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Surround suppression (SS) is a phenomenon that a neuron’s response to visual stimuli within the classical receptive field (cRF) is
suppressed by a concurrent stimulation in the surrounding receptive field (sRF) beyond the cRF. Studies show that SS affects
neuronal response contrast sensitivity in the primary visual cortex (V1). However, the underlying mechanisms remain unclear.
Here, we examined SS effect on the contrast sensitivity of cats’ V1 neurons with different preferred SFs using external noise-
masked visual stimuli and perceptual template model (PTM) analysis at the system level. The contrast sensitivity was evaluated
by the inverted threshold contrast of neurons in response to circular gratings of different contrasts in the cRF with or without
an annular grating in the sRF. Our results showed that SS significantly reduced the contrast sensitivity of cats’ V1 neurons.
The SS-induced reduction of contrast sensitivity was not correlated with SS strength but was dependent on neuron’s preferred
SF, with a larger reduction for neurons with low preferred SFs than those with high preferred SFs. PTM analysis of threshold
versus external noise contrast (TvC) functions indicated that SS decreased contrast sensitivity by increasing both the internal
additive noise and impact of external noise for neurons with low preferred SFs, but improving only internal additive noise for
neurons with high preferred SFs. Furthermore, the SS effect on the contrast-response function of low- and high-SF neurons
also exhibited different mechanisms in contrast gain and response gain. Collectively, these results suggest that the mechanisms
of SS effect on neuronal contrast sensitivity may depend on neuronal populations with different SFs.

1. Introduction

The response of a neuron to visual stimulation in the
classical receptive field (cRF) is generally suppressed by a
costimulation in the surrounding receptive field (sRF)
beyond the cRF [1, 2]. This phenomenon, called surround
suppression (SS), is widely reported at various levels along
the visual pathway in many species [3] and thus com-
monly regarded as a fundamental property of visual neu-
rons for efficient information processing [4, 5]. A
neuron’s response to dissimilar stimuli presented simulta-
neously in the cRF and sRF is usually stronger than that
to similar stimuli [6, 7], and it is commonly thought that
SS plays a critical role in the perception of visual saliency,
detection of object boundaries, and figure-ground segrega-
tion [3, 7–12]. However, the neural mechanisms that SS
mediates visual information processing have not been fully
understood [3, 13–19].

Contrast detection is fundamental to visual perception of
object form, size, and motion features [20, 21]. A few studies
report that SS significantly reduces both the perceptual con-
trast sensitivity [22] and response contrast sensitivity of neu-
rons in the primary visual cortex (V1) [2, 23]. Nevertheless,
the neural mechanisms remain controversial [2, 23]. It is
known that the perceptual contrast sensitivity exhibits an
evident dependence on stimulus spatial frequencies (SFs)
[24–28], and neuronal response contrast sensitivity to visual
stimuli is also dependent on the preferred SFs of cortical
neurons [28–32]. Furthermore, a recent report showed that
SS strength has a positive correlation with the preferred
SFs of V1 neurons [33]. These results lead to a hypothesis
that the effect of SS on neuronal contrast sensitivity may
depend on neuronal SFs. One goal of this study is to exam-
ine this possibility.

On the other hand, a majority of previous electrophysio-
logical investigations focused on the SS effect on the
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response contrast sensitivity at the cellular level. Based on
the contrast-response function fitting of individual neurons,
some of these studies have reported inconsistent results
[2, 23, 34, 35], probably because SS effects on contrast
encoding might not only operate at the cellular level,
but also involve a complex interaction between feed-forward,
lateral, and feedback connections [3, 36, 37]. Conversely,
studies on perceptual contrast sensitivity functions are widely
conducted at the system level to model observer performance
in perceptual tasks using the perceptual template model
(PTM) in terms of perceptual template(s), transducer non-
linearity, internal additive noise, and multiplicative noise
[24, 38–40]. This PTM has been used to distinguish mech-
anisms of attention [41–43], perceptual learning [44–47],
and top-down [48] effects on threshold contrast in the
detection of visual signals. To identify the mechanisms of
SS effects on neuronal contrast sensitivity at the system
level, the present study applied the external noise para-
digm and the PTM analysis to measure the SS effect on
the contrast sensitivity of V1 neurons with different pre-
ferred SFs. The contrast sensitivity was assessed with the
inverse of signal threshold contrast that V1 neurons could
respond to visual stimuli masked by gradient levels of
external noise using receiver operating characteristics
(ROC) analysis with different performance accuracies
(70.7% and 79.4%) [49, 50]. The signal threshold versus
external noise contrast (TvC) functions were constructed
for neuronal populations with different spatial frequencies
(SFs). Based on PTM analysis of neuronal TvC functions
with and without surround stimuli, we try to distinguish
the mechanisms underlying SS effect on neuronal contrast
sensitivity. Finally, we also assessed the SS effect on neuro-
nal contrast-response functions to examine the relation-
ship of SS effect between system and cellular level.

2. Materials and Methods

2.1. Animals and Preparation. Four healthy young adult cats
(2-3 years old, weighing 2.4-3.1 kg) were used in this study.
All cats were examined with an ophthalmoscope before the
experiment to ensure that they had no optical or retinal
abnormality. All animal treatments were performed strictly
in accordance with the Guide for the Care and Use of Labo-
ratory Animals of the National Institutes of Health. The
experiment protocol in this study was approved by the Ani-
mal Welfare Ethics Committee of Anhui Normal University.

