-wLL

CST-FAAICST-FAAI

R2 = 0.271
p = 0.005 

R2 = 0.224
p = 0.011 

R2 = 0.473
p < 0.001 

R2 = 0.378
p < 0.001 

R2 = 0.477
p < 0.001 

R2 = 0.62
p < 0.001 

3M
 U

E-
FM

0
0

20

40

60

80

50 100 150 0
0

20

40

60

100

50 100 150

80

U
E-

FM
 P

ct
 (%

)

3M
 U

E-
FM

0
0

20

40

60

80

2 4 6 0
0

20

40

60

100

2 4 6

80

U
E-

FM
 P

ct
 (%

)

3M
 U

E-
FM

0.0
0

20

40

60

80

0.1 0.2 0.50.40.3 0.0 0.1 0.2 0.50.40.3
0

20

40

60

100

80

U
E-

FM
 P

ct
 (%

)

Figure 2: Univariate regression analysis for lesion size, CST-wLL, and CST-FAAI.
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Figure 3: ROC for (a) poor motor outcomes (defined as 3MUE‐FM ≤ 25) and (b) considerable proportional recovery (defined as UE‐
FMPct ≥ 70%).
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score of 66, the baseline UE-FM scores ranged from 2 to 56,
and the UE-FM scores 3 months poststroke ranged from 8 to
65.

3.2. MRI Statistics. We analyzed the sMRI-based lesion size
(lesion volume), LL, and CST-wLL (cc) and the DTI-based
PLIC-rFA, CST-rFA, PLIC-FAAI, and CST-FAAI. The nor-
mality test results showed that the LL, CST -wLL, PLIC-rFA,
CST-rFA, PLIC-FAAI, and CST-FAAI were normally dis-
tributed, while lesion size was not. The log-transformed
lesion size (log-lesion size) was normally distributed
(Table 2, Supplementary Figure 1).

3.3. Correlation and Regression Analyses. Pearson correlation
analysis was conducted for LL, CST-wLL, PLIC-rFA, PLIC-

FAAI, CST-rFA, CST-FAAI, 3M UE-FM, and UE-FM Pct.
Lesion size was log-transformed for the analysis. Log-lesion
size, LL, CST-wLL, PLIC-rFA, PLIC-FAAI, CST-rFA, and
CST-FAAI were all well correlated with 3M UE-FM and
UE-FM Pct (Table 3). When age, gender, and education
years were controlled, the partial correlation analysis showed
a similar result (Supplementary Table 1).

Univariate regression analysis was performed to evalu-
ate whether the variance (R2) of the 3M UE-FM or UE-
FM Pct could be explained by lesion size, LL, CST-wLL,
PLIC-rFA, PLIC-FAAI, CST-rFA, or CST-FAAI (Table 4,
Supplementary Figure 2). CST-wLL was more strongly
correlated with 3M UE-FM than was lesion size. The
CST-FAAI from the template mask also correlated
significantly with 3M UE-FM (Figure 2). CST-wLL was
more highly correlated with UE-FM Pct than was lesion
size. The CST-FAAI from the template mask was also
significantly correlated with UE-FM Pct (Figure 2).
When multivariate regression analysis was performed
with 3M UE-FM as the dependent variable and lesion
size, LL, CST-wLL, PLIC-rFA, CST-rFA, PLIC-FAAI, and
CST-FAAI as the independent variables, the model
selection results based on stepwise showed that CST-
FAAI was the most significant predictor for 3M UE-FM
(adjusted R2 = 0:606, F = 42:484, beta = −0:788, p < 0:001).
When multivariate regression analysis was performed
with UE-FM Pct as the dependent variable and lesion
size, LL, CST-wLL, PLIC-rFA, CST-rFA, PLIC-FAAI, and
CST-FAAI as the independent variables, the model
selection results based on stepwise showed that CST-
FAAI was the most significant predictor for UE-FM Pct
(adjusted R2 = 0:457, F = 23:734, beta = −0:691, p < 0:001).

Table 5: ROC analyses for predicting 3M UE-FM.

