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Attention deficit hyperactivity disorder (ADHD) is a common mental disorder in children, which is related to inattention and
hyperactivity. These symptoms are associated with abnormal interactions of brain networks. We used resting-state functional
magnetic resonance imaging (rs-fMRI) based on the graph theory to explore the topology property changes of brain networks
between an ADHD group and a normal group. The more refined AAL_1024 atlas was used to construct the functional
networks with high nodal resolution, for detecting more subtle changes in brain regions and differences among groups. We
compared altered topology properties of brain network between the groups from multilevel, mainly including modularity at
mesolevel. Specifically, we analyzed the similarities and differences of module compositions between the two groups. The
results found that the ADHD group showed stronger economic small-world network property, while the clustering coefficient
was significantly lower than the normal group; the frontal and occipital lobes showed smaller node degree and global efficiency
between disease statuses. The modularity results also showed that the module number of the ADHD group decreased, and the
ADHD group had short-range overconnectivity within module and long-range underconnectivity between modules. Moreover,
modules containing long-range connections between the frontal and occipital lobes disappeared, indicating that there was lack
of top-down control information between the executive control region and the visual processing region in the ADHD group.
Our results suggested that these abnormal regions were related to executive control and attention deficit of ADHD patients.
These findings helped to better understand how brain function correlates with the ADHD symptoms and complement the
fewer modularity elaboration of ADHD research.

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a neuro-
developmental disorder mostly in childhood, which is char-
acterized as inattention, hyperactivity, and inappropriate
impulsiveness [1]. Reviews about ADHD surveyed the sam-
ples of children and adolescents from 35 countries around
the world and estimated the prevalence of ADHD at 5.29%
[2–4]. ADHD not only affects learning development, healthy
growth, and daily life but also brings tremendous pressure to
the family. Accordingly, exploring the causes of ADHD and
relevant cognitive neural mechanisms could help in the
detection and treatment of the disease.

Recently, neuroimaging techniques have been widely
used to elucidate the pathophysiology of ADHD, especially

functional magnetic resonance imaging (fMRI) which has
made progress to estimate the brain function of ADHD
patients due to its high spatial resolution. But the use of
resting-state fMRI (rs-fMRI) or task-state fMRI has always
been a controversial issue. In fact, the brain consumes a lot
of energy at rest, showing spontaneous neural activity,
whereas the increase of the brain energy during the task
mode is insignificant (<5%) [5]. Moreover, the disturbances
of spontaneous neural activity in the brain have been
reported being associated with psychiatric disorders includ-
ing ADHD. These pathological disorders of intrinsic activity
show good separation between healthy and patient individ-
uals, suggesting that using rs-fMRI to study spontaneous
neural activity may contain valuable diagnostic information
[6]. Furthermore, rs-fMRI usually requires participants to
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open or close their eyes without involving any complex
tasks. Considering that it is difficult for ADHD children to
successfully complete complex experiment tasks, using rs-
fMRI is more beneficial than the task mode.

Early rs-fMRI ADHD researches focused on aberrant
changes of independent brain regions or between different
brain regions. Zang et al. found that ADHD patients had
decreased amplitude of low-frequency fluctuations (ALFF)
in the right inferior frontal cortex, the bilateral cerebellum,
and the vermis and increased ALFF in the right anterior cin-
gulated cortex, left sensorimotor cortex, and bilateral brain-
stem [7]. An et al. found that the regional homogeneity
(ReHo) method showed widely distributed differences
between the two groups in the frontal-cingulate-occipital-
cerebellar circuitry, while the ALFF method showed a differ-
ence only in the right occipital area [8]. Zhou et al. found
that the centrality of left superior temporal gyrus (STG)
decreased and the centrality of the left superior occipital lobe
and right inferior parietal lobe increased in the ADHD
patients [9]. Wang et al. found that the density of rich clubs
among structural hub nodes was reduced in the ADHD
patients including the bilateral precuneus (PCUN), the
insula (INS), the caudate nucleus, the left putamen, and right
calcarine [10]. In addition, abnormal hemispheric asymme-
try has also been shown to be associated with common neu-
rodevelopmental disorders, including ADHD [11–14]. He
et al. conducted a comprehensive meta-analysis of a multi-
modal imaging dataset (rs-fMRI and structural magnetic
resonance imaging) and performed lateralization analysis.
The results found that forty-one percent (41%) of regions
of ADHD patients had both structural and functional abnor-
malities in asymmetry [15]. Longarzo et al. also explored the
asymmetry index significantly correlated across subjects
between fMRI and power EEG in the inattention group in
frontal and temporal areas [16]. Previous studies have sug-
gested that the abnormal brain regions were closely related
to ADHD symptoms. Exploratory analysis of regions
allowed us to explore regional changes in the brains of
patients with ADHD.

Others studies pointed that ADHD was characterized as
a dysconnectivity syndrome [17], rather than a disease of
isolated brain region changes [18]. Meanwhile, other
ADHD-related studies also suggested that ADHD patients
had distributed brain network disorders, rather than the dis-
ease with discrete regional abnormalities [19, 20]. Studies
showed that the dysregulation of neural network with
ADHD patients occurred not only in the dorsal attention
network (DAN) and default mode network (DMN) but also
in the somatosensory, motor, visual, and auditory networks
[21]. With development, changes in the brain network had
a greater impact on ADHD than in separate regions [22].
Lin et al. indicated that compared to healthy adolescents,
the connectivity between DMN and task-positive networks
increased in the ADHD patients [23]. Guo et al. found that
the discriminative functional connectivity (FC) existed in
the intranetwork within DMN and the internetwork
between DMN and ventral attention network (VAN) in
ADHD children and adults and positively correlated with
ADHD symptom scores [24]. Many studies were devoted

to exploring the differences in networks or independent
regions between ADHD and healthy children or focusing
on connections with brain prior regions of interest (ROI),
but the results were closely related to the selection of seed
points [25], while these researches may ignore that ADHD
symptoms may affect not only changes in a single brain
region or a network composed by several brain regions but
also changes in the integration and separation of the whole
brain.