Animal anesthesia and preparation were carried out
using the same procedure as described previously [51–54].
Briefly, anesthesia was initiated by injection of ketamine
HCl (40mg/kg, i.m.) and xylazine (2mg/kg, i.m.). After
intubation of intravenous and tracheal cannulae, the cat
was immobilized in a stereotaxic apparatus with ear, eye,
and bite bars. Glucose (5%)-saline (0.9%) solution contain-
ing a mixture of urethane (20mg/h/kg) and gallamine-
triethiodide (10mg/h per kg of body weight) was infused
intravenously by a syringe pump to keep the animal anesthe-
tized and paralyzed. Pupils were dilated with atropine (1%)
eye drops, and contact lenses (zero power) were used to pro-
tect the corneas from dryness. Neosynephrine (5%) was

applied to retract the nictitating membranes. Artificial respi-
ration was performed, and expired pCO2 was maintained at
approximately 3.8%. Body temperature was maintained at
38°C using a heating blanket. The animal’s electrocardio-
gram, heart rate (180-220 beats/min), and blood oxygen
level (>95%) were monitored continuously throughout the
experiment to evaluate the anesthesia level and physiological
state.

2.2. Electrophysiological Recording. The V1 area (area 17)
(Horsley-Clarke coordinates: P0-P8/L0-L4) was exposed by
performing a craniotomy on the skull under a surgery
microscope, and dura over V1 was cut and removed. The
exposed V1 area was covered with a 4% agar. Extracellular
single-unit recordings were carried out using a glass-coated
microelectrode (impedance 3-5 MΩ), which was advanced
by a hydraulic micromanipulator (Narishige, Japan). The
optic discs of the two eyes were reflected onto a movable
transparent tangent screen positioned 57 cm away from the
eyes and overlapped with the CRT monitor for visual stimuli
presentation. The central areas of both eyes were located as
previously described [32, 51, 52, 55]. V1 neurons were ran-
domly sampled from all cortical layers in the medial bank
of the lateral gyrus with the electrode penetrations within a
vertical depth of 2000μm from the pial surface. Action
potentials of the recorded neurons were amplified (×2,000)
by a microelectrode amplifier (Dagan 2400A, USA) and then
fed into a window discriminator with an audio monitor. The
original voltage traces were digitized by an acquisition board
(National Instruments, USA) controlled by IGOR software
(Igor Pro 6.3.1.2, WaveMetrics, USA) and then saved for
online and offline analysis.

2.3. Visual Stimuli and Recording Procedure. Visual stimuli
were drifting sinusoidal gratings or noise gratings generated
and displayed in real time by a PC computer running Matlab
programs (Matlab 2014a, MathWorks, USA) with the aid of
Psychtoolbox extensions [56]. The grating and external
noise images had a fixed mean luminance of ~19 cd/m2

and were presented on a CRT monitor (Legend LXH-
GJ769FT, China) with a resolution of 1024 × 768 pixels
and a refresh rate of 60Hz. The luminance nonlinearity of
the monitor was gamma corrected. The monitor was placed
57 cm from the cat’s eyes.

Once a neuron’s visually evoked response was detected,
the neuron’s RF center was preliminarily determined using
bars of light emitted from a hand pantoscope and then pre-
cisely located by consecutively presenting a series of
computer-generated flickering squares of light on the CRT.
The cell’s preferred orientation, motion direction, spatial,
and temporal frequency were determined by comparing
the cell’s responses to a series of grating stimulus packages
and used for subsequent experiments.

To explore the surround suppression effect on the con-
trast sensitivity of the studied neuron, we characterized neu-
ron’s RF properties, including the size of cRF and sRF. We
first recorded the neuronal response to circular patch drift-
ing gratings with different sizes of diameter centered over
the RF center (Figure 1). Four repetitions of recording were
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carried out. The response was measured as a function of dif-
ferent stimulus patch diameters. By performing an online fit
of each recorded cell’s size-tuning curves with a DoG func-
tion [57], neurons were classified into three categories based
on their size-tuning curves. The first type of neurons, char-
acterized by an evident response suppression after reaching
a maximum response (Figure 1(a)), were named surround-
suppressive neurons (NSS). The second type of neurons dis-
played an asymptotic maximum response without surround
suppression and were called nonsurround-suppressive neu-
rons (NOS) (Figure 1(b)). The third type of neurons showed
facilitated responses as the size of stimulus increased and
therefore were named surround-facilitative neurons (NSF)
(Figure 1(c)). For NSS neurons, the diameter of cRF was
defined as the circular-patch size corresponding to the max-
imum response, and the diameter of sRF outer boundary
was defined as the size corresponding to an asymptotic
response value (the minimum response plus 5% of the mini-
mum response) (Figure 1(a)). For NOS neurons, the diameter
of cRF was defined as the circular-patch size corresponding to
95% of the saturation response (Figure 1(b)). There was no
suppressive sRF beyond the cRF for NOS neurons. NSF neu-
rons had unmeasurable cRF (Figure 1(c)).

The inner boundary of sRF for NSS and NOS neurons
was determined by recording the neuron’s response to a
series of annular drifting gratings centered over the RF cen-
ter, with the annulus’s inner diameter expanding and the
outer diameter fixed at the maximum size available on the
display (Figure 1(a)). After fitting the annulus size-tuning
curves with a DoG function [57], the inner diameter of
sRF was defined as the annulus size corresponding to the
response value of minimum response (spontaneous
response) plus 5% of the minimum response in the fitting
curve (Figures 1(a) and 1(b)). The inner diameter of sRF
was measured in order to ensure that an annular surround

stimulus beyond this boundary did not drive the neuron’s
visually evoked response.