Predictor variables Accuracy Sensitivity Specificity PPV NPV AUC

Lesion size 0.857 0.778 0.895 0.778 0.895 0.871

LL 0.786 0.889 0.737 0.615 0.933 0.836

wLL 0.929 0.778 1 1 0.905 0.865

PLIC-rFA 0.786 1 0.684 0.6 1 0.912

PLIC-FAAI 0.786 1 0.684 0.6 1 0.912

CST-rFA 0.929 0.889 0.947 0.889 0.947 0.895

CST-FAAI 0.929 0.889 0.947 0.889 0.947 0.895

CST-wLL & CST-FAAI 0.964 0.889 1 1 0.95 0.906

Table 6: ROC analyses for predicting UE-FM Pct.

Predictor variables Accuracy Sensitivity Specificity PPV NPV AUC

Lesion size 0.786 0.5 1 1 0.727 0.766

LL 0.821 0.917 0.75 0.733 0.923 0.818

wLL 0.75 1 0.562 0.632 1 0.828

PLIC-rFA 0.821 0.833 0.812 0.769 0.867 0.818

PLIC-FAAI 0.821 0.833 0.812 0.769 0.867 0.818

CST-rFA 0.714 0.917 0.562 0.611 0.9 0.776

CST-FAAI 0.714 0.917 0.562 0.611 0.9 0.776
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Figure 4: For patients with serious initial dysfunction (blue
points), the recovery percentage varied from limited to
considerable. This was the same for patients with mild initial
dysfunction (orange points).
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3.4. CST-wLL Threshold Analysis. Consistent with Lin et al.
[17], we defined the upper limb motor function outcome
as poor if the UE-FM score was ≤25 at 3 months poststroke.
Analysis of the ROC curve showed that when CST-wLL was
used to predict motor outcome 3 months poststroke, the cut-
off point was 2.068, with 77.8% sensitivity, 100% specificity,
100% PPV, 90.5% NPV, and 0.865 AUC (Figure 3). Hence, a
CST‐wLL ≥ 2:068 cc on an MRI within 1 month indicated a
poor function outcome. The CST-FAAI also showed a high
predictive value, with an AUC of 0.895 (Table 5). The
CST-wLL showed a comparable AUC from other classifica-
tion models with CST-FAAI (p = 0:71, by DeLong test),
and other metrics, including sensitivity, specificity PPV,
and NPV, changed only slightly. Including extra-CST-
FAAI did not significantly increase the AUC (p = 0:58,
CST-wLL vs. CST-wLL and CST-FAAI, by DeLong test).

Prabhakaran et al. [24] discovered that some patients
with stroke had a 70% near-fixed proportional upper limb
motor recovery within 3 months. Analysis of the ROC curve
showed that when CST-wLL was used to predict the motor
recovery percentage, the cut-off point was 1.799, with
100% sensitivity, 56.2% specificity, 63.2% PPV, 100% NPV,
and 0.828 AUC (Figure 3). In other words, a CST‐wLL <
1:799 cc within 1 month indicated a considerable propor-
tional recovery (≥70%) of the patient’s upper limb motor
function within 3 months after onset. The CST-FAAI
showed lower accuracy, sensitivity, specificity, PPV, NPV,
and AUC (Table 6).

4. Discussion

We found that CST-wLL obtained from routine sMRI exami-
nations within 1 month of stroke onset was closely correlated
with upper limb motor function outcomes 3 months post-
stroke. CST-wLL was more relevant than lesion size as a pre-
dictor of upper limb motor recovery. CST‐wLL ≥ 2:068 cc
indicated serious CST damage and a poor outcome (100%).
CST‐wLL < 1:799 cc within 1 month poststroke indicated that
patients would recover a considerable proportion (≥70%) of
their upper limbmotor functions within 3 months after stroke
onset. CST-FAAImay be the optimal predictor for upper limb
motor outcomes in patients after stroke. However, CST-wLL
showed a comparable AUC to that of DTI-derived metrics,
such as CST-FAAI, for predicting recovery of upper limb
motor function and proportional recovery.