Therefore, the research considered exploring the brain
function changes of ADHD groups from the perspective of
the whole brain, rather than confined to a single region or
predefined network. Using the brain atlas to divide brain
regions and constructing whole brain network by the graph
theory were the mainstream methods. Namely, the human
brain was regarded as a complex network interacting with
brain regions, providing a novel way to explore brain func-
tional mechanism from a holistic perspective [26, 27]. The
results of whole brain analysis may be influenced by the seg-
mentation of brain regions with different resolutions of
brain atlas. We expected to use high nodal resolution brain
atlas to detect more subtle changes. Low-resolution AAL_
90 atlas was the frequently used brain atlas. The AAL_90
atlas used automatic anatomical labelling (AAL) algorithm
to divide the entire cerebral cortex into 90 noncerebellar
anatomic regions of interest with low resolution [28], while
the AAL_1024 atlas subdivided the native AAL segmenta-
tion into 1024 micro regions of interest of approximately
identical size [29]. Specifically, for generating high-
resolution node scale, each node of the low-resolution native
AAL atlas was subdivided into a set of contiguous micro
nodes. In studies of other mental disorders, such as major
depressive disorder (MDD) and amnesic mild cognitive
impairment (aMCI), they got better rate of identification
using the AAL-1024 atlas and detected more subtle changes
in local brain function [30, 31]. Thus, this study utilized
graph theory and high nodal resolution AAL_1024 atlas to
analyze the brain network of ADHD groups, for finding
more subtle changes of brain regions.

In addition, it was important to select different network
topology properties to analyze functional network changes,
because changes in topological properties of the brain net-
work were related to abnormal cognitive development and
many brain diseases [32–37]. Nodal properties were used
to evaluate the contribution of important brain regions in
the network. The clustering coefficient measured network
separation, while the shortest path length measured network
integration; small-world network was generally considered
to achieve a balance between functional separation and inte-
gration [38]. Although “small-world” summarized key prop-
erties of complex networks at global and local levels of
topology description, it did not provide any information
about intermediate scale of the network organization, while
another special topological organization, modularity, can
complement the information of brain network at mesolevel
[39, 40]. Modularity was topologically defined as a subset
of highly interconnected nodes which were relatively
sparsely connected to nodes in other modules [41]. Research
showed that human brain network was modular, and
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modular structure of the human brain changed dynamically
with aging [42]. Alexander-Bloch et al. found that in child-
hood schizophrenia and other developmental diseases, the
modular changes in brain function network theoretically
quantified the expected abnormality of the brain network
[43]. Qian et al. also used graph theory to analyze the mod-
ular network topology abnormalities between the ADHD
group and normal group [44], but there was no specific anal-
ysis of the differences in the modular composition of the two
groups and abnormal connection changes between modules
like modular studies of patients with Alzheimer disease
(AD) [45]. Therefore, we focused on the alternation of mod-
ularity at mesolevel in the ADHD group and hypothesized
that the abnormal modularity was the basis for the difference
between the ADHD and normal groups.

Based on the above analysis, we used the AAL_1024 atlas
to construct resting-state brain network with high node res-
olution for detecting more subtle changes of brain regions.
And we analyzed the functional brain network based on
the graph theory. We attempted to identify changes in func-
tional brain network topology property between two groups
at multilevel. Firstly, we analyzed changes of average net-
work property preliminarily. Then, we attempted to find
the change of node properties of the ADHD group, espe-
cially with the execution control and visual attention-
related brain regions. Further, we analyzed the similarities
and differences of module compositions between the two
groups in detail. Finally, differential network analysis would
be conducted to explore the changed network connection of
the ADHD group compared with the normal group. We
hypothesized that the changes of network topology property
were related to the clinical symptoms of ADHD patients. We
hoped that this study would provide new insights from the
brain network perspective and complement the fewer mod-
ularity elaboration at the mesolevel in ADHD brain network
research.

2. Materials and Methods

2.1. Participants and Data Acquisition. The research data
came from Peking University, and detailed description can
be downloaded from the following website: http://fcon_1000
.projects.nitrc.org/indi/adhd200/. The functional images of
all participants were scanned by the experimental instrument
3.0T Siemens Trio scanner. During the experiment, partici-
pants did not require performing specific tasks but only
needed to relax their minds, close their eyes tightly, and lie flat.
Resting-state functional images were obtained by using a
gradient-recalled echo-planar imaging (EPI) sequence with
scanning parameters (repetition time ðTRÞ = 2000ms, echo
time ðTEÞ = 30ms, flip angle ðFAÞ = 90°, slice thickness = 3:5
mm, field of view ðFOVÞ = 20 cm, and 33 slices per volume);
each participant acquired a total of 240 volumes. The high-
resolution T1-weighted structure images in the axial orienta-
tion were obtained by using a 3D spoiled gradient recalled
(SPGR) sequence with scanning parameters (TR = 2530ms,
TE = 3:39ms, FA = 7°, flip time = 1100ms, slice thickness =
1:33mm, FOV = 25:6 cm, and 128 slices per volume).