In order to examine surround suppression effects on the
contrast sensitivity of NSS neurons, we recorded neuronal
responses to circular-patch noise grating stimuli with gradi-
ent luminance contrast (0, 0.025, 0.05 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.8, and 1.0) presented in the cRF when the annular
grating stimuli were present or absent in the sRF
(Figures 2(a) and 2(b)). As controls, the contrast sensitivity
of NOS neurons to circular-patch noise grating stimuli in
the cRF was also examined when the annular grating stimuli
were shown or absent in the sRF. The noise gratings in the
cRF were composed of external noise frames and signal
frames. The signal frames were drifting gratings with the
neuron’s preferred orientation, spatial frequency, and tem-
poral frequency. The external noise frames had the same size
as that of the signal frames with each noise element subtend-
ing 2 × 2 pixels. The gray levels of the noise elements in each
external noise frame were drawn independently from a
Gaussian distribution with mean 0 and standard deviation
depending on the amount of external noise for each noise
condition. To ensure that the external noise did conform
to the Gaussian distribution, the maximum standard devia-
tion of the noise was kept below 33% maximum achievable
contrast [24, 40, 44, 58, 59]. Five external noise levels (0.0,
0.04, 0.08, 0.16, and 0.32) were used in this experiment.
The noise grating with different contrasts at different exter-
nal noise levels were presented in a random order and
repeated for 6 sessions (5 trials/session) when the annular
gratings were present or absent. To maximize and fix the
surround suppression influence, the annular grating stimuli
presented in the sRF were free of external noise mask, main-
tained at 100% contrast, and had the same orientation, spa-
tial frequency, and temporal frequency as the circular patch
noise gratings shown in the cRF. Prior to presentation of
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Figure 1: Samples of response tuning curves showing RF property of different types of V1 neurons. (a) Size-tuning responses to circular
patch grating stimuli (upper left to right corner) with increasing outer diameter (blue solid circles with error bars, n = 56) and to annular
grating stimuli (lower left to right corner) with increasing inner diameter (red solid circles with error bars, n = 48) for neurons with
evident surround suppression (SS). The blue and red solid curves are the best fits of size-tuning responses with DoG functions. (b) Size-
tuning responses to circular patch grating stimuli with increasing outer diameter (blue color) and to annular grating stimuli with
increasing inner diameter (red color) for neurons with no surround suppression (NOS). (c) Size-tuning responses to circular patch
grating stimuli with increasing outer diameter for neurons showing facilitated response to sRF stimulation. Solid arrows indicate the
diameter of cRF corresponding to the maximum response (in (a)) or 95% of the saturation response (in (b)), and the open arrow defines
the outer boundary of sRF in the size-tuning response to circular patch grating stimuli. Arrowheads indicate the nonresponsive area in
the size-tuning response to annular grating stimuli.
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each trial of stimulus, spontaneous activity was acquired
during 1 s period while the mean luminance was shown on
the CRT. At the end of the recording experiment, animals
were killed by stopping its heart beat and breath through intra-
venous injection of pentobarbital sodium (>100mgkg−1).

2.4. Data Analysis

2.4.1. Size-Tuning Curve Fitting and Surround Suppression
Index. Neuron’s responses to circular and/or annular grating
stimulus were defined as the mean firing rate corresponding
to the time of stimulus presentation. The size-tuning curve
of neuronal response to the circular patch or annular grating
stimuli was fitted with a DoG function [57]:

R xð Þ = Kc × 〠
x/2

−x/2
exp − 2 × x/rcð Þð Þ2 − Ks

× 〠
x/2

−x/2
exp − 2 × x/rsð Þð Þ2 + R0,

ð1Þ

where RðxÞ is the response evoked by a circular patch grat-
ing stimulus with diameter x, Kc is amplitude of the center
subunit, rc is the radius of the center subunit, Ks is the
amplitude of the surround subunit, and rs is the radius of
the surround subunit. R0 is the spontaneous firing rate.
The surround subunit radius was taken to be the spatial
extent of the sRF.

The strength of the surround suppression was assessed
using the surround suppression index (SI) defined by the fol-
lowing equation:

SI = 1 − Asymptotic response
Peak response , ð2Þ

where the peak response is the neuron’s maximum response
to circular patch grating stimuli with increasing diameter,
and the asymptotic response indicates a response value of
the saturation response plus 5% saturation response in the

size-response tuning curve (Figure 1(a)). The larger the SI,
the stronger the surround suppression.

2.4.2. ROC Analysis. The correct performance of a neuron’s
response to a certain stimulus contrasts at several external
noise levels with and without surround stimuli was assessed
using receiver operating characteristics (ROC) analysis
[32, 49, 50]. Briefly, the neuronal detection probability
was computed by designating the number of spikes elicited
by a certain stimulus contrasts (0, 0.025, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.8, and 1.0) as “hit” and spontaneous firing rate
as “false alarm” (Figure 3). After fitting the detection proba-
bility versus stimulus contrast with a Weibull function, we
obtained the neuronal threshold contrast (TC) in response
to visual stimuli at a certain external noise level under
70.7% (d1′ = 1:089) and 79.4% (d2′ = 1:634) detection accu-
racy, which was used to construct TC versus external noise
contrast (TvC) functions with and without surround stimuli
at different performance criteria. The neuronal contrast sen-
sitivity (CS) was evaluated by the inverse of TC value to con-
struct contrast sensitivity versus spatial frequency (CSF)
functions.