As a predictor of upper limb motor function prognosis 3
months poststroke, CST-wLL can be used as a predictive
imaging biomarker to classify patients for rehabilitation.
This would help practitioners set more realistic rehabilita-
tion goals, integrate resources, and improve efficiency. A
CST‐wLL ≥ 2:068 cc indicated a poor outcome (100%), and
these patients could receive specific initial rehabilitation
based on predictive stratification [17, 25]. A recent study
suggested that a 3-week CST-wLL was the strongest predic-
tor of the ability to grasp and control finger forces 6 months
poststroke [26]. A CST‐wLL > 5:5 cc strongly predicted low-
to-minimal recovery in unimanual motor impairment and
bimanual activity performance (specificity: 0.91) [27].

In our study, CST-FAAI may be the optimal predictor
for upper limb motor outcomes. However, CST-wLL showed
a comparable precise prediction with DTI-derived metrics
such as CST-FAAI. The rFA and FAAI between ipsilateral
and contralateral CST are the most commonly used DTI-
derived metrics for predicting motor recovery [28]. Higher
baseline FA and rFA values have been correlated with better
motor recovery and can predict motor function outcomes in
patients after ischemic stroke [14]. A meta-analysis includ-
ing fifteen studies with 414 patients revealed that FA in the
subacute phase after ischemic stroke is a good predictor of
functional motor recovery and showed moderate quality
based on the GRADE system [29]. However, these DTI-
derived metrics represent diffusion directions of the water
molecules and their patterns along the axon, i.e., “CST struc-
tural characteristics.” Calculating the CST-wLL enables
quantifying how much “CST structural integrity” has been
damaged due to stroke; this allows more accurately predict-
ing the recovery of upper limb motor function [26]. Few
studies have compared the performance of different neuro-
imaging modalities. Doughty et al. [30] suggested that CST
lesion load in the acute phase predicts 3-month outcomes
better than the FAA of regions of interests (ROIs) distal to
the lesion. A recent study estimating CST injury by the pro-
posed method with diffusion metrics extracted from the dif-
fusional kurtosis imaging (DKI) sequence and with the first
principal component (PC1) of the metrics found that DKI_
AK, AFD_total, and PC1 showed similar predictive values
to those of wLL for functional outcomes [31]. Although pre-
vious studies have confirmed that FA is a good predictor of
3-month functional outcomes, our results suggested that the
AUCs for CST-wLL in the subacute phase were similar to
those of the FAAI. Another microstructural study suggested
that the baseline asymmetry measures in the PLIC for the
orientation dispersion index of the neurite orientation dis-
persion and density imaging (NODDI) model explained
83% of the variance of the upper extremity FM outcomes
whereas FA values explained only 49% [10]. However, the
NODDI model is not routinely available in stroke units.
The method proposed in our study for estimating CST
injury is more easily implemented in clinical settings.

As a potential imaging biomarker for poststroke motor
outcomes, wLL has some advantages over functional MR
and DTI, including high patient compliance and examina-
tion convenience [25, 32]. T2-WI sequences are routinely
available for patient care, whereas fMRI or DTI is not a rou-
tine examination in stroke units and rehabilitation units
considering its costs and hardware requirements, especially
in developing countries. We used the CST model from the
standard template [15] instead of the tractography results
from locally acquired DTI data of age-matched healthy con-
trols. As the major purpose of this study is to compare
between the prediction performance with structural MRI
only and with DTI, it is important to not acquire any new
DTI data for the calculations within the structural MRI
group. In this study, PLIC-rFA, PLIC-FAAI, CST-rFA, and
CST-FAAI from the CST template were highly correlated
with the outcomes of upper limb motor function, which is
consistent with the results of previous studies [15]. Prior
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studies that calculated CST-wLL used heterogeneous
methods, and the templates used and methods of overlap
varied substantially [16, 26, 33]. However, these studies
showed significant agreement between methods for estimat-
ing CST injury, suggesting that these methods are relatively
precise [34].