In order to obtain good information about the partici-
pants, the data were preprocessed (see Data Preprocessing),
and data information of participants with large head move-
ments and poor registration results was manually excluded.
Finally, 118 participants were selected, including 61 ADHD
children (i.e., 32 ADHD combined and 29 ADHD inatten-
tive types) and 57 typically developing control children.
The dimensional measures of ADHD symptoms were diag-
nosed by ADHD Rating Scale (ADHD-RS) IV. All partici-
pants met the conditions: (1) right-handed, (2) no history
of head injury, (3) no other severe mental illness, and (4)
Wechsler Intelligence Scale for Chinese Children-Revised
(WISCC-R) scores greater than 80. There was no significant
difference between the two groups in gender and age. Psy-
chostimulant medications were forbidden at least 48 hours
before scanning. The Research Ethics Review Board of
Peking University Institute of Mental Health approved all
research. Parents of each participant signed an informed
consent form, and all children agreed to participate in the
study. The specific age, gender, and ADHD information of
participants are shown in Table 1.

2.2. Data Preprocessing. Data Processing Assistant for
Resting-State fMRI (DPARSF) software was used to prepro-
cess the fMRI data based on statistical parameter mapping
(SPM8) and REST toolbox packages, which was part of the
Data Processing and Analysis of Brain Imaging (DPABI)
toolbox (http://rfmri.org/dpabi) [46]. Before processing the
research data in this study, the first 10 volumes of the partic-
ipants were removed to prevent the participant’s state from
being unstable in the initial stage of collection, and a total
of 230 volumes were obtained. The main steps of data pre-
processing included the following: (1) slice timing: when
the instrument performed interlayer scanning, the image
time of each slice had a deviation, so we needed to conduct
time correction of each slice; (2) spatial realign: in order to
eliminate participants with large head movements, each
image of the corresponding experimental sequence was rea-
ligned with the first image according to a certain algorithm
to perform head movement correction. In this study, the
range was set to horizontal head movement greater than
2mm or rotation greater than 2°; if it exceeded, remove the
participant; (3) spatial normalization: in order to remove
the differences in brain structures of different participants,
functional images and structural images of each participant
were configured. Diffeomorphic anatomical registration
through exponentiated lie algebra (DARTEL) method was
used to extract probability density maps of gray matter from
T1 structural images and carry out spatial transformation.
Then, the same parameters were used to transform the cor-
responding fMRI image to complete the spatial standardiza-
tion; (4) remove covariates, mainly 24 head movement
parameters such as cerebrospinal fluid and white matter;
(5) spatial smoothing: a kernel function with a Gaussian ker-
nel of 6 millimeters (mm) was used to smooth the standard
image to improve the image signal-to-noise ratio; (6) filter-
ing and time signal extraction. In order to eliminate high-
frequency noise, the signal was band-pass filtered with a
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frequency of 0.01-0.08. Then, time signals were extracted
according to brain regions to construct a brain network.

2.3. Construction of Brain Network and Property Analysis.
The network was composed of many nodes and edges con-
necting these nodes. In this study, brain regions were used
as nodes, and the connections between the brain regions
were used as edges to construct the brain network. We used
the AAL_1024 atlas to divide the brain, extracted the average
time signal of each brain region, and calculated Pearson cor-
relation coefficient to construct functional matrix between
brain regions. Pearson correlation coefficient was a statistic
that measured the degree of linear correlation between two
variables; the mathematical formula was defined:

Rij =
1

n − 1
〠
n

i=1

Xi − �X
Sx

� �
Yi − �Y
Sy

 !
: ð1Þ

Among them, R was the Pearson correlation coefficient, Xi
andYi were the average time signals of two brain regions, �X and
�Y were the mean values of the signal, Sx and Sy represented the
standard deviation of the signal, and n was the sample size. The
range of R fluctuated between -1 and 1. If R > 0, the two brain
regions were in a positive correlation; if R < 0, the two brain
regions were in a negative correlation. While R = 0, there was
no correlation between the two brain regions. The Pearson cor-
relation coefficient was calculated among brain regions to form
the correlation coefficient matrix of brain network. In order to
make the matrix conform to the normal distribution, the
Fisher-Z transformation was performed to obtain an approxi-
mate normal distribution FC matrix. In order to distinguish
whether there was a connection between brain regions, a
threshold was set, and the FC matrix with weights was trans-
formed into a binary matrix to obtain a binary network, so as
to study its network properties.

In order to describe the different scales of brain network,
such as the integration and separation of networks, contribu-
tion of important brain regions, and intermediate description
of network, a variety of network topology properties were used
in this section to quantify and describe, including the most
commonly used network properties: node degree, clustering
coefficient, shortest path length, local efficiency, global effi-
ciency, small-world property, and modularity [47]. The New-
man algorithm was used to perform modular analysis [48].
Table 2 explains some of the basic concepts of these properties,
as well as the mathematical definition of the properties, and
Table 3 shows a description of some of the relevant symbols.

2.4. Statistical Analysis. Brain network was binarized by set-
ting the threshold value to study the properties of functional
connection network. The selection of threshold determined
the degree of sparseness of the network. If selecting a higher
threshold, the network would be sparser; if selecting a lower
threshold, the network would be denser. We adopted abso-
lute threshold method to study network topology properties.
In the present study, the choice of the threshold was based
on the absolute threshold method [49–51]. The definition
of the absolute threshold method was as follows: when the
correlation coefficient between nodes in the network
exceeded this threshold, it indicated that there was a connec-
tion between nodes and vice versa. In addition, the average
node degree of the brain was not less than the natural loga-
rithm of the number of nodes in the network based on the
small-world property of the brain network [38]. Therefore,
we established the threshold network based on the criteria
of threshold selection mentioned above.