2.4.3. PTM Modeling Analysis. The perceptual template
model (PTM) considers the observer as a whole system
and describes the observer’s performance in terms of a per-
ceptual template with a tuning gain of stimulus representa-
tion (β), a nonlinear signal transducer function (γ), an
internal multiplicative noise (Nm) whose standard deviation
is proportional to stimulus contrast (or signal strength), and
an internal additive noise (Na) whose amplitude is indepen-
dent of stimulus contrast [41, 44, 60–62]. Equivalent internal
noise can be estimated by comparison to the effects of exter-
nal noise (Next) added in the stimulus. By measuring the
observer’s performance in the detection of visual signals with
different amounts of external noise, the PTM analysis can
identify three pure mechanisms of (1) stimulus enhance-
ment (equivalent to internal additive noise reduction), (2)
external noise exclusion and (3) internal multiplicative noise

0 0.04 0.08 0.16 0.32Noise

(a)

(b)

Figure 2: Showing circular patch grating stimuli with different external noise levels (0, 0.04, 0.08, 0.16, and 0.32) presented only in the cRF
(a) as well as noisy circular patch grating stimuli plus annular grating stimuli presented in the sRF (b). The circular grating stimuli and the
annular grating stimuli had the same orientation, motion direction, spatial, and temporal frequency as the neuron’s preferred parameters.
The diameter of circular grating stimuli was equal to the neuron’s cRF. The outer diameter of annular grating stimuli was set as large as our
display size, and the inner diameter was set equal to the size corresponding to the asymptotic response on the annular size-response tuning
curve. The contrast of circular grating stimuli varied between 0% and 100%, and the contrast of annular grating stimuli was fixed at 100%.
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suppression (Figure 4), or a mixture of these mechanisms in
attention [38, 42], perceptual learning [44–46, 58], top-down
influence [48], and brain development [63]. To assess the
relative contributions from each or combinations of the
noise sources to SS effect on neuronal contrast sensitivity,
three weighting coefficients Aa, Af , and Am corresponding
to the noise source Na, Next, and Nm, respectively, were
added in the original PTM equation to fit neuronal TvC
functions obtained with and without surround stimuli:

cτ =
1
β

1 + AmNmð Þ2� �
Af Next
� �2γ + AaNað Þ2�

1/d′2 −N2
m

� �
2
4

3
5

1
2γ

, ð3Þ

where Cτ represents threshold contrast at the d′ perfor-
mance level; Na, Next, Nm, β, and γ denote, respectively,
the standard deviation of internal additive noise, the stan-
dard deviation of external noise, the proportional constant

of multiplicative noise, the gain of the perceptual template,
and the exponent of the nonlinear transducer. Aa, Af , and
Am are the weighting coefficients of Na, Next, and Nm,
respectively.

A least square procedure was used to fit the PTM equa-
tion. The fit was performed in Matlab 2014a with the curve-
fit toolbox extension. The sum of the squared differences
between the measured and model-predicted log thresholds
was minimized. The goodness of fit was determined by:

r2 = 1:0 − ∑ log Ct
predict� �

− log Ctð Þ� �2
∑ log Ctð Þ −mean log Ctð Þ½ �f g2

: ð4Þ

Aa, Af , and Am were free to change in the full model to
incorporate all three mechanisms predicted by the PTM. A
reduced model was constructed by setting at least one of
the three coefficients to 1.0. An F statistic was used to
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Figure 3: A sample cell showing the ROC analysis for measurement of the contrast threshold that the V1 neuron can respond to the visual
stimuli at two performance criteria (d1′ = 70:7% and d2′ = 79:4%) with and without the presence of surround stimuli. (a, e) Contrast
response functions showing the mean neuronal response to repeated presentation (6 × 5 trials) of visual stimuli with different luminance
contrast (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.0, as indicated by the color gradient) at an external noise level of 0 without
(a) and with (e) surround stimuli. (b, f) ROC method shown by the hit rate versus false alarm rate for neuronal response value
distribution at different stimulus contrasts compared with that of baseline response without (b) and with (f) surround stimuli. (c, g)
showing the probability of the neuron in detection of visual stimuli with different contrasts without (c) and with (g) surround stimuli.
The solid curves represent the best fits of detection probability versus stimulus contrast functions with a Weibull equation. The dashed
lines indicate the signal contrast threshold (TC) at two performance criterion of d1′ and d2′, respectively. (d, h) TC versus external
noise contrast (TvC) functions at performance criterion 70.7% (d) and 79.4% (h).
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compare the reduced models to the full model:

F df 1, df 2ð Þ = r2full − r2reduced
� �

/df 1
1 − r2full
� �

/df 2
, ð5Þ

where df1 = kfull – kreduced and df2 =N – kfull; N is the num-
ber of predicted data points.

The standard deviation of each model parameter for the
best-fitting model was estimated with a bootstrap resam-
pling method as described previously [45, 47, 59, 63]. The
iteration in the bootstrap procedure is 1000 times. Thus,
the mean and standard deviation of the best-fitting model
parameters were obtained.

2.4.4. Contrast Response Model Fitting. To identify the mech-
anisms of SS effect at the cellular level, we fitted the contrast
response function of each NSS neuron, respectively, with
three models based on Michaelis-Menten equation, includ-
ing the response gain (Eq. (6)), contrast gain (Eq. (7)), and
response subtraction model (Eq. (8)) constructed in the pre-
vious study [2].