CST-wLL was also highly correlated with the proportion
of recovery of upper limb motor function. Previous studies
[24, 35] found that approximately 70% of the maximum
recovery potential of most stroke patients, apart from those
with serious initial motor impairment, may be realized.
Our results showed that the initial severity of the motor
impairment did not predict the proportion of recovery.
Some patients with serious initial dysfunction still achieved
a substantial proportion (≥70%) of functional recovery,
while some patients with mild initial dysfunction showed
limited recovery potential (Figure 4). CST-wLL showed con-
siderable predictive values for proportional recovery. Our
results suggested that CST-wLL showed considerable predic-
tive values for proportional recovery. CST‐wLL < 1:799 cc
within 1 month indicated recovery of a large proportion
(≥70%) of upper limb motor function within 3 months after
onset. This was consistent with the results of a previous
study [16], which showed that the CST-wLL could be used
to predict the recovery proportion. Stinear et al. [21] indi-
cated that an FAAI of 0.25 is a “point of no return,” beyond
which functional potential is severely limited. In this study,
CST-wLL showed higher accuracy, sensitivity, specificity,
PPV, NPV, and AUC than did FAAI. Consequently, CST-
wLL can be used as a classification variable to predict recov-
ery potential for individual stroke patients [36], thus direct-
ing clinical motor function rehabilitation and increasing
rehabilitation efficiency.

Our study and methodology have some limitations. First,
although we improved spatial standardization, individual
differences must be considered when taking the CST local-
ization from the standardized mask, especially in brains with
large lesions, where the results may be less accurate than
those in brains with small lesions. Second, the study only
included patients with first-onset acute ischemic stroke and
excluded patients with second- or third-onset stroke, which
may affect the generalizability of the results. Additionally,
the sample size was too small to incorporate rehabilitation
treatment factors, drug treatment factors, depression, and
perfusion therapy for multiple regression analysis to further
clarify the weight of CST-wLL as a neuroimaging biomarker
in predicting upper limb motor recovery. More pioneering
approaches, such as machine learning algorithms and deep
learning for classification and prediction, have been pro-
posed as they can capture complex and nonlinear relation-
ships [37] and show great potential in integration of
voluminous clinical data and imaging data for predicting
motor function prognosis at much quicker speeds and at
higher accuracy without bias [38–41]. However, machine
learning algorithms generally require a large sample size
and diverse sample distribution to train the algorithm and
improve the generalization, and it remains challenging to
implement these algorithms in clinical routines [42]. The
current study provides a practical way to predict the motor

outcomes in the clinical environment, and the prediction
model can be further improved by combining with advanced
machine learning algorithms as we have a larger sample size
from different hospitals in the future. Finally, as a threshold
for classification of upper limb motor outcomes and recov-
ery potential, CST-wLL must be further defined and verified
with larger sample sizes in future studies.

CST-wLL obtained from routine sMRI within 1 month
after stroke onset may serve as a potential imaging biomarker
for predicting upper limb motor function prognosis and
recovery potential 3 months poststroke. This study optimized
the predictionmodel (protocol) in the clinical environment by
comparing the performance of sMRI-derived CST-wLL and
DTI-derived metrics for predicting upper limb motor recov-
ery. Including extra-DTI will not induce significant benefits.
However, as a clinical predictive imaging biomarker of motor
function recovery and a classification variable to guide future
stroke rehabilitation, CST-wLL still requires verification in
studies with larger samples. Accurate metrics and predictive
models are critical for defining an optimal neurorehabilitation
protocol that will promote motor recovery and maximize
functional outcomes for stroke survivors.

Glossary

CST: Corticospinal tract
MRI: Magnetic resonance imaging
sMRI: Structural magnetic resonance imaging
DTI: Diffusion tensor imaging
UE: Upper extremity
UE-FM: Upper extremity module of the Fugl-Meyer

assessment
3M UE-FM: The UE-FM score 3 months after the stroke
UE-FM Pct: UE-FM recovery percentage
LL: Lesion load
CST-wLL: CST-weighted lesion load
PLIC: Posterior limb of the internal capsule
FAA: Fractional anisotropy asymmetry
FAAI: Fractional anisotropy asymmetry index
rFA: Ratio of fractional anisotropy
AUC: Area under the curve
PPV: Positive predictive value
NPV: Negative predictive value
fMRI: Functional magnetic resonance imaging
TOAST: Trial of ORG 10172 in Acute Stroke

Treatment
FLAIR: Fluid-attenuated inversion recovery
ROC: Receiver operating characteristic
ROIs: Regions of interests
GRADE: Grading of Recommendations Assessment,

Development and Evaluation
DKI: Diffusional kurtosis imaging
NODDI: Neurite orientation dispersion and density

imaging.
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