Therefore, we carried out the network analysis within the
threshold range ½0:02, 0:58� in steps of 0.02 to obtain a series
of binarized brain networks. Under each threshold, we cal-
culated the average network properties of the two groups
and carried out statistical analysis. Then, choosing a reason-
able single threshold, we used one-sample t-test to statisti-
cally analyze the FC networks of the two groups to obtain
the corresponding statistical network and performed the
node property analysis and modularity analysis. Finally,
two-sample t-test method was used to statistically analyze
two groups of brain networks to obtain the differential net-
work and perform the differential edge analysis. The specific
flowchart is shown in Figure 1.

3. Results

3.1. Within a Range of Threshold Average Network Property
Analysis. In Figure 2(a), the average clustering coefficient of the
two groups gradually decreased with the increase of the thresh-
old. At the beginning, the average clustering coefficient of the
two groups had no significant difference. Within the threshold
range from 0.12 to 0.46, the average clustering coefficient of
the ADHD group was obviously lower than that of the normal
group (p < 0:05, Bonferroni correction). After the threshold of
0.46, there was no significant difference between the two
groups. In Figure 2(b), the average shortest path length of the
two groups increased with the increase of the threshold, but
there was no significant difference in the two groups. In
Figure 2(c), the average node degree of the two groups
decreased with the increase of the threshold. Within the thresh-
old range from 0.20 to 0.42 and from 0.46 to 0.54, there were
significant differences between the two groups (p < 0:05, Bon-
ferroni correction). The change of the average small-world net-
work property of the two groups with the threshold is shown in
Figure 2(d) (normal group) and Figure 2(e) (ADHD group).
The average small-world network property of the two groups
increased with the increase of the threshold, and the values of
small-world network property were greater than 1. But the
functional brain network of the ADHD group showed more
strong small-world network property, compared with the nor-
mal group.

Table 1: Demographic and clinical characteristics of all the
participants.

Normal group (n = 57) ADHD group (n = 61)
Gender (M/F) 57 (44/13) 61 (54/7)

Age (years) 11:24 ± 1:66 12:32 ± 1:99

ADHD index 28:05 ± 6:5 49:88 ± 8:75

4 Neural Plasticity



Through preliminary analysis of network properties within
the overall threshold range, it can be judged that there were dif-
ferences between the two groups of networks. Under the pre-
mise that the small-world property σ and the average node
degree of the network hki were not less than the natural loga-
rithms of the total number of nodes N, two groups of networks
were statistically analyzed to obtain statistical network within
group and the difference network between groups. The change
of the average node degree of the statistical network of the two
groups within the threshold is shown in Figure 2(f). It was
clearly seen that when T > 0:4, the average node degree hki
was less than the logarithm of the number of network nodes.
And it was clearly seen in Figures 2(d) and 2(e) that when T
> 0:4, λ was greater than 1, indicating an upward trend. In
addition, when T was 0.4, the average clustering coefficient
and average node degree of the two groups were significantly

different in Figures 2(a) and 2(c). Therefore, this study used
the one-sample t-test to get the statistical network within group
and the two-sample t-test to get the differential network
between groups when threshold T = 0:4.

3.2. Property Analysis of Statistical Network. At the threshold
T = 0:4, we performed one-sample t-test on the two groups
to obtain the statistical network within group and analyzed
the network properties, including node degree, clustering
coefficient, shortest path length, betweenness centrality,
global efficiency, and local efficiency. The results showed
that significant differences were found in the first 50 brain
regions of node degree, betweenness centrality, and global
efficiency in Figure 3. At the same time, the network proper-
ties of the two groups were normalized to ½0:1, 0:9� to better
display the results.

Table 2: Mathematical definitions of complex network measures.

Measure Formula Definitions

Node degree ki = 〠
N

j

eij
The greater the node degree, the more nodes connected to it, indicating that the

position of the node in the network is more important

Clustering
coefficient

Ci =
ei

ki ki − 1ð Þ/2
The clustering coefficient of nodes reflects the degree of network collectivization, which

measures the relationship between nodes and their neighbors

Shortest path
length

li =
1

n − 1
〠

i≠j∈N
min li,j

È É The shortest path length describes the optimal path between any two nodes in the
network

Betweenness
centrality

B ið Þ = 〠
i,m∈N
i≠j

φj,m ið Þ
φj,m

Betweenness centrality is defined as the number of times that the shortest path between
any two nodes in the network passes through the node

Global
efficiency

Eglob =
1

n n − 1ð Þ 〠
i≠j∈N

1
lij

Global efficiency measures the global transmission capacity of the network

Local
efficiency

Eloc =
1
n
〠
i∈N

Eglob ið Þ Local efficiency is expressed as the average of the global efficiency of all nodes in the
network

Modularity Q =
1
2m

〠
vw

Avw −
kvkw
2m

� �
δ cv , cwð Þ Modularity, also known as community, is defined as a collection of nodes in the

network that are tightly connected inside but sparsely connected outside

Small-world
network

γ =
Cnet

Crandom
, λ =

lnet
lrandom

≈ 1, σ =
γ

λ
Small-world networks have shorter shortest path lengths and higher clustering
coefficients. When σ > 1, it means that the network has small-world properties

Table 3: Basic concepts and notation.