Response gain model is expressed as

R = K csð Þ ccffiffiffiffiffiffiffiffiffiffiffiffi
σ + c2c

p
 !β

+ R0, ð6Þ

where R is the neurons’ response, K ðcsÞ is the scaling factor
dependent on surround contrast, cc is the center contrast,
σ sets the neurons’ contrast gain, and β sets the slope of
the neurons’ contrast response function in log-linear
coordinates.

The contrast gain model is expressed as

R = K
ccffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ csð Þ + c2c
p

 !β

, ð7Þ

where the response-scaling factor K is fixed, but the contrast
gain parameter σ (cs) depends on surround contrast. Other
parameters are the same as in the response gain model.

The response subtraction model is expressed as

R =max 0, K ccffiffiffiffiffiffiffiffiffiffiffiffi
σ + c2c

p
 !β

− k0 csð Þ
2
4

3
5, ð8Þ

in which k0 ðcsÞ is a response offset that depends on sur-
round contrast, and other parameters are the same as in
the two previous models.

To evaluate which model best characterized a neuron’s
contrast response function, we computed the goodness of
fit using a normalized χ2 method. The χ2 was computed by

χ2 =〠
i

ei − oið Þ2
σ2i

, ð9Þ

where i is the index of a particular contrast level, e is the
expected response at this contrast level, o is the observed
response, and σ is the trialwise standard deviation in
responses at this contrast. The χ2 error term is then normal-
ized by the degrees of freedom of the model to obtain χ2

N .
The lowest χ2

N indicates the best fitting and most efficient
model [2].

All values were expressed as mean ± SD. The CSF and
TvC functions with and without surround stimuli were
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Figure 4: Possible mechanisms of surround suppression effect on neuronal contrast sensitivity predicted by PTM. Each panel shows how
TvC curves at two performance criteria would change during surround suppression for changes in one of three PTM parameters where
Aa represents internal additive noise (a), Af represents external noise exclusion (b), and Am represents multiplicative noise (c). In all
three panels, blue curves represent TvCs from the center-only group, whereas red curves represent TvCs from the center-surround
group. Solid lines represent less stringent performance criteria (70.7%); dotted lines represent more stringent performance criteria
(79.4%). Arrows represent the hypothetical size and direction of change in performance affected by surround suppression.
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compared using ANOVA and post-hoc test. All fitting was
performed in MATLAB.

3. Results

3.1. Analysis of RF Properties and Surround Suppression
Strength. A total of 93 V1 neurons from four cats were
recorded and analyzed in this study. As shown by the fitting
of DoG function to the circular grating size-response tuning
curves, 61 neurons (NSS) exhibited an evident surround
suppression, 24 neurons (NOS) had no surround suppres-
sion, and 8 neurons (NSF) displayed a facilitated response
to expanding surround stimuli (Figure 1). This result was
consistent with previous observations [2, 13, 64]. Based on
the DoG function fitting, we, respectively, estimated neu-
rons’ cRF diameter corresponding to the maximum response
(for NSS cells) or 95% of the saturation response (for NOS
cells) as well as the diameter of sRF outer boundary corre-
sponding to the asymptotic response in the size-tuning
curves. The mean cRF diameters of NSS and NOS neurons
were 5:83° ± 1:48° and 5:57° ± 1:32°, respectively. The mean
sRF outer boundary diameter of NSS neurons was 12:28° ±
2:24°. Based on calculation of Eq. (2), the mean surround sup-
pression index (SI) of NSS neurons was 0:21 ± 0:11 (Table 1).

Previous studies reported that there is a small region
between the cRF outer boundary and sRF, where annular
grating stimuli alone can elicit visually evoked response
[2]. We also examined this responsive region for NSS and
NOS by examining neuronal responses to annular grating
stimuli with increasing inner diameters (Figure 1). Based
on the DoG function fit to annular grating size-response
tuning curves, our results showed that both NSS neurons
and NOS neurons had this responsive region, with a mean
minimum inner diameter of 8:73° ± 2:24° and 9:10° ± 1:00°,
respectively (Table 1), which were similar to previous
reports [2, 64].

3.2. Effects of Surround Suppression on Neuronal Contrast
Sensitivity. To examine how surround suppression affected
neuronal contrast sensitivity (CS) in response to visual stim-
uli in cRF, we first compared the CS of all studied neurons to
visual stimuli without external noise mask in cRF with and
without the presence of annular stimuli in sRF. As shown
in the scatter plots, the CS value of most NSS neurons was
reduced at both low and high performance criteria with
surround stimuli relative to without surround stimuli
(Figures 5(a) and 5(b)). Paired t-test indicated that the mean

CS of NSS neurons with surround stimuli was significantly
decreased at two performance criteria when compared with
those without surround stimuli (p < 0:01 at both 70.7% and
79.4%). In contrast, the CS value of NOS neurons with and
without the presence of surround stimuli was basically iden-
tical or quite close (Figures 5(c) and 5(d)). Paired t-test
showed that the mean CS had no significant change at two
performance criteria with surround stimuli versus without
surround stimuli (p > 0:05 at both 70.7% and 79.4%).

To explore if the surround suppression effect on neuro-
nal CS depended on the strength of the surround suppres-
sion, we examined the correlation between the CS
alterations and the surround suppression index (SI) of SS
neurons. Our results showed that the amplitude of reduction
in neuronal CS after surround suppression was not signifi-
cantly correlated with the corresponding SI value at both
performance criteria levels (70.7%: r = 0:1658, p = 0:1905;
79.4%: r = 0:2453, p = 0:0507) (Figures 6(a) and 6(b)). This
result suggested that the effect of the surround suppression
on neuronal CS might not depend on surround suppression
strength but was likely related to the mechanisms of sur-
round suppression.