Remarks Basic concepts and notation

N N is the set of all nodes in the network

n n is the number of nodes

eij eij is the connection status between i and j: eij = 1 when link (i, j) exists (when i and j are neighbors)

min li,j
È É

min li,j
È É

is defined as the number of the shortest sides between any two nodes in the network

φj,m ið Þ φj,m ið Þ is the total number of the shortest paths from nodes j to m through node i

φj,m φj,m is the total number of the shortest paths from nodes j to m

kvkw kvkw represents the degree of nodes v and w

δ cv , cwð Þ δ cv , cwð Þ is used to judge whether nodes v and w are in the same module; δ cv , cwð Þ = 1 when in the same module, otherwise
δ cv , cwð Þ = 0
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3.2.1. Altered Nodal Properties between Disease Statuses. In
Figure 3(a), there were significant differences between the
two groups of network node degrees. The top 50 node
degrees of the ADHD group were significantly lower than
those of the normal group, implying that the network con-
nection of the ADHD group was relatively sparse. The
ADHD group had no nodes on the anterior frontal lobe,
and the distribution of nodes was relatively concentrated
on the bilateral temporal occipital lobe, the INS, and poste-
rior occipital lobe, while the distribution of nodes in the nor-
mal group was relatively more extensive.

In Figure 3(b), the nodes with betweenness centrality of
the two groups were concentrated on the frontal lobe, the tem-
poral lobe, the parietal lobe, etc. However, there were differ-
ences in the distribution of larger nodes in the two groups of
networks. The larger nodes in the ADHD group were located
at the right PCUN, the left gyrus rectus (REC), the inferior
parietal, but supramarginal and angular gyri (IPL) andmedian
cingulate and paracingulate gyri (DCG). However, in the nor-
mal group, the larger nodes were distributed at the right sup-
plementary motor area (SMA), the right REC, left PCUN, left
INS, and middle frontal gyrus (MFG).

In Figure 3(c), the global efficiency of the ADHD group
was significantly lower than that of the normal group, indi-
cating that the overall information transmission efficiency
of the ADHD group was more inefficient. The concentrated
distribution node regions of the network of two groups basi-
cally overlapped, such as the temporal lobe, left and right
parietal lobe, basal ganglia, and posterior cingulate gyrus
(PCG). But the ADHD group had no nodal distribution in
the prefrontal lobe. The larger nodes in the normal group
were mainly distributed in the left PCUN, right middle
occipital gyrus (MOG), and SMA, while there were no large
nodes in these areas in the ADHD group.

3.2.2. Altered Modularity between Disease Statuses. The
results of the two groups of network modularity are shown
in Figure 4; the left was the normal group, and the right

was the ADHD group. The network of the ADHD group
was divided into 6 modules, while that of the normal group
was divided into 8 modules. Both groups had a modular
structure, and the module degree Q was 0.672. Q (-0.5 to
1) was used to measure the effect of modularity division.
The larger the value was, the better the modularity division
was. There were similarities between modules 1 and 4 of
the two groups, and the differences between the two modules
were minor.

Module 1 consisted of brain regions involved in visual pro-
cessing in both groups, including the superior occipital gyrus
(SOG), right MOG, right inferior occipital gyrus (IOG), infe-
rior temporal gyrus (ITG), and right cuneus (CUN). Com-
pared with the normal group, module 1 of the ADHD group
was smaller and more localized; there were fewer connections
with surrounding brain areas, such as the lingual gyrus
(LING), parahippocampal gyrus (PHG), and fusiform gyrus
(FFG). Module 4 was mainly responsible for the somatosen-
sory, motor, and auditory functions, including the left precen-
tral gyrus (PreCG), postcentral gyrus (PoCG), paracentral
gyrus (PCL), superior parietal gyrus (SPG), PCUN, and right
supramarginal gyrus (SMG) in both groups.

However, there were obvious differences in the topolog-
ical effects of certain regions and modules. For module 3, the
two groups shared brain areas such as the superior frontal
gyrus, dorsolateral (SFGdor), superior frontal gyrus, medial
(SFGmed), left superior frontal gyrus, medial orbital (ORB-
supmed), and MFG. While the ADHD group was only con-
centrated on the frontal lobe, it was more manifested as a
short-distance connection between the frontal lobe. The nor-
mal group also included the parietal lobe and temporal lobe,
such as the middle temporal gyrus (MTG) and ITG, SMG,
and angular gyrus (ANG). And there were obvious long-
distance connections between the frontal lobe and temporal
and parietal lobe, respectively, in the normal group. For
module 2, the normal group was mainly concentrated on
the STG and MTG. And the ADHD group was distributed
at the ANG, PCUN, median cingulate and paracingulate gyri
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Figure 1: The flowchart of the analysis steps.
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Figure 2: Changes of the network properties of the two groups within the threshold: (a) the average clustering coefficient (mean Cnet) of the
two groups; (b) the average shortest path length (mean Lp) of two groups; (c) the average node degree with normalization (mean <k > ) of
the two groups; (d) small-world network properties (mean σ) of the normal group; (e) small-world network properties (mean σ) of the
ADHD group; (f) the average node degree (mean k, <k > ) of the two groups. Blue represented the ADHD group, and red represented
the normal group; the blue asterisk represented statistical significance (p < 0:05, Bonferroni correction), and green represented LnðNÞ; N
was the number of network nodes.
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(DCG), and left MTG. The position of module 2 of the
ADHD group was displaced, and the size of the module
increased.