Because previous studies found that contrast sensitivity
is correlated with stimulus SFs at both neuronal and percep-
tual level [27, 28, 30, 65], we thus compared the SS effects on
the CS of NSS neurons with different preferred SFs. The
neuronal CSF (CS vs. SF) functions at both performance cri-
teria showed an inverted “U” shape with the CS maximizing
at about 0.4 cpd but reducing toward lower and higher SFs
(Figures 7(a) and 7(b)), which were basically similar to pre-
vious reports [28, 32, 51]. Two-way ANOVA showed that
the surround suppression significantly reduced the CS
of NSS neurons at both performance accuracies (70.7%:
F ð1,118Þ = 50:66, p = 0:0001; 79.4%: F ð1,118Þ = 40:8, p =
0:0001), and the effect exhibited a significant dependence
on the preferred SFs (70.7%: F ð4,118Þ = 10:48, p = 0:0001;
79.4%: F ð1,118Þ = 8:11, p = 0:0001). Further one-way
ANOVA displayed that the reduction of CS in center-only
condition versus center-surround condition varied signifi-
cantly among groups of neurons with different SFs (70.7%:
F ð4,315Þ = 2:46, p = 0:0457; 79.4%: F ð4,315Þ = 5, 21, p =
0:0004). Relative to center-only condition, the mean CS of
neurons with preferred SF of 0.1, 0.2, 0.4, 0.6, and 0.8 in
center-surround condition reduced by 27.03%, 30.56%,
18.15%, 20.07%, and 17.97% at 70.7% performance accuracy
and 29.92%, 27.02%, 15.83%, 18.42%, and 18.11% at 79.4%
performance accuracy, respectively.

Table 1: RF properties of different types of neurons, including neurons with evident surround suppression (NSS), neurons with no surround
suppression (NOS), and neurons with surround facilitation (NSF). Cell N , cRF, sRF, and SI denote neuronal number, center receptive field,
surround receptive field, and surround suppression index, respectively.

Type Cell N cRF size [°] sRF outer diameter [°] sRF inner diameter [°] SI

NSS 61 5:83 ± 1:48 12:28 ± 2:24 8:73 ± 2:24 0:21 ± 0:11
NOS 24 5:57 ± 1:32 NA 9:10 ± 1:00 NA

NSF 8 NA NA NA NA

NA represents values that are not measureable.
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3.3. Mechanisms of Surround Suppression Effect on Neuronal
Contrast Sensitivity. To identify the mechanisms of surround
suppression effect on the CS of different neuronal popula-
tions, we first compared the threshold contrast (TC) versus
external noise contrast (TvC) functions from neurons with
and without surround stimuli at different SFs (Figure 8).

Three-way ANOVA (surround suppression × SF × external
noise level) showed that the surround suppression signifi-
cantly increased TC at two performance criteria (70.7%:
F ð1,640Þ = 182:776, p < 0:0001; 79.4%: F (1,640) = 272.74,
p < 0:0001); the main effect displayed no interaction with
external noise level (70.7%: F ð4,640Þ = 1:432, p = 0:222;
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Figure 5: Scatter plots showing the neuronal contrast sensitivity value with surround stimuli (center-surround) versus without surround
stimuli (center-only) at performance accuracy of 70.7% (a, c) and 79.4% (b, d) for neurons showing surround suppression effect (a, b)
and no surround suppression effect (c, d).
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Figure 6: Scatter plots showing the correlation between the reduction amplitude (%) in the contrast sensitivity (CS) and surround
suppression strength of all NSS neurons at performance criterion 70.7% (a) and 79.4% (b).
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79.4%: F ð4,640Þ = 0:621, p = 0:648) but was significantly
dependent on SF (70.7%: F ð4,640Þ = 4:135, p = 0:003;
79.4%: F ð4,640Þ = 5:508, p < 0:0001).

To quantify the SS effect on the TvC functions at the sys-
tem level, we fitted TvCs of neuronal populations with and
without surround stimuli at different preferred SFs using
the perceptual template model (PTM) (Eq. (3)). This model
had systematically characterized visual attention and percep-
tual learning effects in previous studies [38, 42, 44–46, 58].
By adjusting the coefficients Aa, Af , and Am in Eq. (3), we

constructed a total of eight models, including one full model
and seven reduced models, each of which represents a possi-
ble mechanism of surround suppression effect predicted by
PTM. Our modeling analysis identified two different mech-
anisms of SS effect for neurons at lower (0.1 and 0.2 cpd)
and higher (0.4-0.8 cpd) SF domains.

For all observers and their averages, the best fitting
model to the TvC functions (r2 > 0:973) of neurons with
preferred SF of 0.1 and 0.2 cpd identified a combined mech-
anism of SS effect (S-Figure 1 and S-Table 1): (1) stimulus
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Figure 7: The contrast sensitivity versus stimulus spatial frequency (CSF) functions of NSS neurons (n = 61) measured at performance
accuracy of 70.7% (a) and 79.4%, respectively, (b) with (red color) and without (blue color) surround stimuli. The blue and red solid
curves were the best fits of CSFs with a Gauss function.
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threshold at 70.7% and 79.4% performance accuracy with (red color) and without (blue color) the presence of surround stimuli. The
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suppression (equivalent to internal additive noise elevation),
as indicated by Aa of 2:575 ± 1:997, 2:607 ± 1:453, and
2:521 ± 1:996 in SF 0.1, SF 0.2, and their averages and (2)
increased external noise admission, as indicated by Af of
1:479 ± 0:443, 1:327 ± 0:218, and 1:494 ± 0:509 in SF 0.1,
SF 0.2, and their averages. This model (Aa and Af ) was
statistically identical to the full model (all p > 0:5) while all
the other reduced models were statistically different from
the full model (all p < 0:05). However, for all observers and
their averages, the best fitting model to the TvC functions
(r2> 0.92) for neurons with preferred SF of 0.4, 0.6, and
0.8 cpd showed that three models (Aa, Aa&Am, and Aa&Af )
were statistically equivalent to the full model (all p > 0:5)
while the rest of the reduced models were significantly
different from the full model (all p < 0:05) (S-Figure 1 and
S-Table 1). This result suggested that SS effect on neuronal
TvCs at SF 0.4, 0.6, and 0.8 cpd could be caused by the only
mechanism of stimulus suppression (equivalent to internal
additive noise elevation) indicated by the change of Aa.

3.4. Neuronal Mechanism of Surround Suppression. To fur-
ther identify the neuronal mechanism of SF-dependent SS
effect revealed by the PTM modeling, we fit the contrast
response function of each NSS neuron with three models

adapted from the Michaelis-Menten equation (see Material
and Methods), including the response gain, contrast gain,
and response subtraction model constructed by a previous
study [2]. As shown by the fitting of a sample neuron
(Figure 9), the response gain model accounts for SS effect
through a divisive change in the neuron’s response by a verti-
cal scaling of the contrast response(Figure 9(a)); the contrast
gain model accounts for influence effect through a horizontal
shift of the contrast response function (Figure 9(b)); the sub-
traction model denotes the SS influence with a subtractive
change of a uniform reduction of contrast response function
(Figure 9(c)). This neuron is best characterized by the contrast
gain model as indicated by the lowest χ2

N value.
The fitting result of 61 NSS neurons, including 36 neu-

rons with lower preferred SFs (0.1 and 0.2 cpd) and 25 neu-
rons with higher preferred SFs (0.4-0.8 cpd), was illustrated
by plotting the value of χ2

N from three models using an equi-
lateral triangle with each side representing one of the three
models (Figure 10). A point at the center of the triangle rep-
resented a neuron that was equally best fitted by all three
models, and a point’s varied distance to each side of the tri-
angle was proportional to the χ2

N value of the corresponding
model. The best fitting model for a neuron was represented
by a point closest to the corresponding side of the triangle.
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Figure 9: Responses and fits of a sample neuron to models accounting for surround suppression through different mechanisms. Red and
blue circles and curves represent the contrast response functions and the model fitting curves with and without surround stimuli.
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Figure 10: A three-way comparison of the three models for surround suppressive neurons with low preferred SFs (a) and high preferred SFs
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Among 36 neurons in the low SF group, 10 neurons were
best fitted by the response gain model, 21 neurons by the
contrast gain model, and only 5 neurons by the subtraction
model. Among 25 neurons in the high SF group, 15 neurons
were best fitted by the response gain model, 7 neurons by the
contrast gain model, and only 3 ones by the subtraction
model. Therefore, SS effect on the contrast response function
of neurons with low and high SFs was also varied: neurons
with low SFs were mostly characterized by the contrast gain
model, whereas neurons with higher SFs were chiefly charac-
terized by the response gain model.

4. Discussion

4.1. Effect of Surround Suppression on the Contrast Sensitivity
of V1 Neurons. Surround suppression (SS) is a phenomenon
that a neuron’s response to stimuli in the classic receptive
field (cRF) is suppressed by a simultaneous stimulation in
the region beyond cRF. For SS that has been widely reported
in neurons across different hierarchical stages of visual infor-
mation processing [9, 66, 67], it is commonly considered
that SS plays a critical role in perceptual identification of
objects from the background [8, 10, 68–71]. Although the
characteristic of SS effects on neuronal response has been
studied extensively [7, 9, 13, 33, 64, 72–76], the mechanisms
that SS mediates visual information encoding in the cRF are
still not fully understood [3, 22, 69, 77–83].

Luminance contrast detection is critical for perceptual
identification of object’s shape, size, and motion states [20,
21]. Psychophysical experiments report that contrast detec-
tion of contours in the central RF is impaired by contextual
stimuli in the background [22, 84–86]. However, studies at
the cellular level show that the SS effects on the response
contrast sensitivity of neurons in the visual cortex are
diverse. For example, some studies report that SS facilitates
neuronal response to low-contrast visual stimuli but inhibit
the response to high-contrast stimuli presented in the cRF
[13, 77, 87]. Based on the contrast-response function fitting,
some authors suggest that SS may modulate neuronal con-
trast sensitivity through different effects of response gain,
contrast gain, and response subtraction [2, 23, 35]. There-
fore, it is still unclear how SS modulates neuronal contrast
encoding in the visual cortex. Previous studies have shown
that perceptual contrast sensitivity is closely correlated with
neuronal response contrast sensitivity [26–28, 30], and both
of them depend on stimulus spatial frequencies (SFs) [24, 25,
27–32]. Moreover, a recent study report that the SS strength
of V1 neurons is also positively correlated with their pre-
ferred SFs [33]. Therefore, it is speculated that SS effect on
the response contrast sensitivity may vary among neuronal
populations with different preferred SFs. We examined this
possibility in the current study by comparing the SS effects
on the contrast sensitivity between V1 neurons with differ-
ent preferred SFs and found that SS had a larger effect on
neurons with lower SF domain than those with higher one.
Our results suggest that the SS influence on stimulus con-
trast encoding may depend on neuronal populations with
different SFs. It is unknown if SS maps in the visual cortex
have a correlation with the SF maps [88]; although, it has

no evident relationship with the orientation maps [89]. Fur-
ther studies are needed to clarify this issue.