For module 6, the normal group was concentrated on the
prefrontal lobe, including the MFG, inferior frontal gyrus,
triangular part (IFGtriang), and inferior frontal gyrus, oper-
cular part (IFGoperc). However, module 6 of the ADHD
group was distributed from the frontal lobe to temporal lobe,
also including the SMG, right transverse temporal gyrus
(TTG), STG, and MTG. And there were obvious long-
distance connections between the bilateral temporal lobe in
the ADHD group. Modules 7 and 8 of the normal group
were mainly distributed at the SMA, thalamus (THA), and
pallidum (PAL). Moreover, the newly added modules 7
and 8 of the normal group corresponded to the reorganiza-

tion and separation of modules 3 and 6 of the ADHD group.
In other words, the regions of the ADHD group were assem-
bled more densely, resulting in a reduction in the total num-
ber of modules. In general, the modules in the ADHD group
seemed to be more localized, resulting in fewer connections
between modules.

3.2.3. Differential Network Analysis. The results of differen-
tial networks between the two groups are shown in
Figure 5. In order to study the differences between the two
groups of networks, the two-sample t-test method was used
for statistical analysis to obtain the differential network.
Figure 5(a) shows the number of weakened edges in the
ADHD group relative to the normal group. After FDR cor-
rection, 22 differential edges were obtained, mainly from

ADHD groupNormal group
L R L R

0 0.90 0.9

(a)

ADHD groupNormal group
L RL R

0 0.90 0.9

(b)

ADHD groupNormal group
L RL R

0 0.90 0.9

(c)

Figure 3: The top 50 node distributions with the highest network node properties of the two groups: (a) the top 50 node distributions with
the highest node degrees of the two groups; (b) the top 50 node distributions with the highest node betweenness centrality of the two groups;
(c) the top 50 node distributions with the highest global efficiency of the two groups; the left was the normal group, and the right was the
ADHD group; the color and node size represented the size of the network property.
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the posterior occipital lobe to bilateral temporal lobe;
Figure 5(b) shows that the enhanced edges of the ADHD
group compared to the normal group were corrected by
FDR to obtain 3 differential edges, which were mainly con-
centrated from the PCUN to occiput lobe. See Table 4 for
details.

4. Discussion

This study adopted the AAL_1024 atlas to divide the brain
region, constructed the brain network of the ADHD and
normal groups by the graph theory, and performed plasticity
analysis. We attempted to find the changes in the functional
brain network topology of the ADHD and normal groups

from multiple levels. From the perspective of network inte-
gration and separation at the global level, we found that
the clustering coefficient of the ADHD group was signifi-
cantly reduced and showed stronger small-world properties,
indicating that the ADHD group had relatively sparse brain
network and weakened functional connection of network.
From the contribution of important brain regions at the
nodal level, we observed significant differences between
groups in nodal properties, especially on the frontal lobe,
posterior occipital lobe, SMA, and PCG. The results of mod-
ularity at the mesolevel showed that there were short-range
overconnections within module and enhanced cohesion
especially in the frontal and parietal lobes, long-range under-
connections between modules, and weakened coupling
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module.

9Neural Plasticity



Weakened edges

L R

(a) Weakened edges

Enhanced edges

L R

(b) Enhanced edges

Figure 5: The differential edges between two groups: (a) the weakened edges of the ADHD group compared to the normal group; (b) the
enhanced edges of the ADHD compared to the normal group.

Table 4: Differential edge distribution.

Brain areas MNI coordinates Brain areas MNI coordinates T value p value

Normal group < ADHDgroup

Precuneus_L (-1.3, -67.8, 38.4) Occipital_Inf_R (41.4, -84.2, -9) -5.4167 p < 0:05

Pallidum_R (23.3, 2.9, 1.3) Caudate_L (-15, 2.5, 10.7) -5.4483 p < 0:05

Precuneus_L (-12.5, -52.2, 28.5) Rolandic_Oper_R (55.8, -13.3, 13.5) -5.5062 p < 0:05
Normal group > ADHDgroup

Temporal_Inf_R (63.6, -33.2, -15.8) Frontal_Mid_R (33.9, 17.0, 37.4) 4.8545 p < 0:05

Precuneus_R (11.2, -45.5, 25.2) Temporal_lobe_R (51.9, -15.6, -21.6) 4.8822 p < 0:05

Frontal_Sup_L (-21.9, 39.2, 41.2) Precuneus_L (-7.9, -47.8, 9.9) 4.8466 p < 0:05

Rectus_R (8.4, 58.6, -18.3) Cingulum_Mid_R (4.8, -43.7, 32) 5.4816 p < 0:05

Cingulum_Ant_L (-3.1, 21.1, 25.5) Supp_motor_area_L (-8.5, 4.1, 64.5) 5.1245 p < 0:05

Amygdala_L (-21.4, -1.9, -11.2) Precentral_R (43.4, -16.5, 44.2) 5.0131 p < 0:05

Occipital_Sup_R (36.1, -76.4, 44.8) Precuneus_L (1.8, -65.2, 25.1) 4.9316 p < 0:05

Precuneus_L (-16.5, -56.6, 44.8) Occipital_Mid_R (32.6, -82.4, 34.4) 4.9067 p < 0:05

Precuneus_R (11.2, -49.5, 25.2) Occipital_Sup_R (36.1, -76.4, 44.8) 5.1806 p < 0:05

Cuneus_L (-2.1, -72.8, 27.7) Occipital_Sup_R (36.1, -76.4, 44.8) 5.6124 p < 0:05

Precuneus_R (11.2, -49.5, 25.2) Frontal_medial_R (2.8, 69.3, 11.4) 6.1769 p < 0:05