4.2. Mechanisms of Surround Suppression. Although a con-
siderable number of studies at the cellular level have shown
that surround suppression (SS) may depend on multiple
information encoding from feed-forward, lateral, and feed-
back connections [14, 66, 76, 80, 81, 90–93], the underlying
mechanisms are not fully understood [3, 19]. For example, it
is unclear whether SS results from an enhanced inhibition or
a weakened excitation or both in the neural circuitry [3].
Some studies suggest that SS is primarily due to a reduction
of cortical excitation [15, 94], which is consistent with the
psychophysical experiment reporting that N-methyl d-
aspartate receptor hypofunction reduces visual contextual
integration [95]. However, other studies suggest that SS is
caused by alterations of intracortical inhibition [16, 96–99],
and still others show that SS can be affected by top-down
influence through a disinhibition mechanism based on the
interaction between different types of interneurons and
excitatory pyramidal neurons [10, 18, 100]. The mechanisms
of SS effect on neuronal contrast sensitivity are also diverse
at the cellular level. Based on the contrast-response function
fitting of individual neurons, SS may affect neuronal contrast
sensitivity through response gain, contrast gain, and
response subtraction [2, 23, 34, 35]. To reconcile these dis-
agreements, it is necessary to analyze SS effects at the system
level by treating the visual system as a perceptual template
with signal input and perceptual output.

This study used the external noise paradigm and the per-
ceptual template model (PTM) to examine the SS effect on
the contrast threshold of V1 neurons with different preferred
SFs. Based on PTM analysis of threshold versus external
noise contrast (TvC) functions, we showed that surround
suppression affected neuronal TvCs through different mech-
anisms: an increased internal additive noise and an
enhanced impact of external noise for neurons with lower
SFs (0.1-0.2 cpd), but only improved internal additive noise
for neurons with higher SFs (0.4-0.8 cpd).

To further examine if the SF-dependence of SS effect
occurred at the cellular level, we fitted the contrast response
functions of NSS neurons with low and high SFs using three
different models constructed previously [2, 23]. Our results
showed that the SS effect on neuronal contrast response
functions also displayed a variation between neurons with
low and high SFs. The SS effect for neurons with low SFs
was mediated dominantly through a reduced contrast gain,
whereas the SS effect for neurons with high SFs was achieved
dominantly through a lowered response gain.

Although the mechanism of SS effect on neuronal con-
trast sensitivity exhibited a dependence on neuronal pre-
ferred SFs both at the system (or perceptual template) level
and the cellular level as revealed by PTM analysis and
contrast-response function fitting, however, how these two
types of mechanisms relate to each other is currently
unclear. According to perceptual learning effects in visual
contrast detection, some studies reported a combined mech-
anism of learning effect in stimulus enhancement (or equiv-
alent internal additive noise reduction) and external noise
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exclusion at the perceptual template level [59, 101], whereas
one physiological study found the learning effect in the con-
trast gain for neurons in the V1 cortex [51]. A similar mech-
anism is also observed in the visual attention effect as well as
spatial frequency-dependent and individual-dependent
effect on neuronal contrast sensitivity in the early visual
areas [20, 30, 102]. Furthermore, our recent studies show
that suppression of top-down influence decreases the neuro-
nal contrast sensitivity in the V1 cortex. This top-down sup-
pression may be mediated by a stronger effect of internal
noise elevation than of external noise admission at the per-
ceptual template level [48], whereas it may occur through a
larger effect in the reduction of response gain than of con-
trast gain on the contrast-response function of V1 neurons
[32], and this top-down influence in response gain may
relate to alterations in excitatory glutamatergic neurotrans-
mission [103–105]. Finally, recent studies suggest that
increased GABAergic inhibition may underlie noise filtering
in the visual signal perception [106, 107]. Taken together, it
is possible that the network mechanism of surround sup-
pression in the internal additive noise plus external noise
exclusion observed for low-SF neurons in this study may
involve a reduction of both excitation and inhibition in the
local neural circuit, which chiefly causes a lowered contrast
gain for neuronal contrast-response functions, whereas the
single mechanism of surround suppression in the internal
additive noise observed for high-SF neurons may relate pre-
dominantly to a reduction of excitation in the local neural
circuit, which mainly results in a decreased response gain.
We are designing a new experiment to examine this possibil-
ity by simultaneously observing changes at the perceptual
template level and cellular level after modifying excitation-
inhibition balance through administration of agonists or
antagonists of glutamatergic and GABAergic receptors.

5. Conclusion

In conclusion, surround suppression significantly decreased
the contrast sensitivity of V1 neurons, but the effect was
mediated by varied mechanisms for different neuronal pop-
ulations. For neurons with low preferred SFs, the surround
suppression effect may occur by improving both internal
additive noise and the impact of external noise at the system
level, which may cause a larger reduction in neuronal contrast
sensitivity through a lowered contrast gain. By contrast, for
neurons with high preferred SFs, the surround suppression
may be mediated only by increasing internal additive noise
at the system level, whichmay result in a less reduction in neu-
ronal contrast sensitivity through a decreased response gain.
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