Occipital_Mid_L (-41.3, -77.4, 32.4) Precuneus_L (-16.5, -56.6, 15.3) 5.4060 p < 0:05

Rectus_R (8.4, 58.6, -18.3) Precuneus_R (8.3, -54.2, 18.6) 5.4140 p < 0:05

Temporal_Inf_R (64.6, -42.6, -16.4) Parietal_Inf_L (-34.5, -68.5, 6.3) 4.9283 p < 0:05

Rectus_R (8.4, 58.6, -18.3) Precuneus_R (11.2, -49.5, 25.2) 6.4081 p < 0:05

Temporal_Mid_L (-49.9, 6.5, -34.7) Temporal_Mid_R (65, -31.3, -10) 4.8834 p < 0:05

Temporal_pole_L (-38, 19.4, -36.8) Frontal_Sup_Med_R (11.8, 59.6, 18.8) 4.9459 p < 0:05

Frontal_Mid_L (-35.2, 19.5, 43.3) Temporal_Inf_L (-60.4, -26.3, -22.8) 4.8368 p < 0:05

Angular_R (44.6, -73.3, 34.7) Temporal_Mid_L (-57.4, -7.9, -25.5) 6.0980 p < 0:05

Occipital_Mid_L (-41.3, -77.4, 32.4) Frontal_Mid_L (-40.6, 13.2, 52.2) 5.0985 p < 0:05

Cuneus_L (-2.1, -72.8, 27.7) Precuneus_L (-14.4, -47.5, 16.5) 6.1012 p < 0:05

Precuneus_L (-11.8, -61.8, 38.1) Occipital_Mid_L (-41.3, -77.4, 32.4) 5.5756 p < 0:05
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especially in the frontal lobe and occipital lobe in the ADHD
group. We used rs-fMRI to provide reliable evidence for
ADHD brain dysfunction from the perspective of whole
organization and to probe large-scale neural communication
in the brain from a new perspective.

4.1. Average Network Aberrance and ADHD-Related
Changes. Based on analysis of overall threshold, although brain
functional networks exhibited economical small-world topol-
ogy in both groups in Figures 2(d) and 2(e), the ADHD group
had stronger small-world property. In terms of average node
degree and average clustering coefficient, the ADHD group
was lower than the normal group in Figures 2(a) and 2(c). In
one ADHD children study using the AAL_90 atlas [52], they
found that the average shortest path length of the ADHD group
increased compared with that of the normal group within a cer-
tain threshold range, without the difference among the two
groups in the average clustering coefficient and small-world
property. In another study using the Power264 atlas (data com-
ing from Peking University of ADHD 200) [53], they found a
significant difference among the groups in the average cluster-
ing coefficient but no differences in the shortest path lengths.
Though the above previous studies suggested that the efficiency
of local information transmission in the brain network of
ADHD patients was reduced, the observed different results
based on low-resolution atlas could ignore details of micro
regions and thus led to the different explanations in the neural
mechanisms of ADHD. Therefore, our study found that the
ADHD group had lower node degree and clustering coefficient
using the AAL_1024 atlas compared with the normal group,
indicating that the efficiency of information transmission of
local network was reduced.

The node degree indicated the interconnection between
nodes, and clustering coefficient reflected the relationship
between connected nodes becoming neighbors. Both node
degree and clustering coefficient were indicators of the local
interconnection of the network, clustering coefficient repre-
sented the efficiency of specialized processing of local informa-
tion transmission, and it was considered to be the basis of the
cognitive process [54]. The lower node degree and clustering
coefficient indicated that normal balance of local network of
the ADHD group was disturbed [55]. The functional connec-
tion of network of the ADHD group was weakened. Previous
studies showed that functional connection of the ADHD group
was weaker than that of the normal group, especially in the
anterior cingulate gyrus, PCG, lateral prefrontal cortex, left pre-
frontal lobe, and THA [56, 57].

4.2. Nodal Properties and Differential Edges of ADHD-
Related Distinctions. The results of statistical network showed
that different regions among two groups were the prefrontal
lobe, posterior occipital lobe, SMA, and PCG. For the node
degree, it could be found that the ADHD group had no node
distribution in the prefrontal lobe, and nodes in the occipital
lobe were generally smaller than those of the normal group in
Figure 3(a). Node degree described contribution of this node
in brain network, indicating that activation of the ADHD group
in the prefrontal lobe and occipital lobe was significantly weak-
ened. The prefrontal lobe was importantly connected with

advanced functions such as attention, memory, executive con-
trol, and learning; the same study also pointed out that activa-
tion of the ADHD group in the prefrontal lobe was inhibited
[58, 59].

In Figure 3(b), nodes with larger betweenness centrality
of the normal group were distributed in the SMA, but not
in the ADHD group. This was similar to previous studies
[60]. SMA was considered to be an important part of the
core response inhibition system and mainly responsible for
motor coordination. This may explain the hyperactivity in
children with ADHD. In Figure 3(c), the results of global
efficiency revealed that global efficiency of the ADHD group
was generally lower than that of the normal group, especially
in the SOG and PCG. Importantly, there was no node distri-
bution in the prefrontal lobe for the ADHD group. Global
efficiency determined the node information transmission
efficiency in brain network, and the posterior occipital lobe
was responsible for the visual processing process. Thus, the
reductions of node global efficiency in these regions may
lead to the lack of top-down control information between
execution control and visual processing regions [61, 62].

Our results showed that there were significant differences in
node degree, betweenness centrality, and global efficiency, espe-
cially in the prefrontal lobe, posterior occipital lobe, and SMA.
In another study on ADHD children using the AAL_90 atlas
[52], for node property, compared with the normal group, only
the ADHD group showed reduced lower node efficiency in the
left inferior frontal gyrus (IFG) and the left anterior cingulate
cortex (ACC); our study also found that the network node effi-
ciency of the ADHD group was much lower than that of the
normal group, including the prefrontal and occipital lobe
regions. Moreover, we also found the difference between groups
in nodal degree and betweenness centrality. As we discussed
above, these abnormal brain regions were strongly associated
with ADHD symptoms. This also further proved that using
high-resolution brain region atlas seemed to be able to find
more local regional differences.

Statistical analysis of differential network manifested that
the edges from the frontal lobe to occipital lobe were weakened
in the ADHD group compared with the normal group in
Figure 5(a), while the network of the ADHD group had three
enhanced edges, which were mainly concentrated from the
PCUN to occiput lobe in Figure 5(b). The occipital lobe was
related to the processing and synthesis of visual information,
which constituted a part of the selective visual attention system
[63]. It indicated that even without any attention guidance,
ADHD patients may pay more attention to multiple unrelated
visual stimuli from the environment [64]. And enhanced occip-
ital connections of the ADHD group were also related to poor
sensory perception [65]. The PCG and PCUN were the main
regions of DMN; the enhanced activity of DMNmay be related
to the inability of ADHD patients to concentrate. Studies
showed that many mental illnesses were related to DMN [66],
which was highly sensitive distinguishing between patients with
mental illness and healthy individuals [67].

4.3. Abnormal Changes in Modularity between Disease
Statuses. Resting-state functional brain network was consis-
tently described, indicating the existence of modular
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organization [41, 68, 69]. A previous study pointed that
modular organization contributed to all aspects of the
human brain internal functional organization, such as the
balance between separation and integration of brain net-
work, while saving wiring costs and high resilience to net-
work nodes or edge damage [70]. The results based on the
modular analysis showed that the module number of the
ADHD group was reduced, connections within module were
tight, and connections between modules were sparse. Partic-
ularly, there were significant differences at the temporal lobe,
left and right frontal lobe, and occipital lobe in Figure 4.

In the ADHD group, the bilateral prefrontal lobe mod-
ules (module 6) became larger and covered the INS and
anterior temporal poles, and these regions were involved in
the frontoparietal network (FPAN) [71]. The frontoparietal
module in the ADHD group seemed to be “disconnected”
from other modules, especially the connection with the pos-
terior occipital module. These findings suggested that frontal
parietal modules of the two groups were different. Moreover,
global efficiency (especially at the frontal lobe) and local
integration (corresponding to the reduction of clustering
coefficient of the overall network) tended to be lower in
the ADHD group. FPAN played an important role in cogni-
tive control and decision-making, not only involving speech
and working memory but also physical perception and activ-
ity inhibition. The top-down cognitive control function of
the frontoparietal network helped the human brain to focus
on information related to the target task and suppress the
interference of irrelevant information, thereby ensuring the
reasonable allocation of attention resources and effectively
completing current task [72, 73]. FPAN was a key module
in attention processing [74], and its topology changes were
inseparable from the pathological mechanism of ADHD.
Hence, this may be related to ADHD patients with learning
difficulties, decreased memory, and inability to concentrate
on doing things.

In addition, the ADHDgroup showed increasedmodularity
in the occipital lobe (module 1), while the motor modules
(modules 7 and 8 only in the normal group) disappeared. The
occipital lobe was mainly involved in visual processing, and
the SMA was mainly responsible for the coordination of move-
ment [60], which may be related to hyperactivity and inability
to concentrate in the ADHD group. The results of modulariza-
tion also showed that the module containing the frontal and
occipital lobe (module 3) existed in the normal group but disap-
peared in the ADHD group and became two independentmod-
ules. It further proved that there was a lack of top-down control
information between the executive control region and the visual
processing region in the ADHD group [61, 62].

Furthermore, the modularization results of the ADHD
group also showed that there were short-range overconnectivity
within module and long-range underconnectivity between
modules. For example, module 3 in the normal group had a
large number of long-range connections from the frontal lobe
to occipital lobe, while module 3 in the ADHD group hadmany
short-range connections in the frontal lobe. The results were
consistent with the results of a review on ADHD [75]; the func-
tional networks of ADHD patients had decreased connectivity
over long-range connections but increased connectivity in

short-range connections. They also echoed the ADHD group’s
stronger small-world property, characterized by a network with
few long connections but dense local connections [38]. The
above analysis results indicated that the changes of brain net-
work topology were closely related to hyperactivity and inatten-
tion symptoms in the ADHD group. Future research could
focus on these regions to find treatments that might improve
the clinical symptoms of ADHD.

5. Conclusion

This study used the AAL_1024 atlas to construct a functional
whole brain network with high nodal resolution of the ADHD
group combined with the graph theory and rs-fMRI, to detect
more subtle changes in brain regions and differences among
groups. And we compared the network topology properties
changes of the ADHD group frommultiple scales with the nor-
mal group. We found that the topological changes of the
ADHD group were mainly at the frontoparietal network, bilat-
eral frontal lobe, occipital lobe, PCG, SMA, and PCUN. Overall,
changes in topological property of the corresponding brain
regions were closely related to the core symptoms of ADHD.
Future work can explore how to effectively use brain stimulus
technology to regulate the activation and connection of these
brain regions, so as to improve the pathological state of ADHD
patients.
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