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Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their
families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a
plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques
such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring
improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation.
This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects,
angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on
neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been
demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to
reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral
functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have
limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients’ characteristics
(i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were
obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and
benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to
improve the patients’ recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular
and cellular events underlying their effects as well as their clinical implications.

1. Introduction

Stroke represents one of the main causes of death and a major
cause of disability worldwide, with most survivors reporting a

decrease in life quality [1, 2]. With an annual increase in its
incidence, stroke involves significant economic costs both
direct and indirect [3, 4]. As most patients present far beyond
the therapeutic window for thrombectomy/thrombolysis,
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rehabilitation is their only option to improve physical, cogni-
tive, communicative, emotional, and social status [2, 5]. A
plethora of rehabilitation programs aimed to improve motor
function, balance, walking, and daily living activities have been
developed and are being used by healthcare professionals. For
example, thousands of repetitions of reach-to-grasp move-
ments are necessary to have an impact on the functional recov-
ery of the upper limb after stroke [6]. Specific recovery
strategies seem to work better than others depending mainly
on the extent of the infarct area. As such, patients who do
not suffer a visual impairment can be subjected to movement
performance therapies using mirrors, video, or graphical repre-
sentations of three-dimensional motion capture as feedback [7,
8]. The major aim of any physical therapy is to promote neuro-
plasticity and motor recovery after a stroke [9]. The amount
and intensity of exercise, personal implication and/or determi-
nation, and task-oriented training play a crucial role in the out-
come [10]. However, physical recovery is highly dependent on
the severity of the stroke. A severe stroke (significant brain tis-
sue damage) induces multiple neurological impairments lead-
ing to a considerable loss of function [11]. For those patients,
rehabilitation is particularly focused on both function restora-
tion (not always possible or often incomplete) and reduction
of immobility-related complications, a burden for caregivers
of severe stroke survivors.

With classical rehabilitation having certain limitations in
severe cases of stroke, modern techniques such as transcranial
magnetic stimulation (TMS) and transcranial direct current
stimulation (tDCS) started to make their way as an alternative
or complementary method in impacting the consequences of
stroke. Being relatively inexpensive and easy to administer
[12], in recent years, these noninvasive brain stimulation
(NIBS) techniques were applied for the treatment of a variety
of conditions in different specialties such as psychiatry, neu-
rology, and rehabilitation. In poststroke rehabilitation, they
seem to bring improvementsmainly through a cellular process
of neuromodulation [13–15], as they counteract the molecular
and cellular mechanisms involved in the pathophysiology of
cerebral ischemia [16–20]. These NIBS techniques exert their
neuroprotective [19–22] or neuroregenerative [23–26] charac-
teristics principally by modifying brain excitability [18,
27–29]. However, their effects were not always favorable, and
they seem to be influenced by the type of protocol used [21,
28] or by the heterogenous capacity of individuals to induce
M1 plasticity, both in healthy and poststroke-treated patients
[30–32]. Regarding protocols, a meta-analysis on 445 stroke
patients evidenced that bilateral transcranial electric stimula-
tion and cathodal tDCS over the contralesional hemisphere
were superior to other stimulation montages/patterns/proto-
cols [33]. Promising results were also obtained with different
protocols of NIBS applied to poststroke survivors. A meta-
analysis of more than 600 subacute and chronic poststroke
patients revealed the beneficial effects of combined TMS and
mirror therapy and tDCS and mirror therapy on upper
extremity dysfunction [34].

The moment at which NIBS is applied after stroke affects
patients’ recovery. For example, encouraging results were
observed after repetitive tDCS, with amelioration of the

motor and somatosensory functions in patients during the
first-month poststroke [35]. Interestingly, a similar positive
outcome was also reported for chronic patients [34, 36, 37]
or even severely ill patients [38]. Clear benefits were
observed on motor function with TMS being applied during
the acute phase of stroke [39–41], while more diverging
results were obtained in the subacute or chronic phases by
using only NIBS [42–44]. Another beneficial result of NIBS
on poststroke patients is the reduction in depression scale
scores [45–47] and improvement of aphasia [48], episodic
memory, working memory [49], or attention [50, 51].

In this review, we will focus on reported experimental
and clinical findings underlying the molecular, cellular, and
clinical reasoning behind modern poststroke rehabilitation
strategies. The present work reflects both our own experi-
ence and literature search online using resources from
PubMed, Clarivate, and other scientific databases.

2. Transcranial Electric Stimulation Overview

Transcranial electric stimulation (TES) is a noninvasive
method used to modulate brain functions (i.e., motor, sen-
sory, and cognitive) with applicability to many neurological
conditions such as stroke [52], multiple sclerosis [53, 54],
epilepsy [55], Alzheimer’s disease [56, 57], and Parkinson’s
disease [58, 59]. It uses scalp electrodes to deliver positive
(cathodal) or negative (anodal) currents to specific cortical
regions. The low intensity of the current (1-2mA) does not
trigger an action potential but rather alters neuronal excit-
ability by modifying the membrane polarization [18].
Anodal stimulation generates depolarization, while cathodal
stimulation results in hyperpolarization [27, 60]. The main
effect of TES can be the modulation of ongoing neural oscil-
lations [61, 62] or neuroplasticity induction [63, 64]. Thus,
the neurophysiological effects of TES can be classified as
immediate [65] and long-lasting [66]. While immediate
effects are due to changes in synaptic activity level and neu-
ronal membrane properties [62, 65], long-lasting effects out-
last the period of stimulation and are generated through
modifications of intracellular calcium dynamics and mecha-
nisms of synaptic plasticity supporting long-term potentia-
tion (LTP) or long-term depression (LTD) [63, 64].

In practice, three different approaches to TES are known:
transcranial direct stimulation (tDCS) [18, 67], transcranial
alternating current stimulation (tACS) [68, 69], and trans-
cranial random noise stimulation (tRNS) [70]. The main dif-
ference between these three approaches lies in the way the
current is delivered. In tDCS, the electrical current flows
unidirectionally from the anode to the cathode. In tACS,
the current flows sinusoidally with a particular frequency
and stimulation amplitude from the anode to the cathode
in one half-cycle and in the reverse direction in the second
half-cycle. In tRNS, alternating current oscillates at random
frequencies [71, 72]. Generally, two protocols of tDCS are
used for the treatment of stroke. Unilateral tDCS involves
the placement of an active electrode, either anodal or cath-
odal, over the brain area (i.e., primary motor cortex-M1)
with a contralateral cathodal or anodal supraorbital refer-
ence electrode. Dual tDCS is a technique used by placing
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both electrodes simultaneously over the hemispheres: the
cathode is placed over the M1 of the nonlesioned hemi-
sphere, and the anode is placed over the M1 of the lesioned
hemisphere [73].

2.1. Experimental Data Supporting the Therapeutic Use of TES.
Studies done on animal stroke models showed that TES pro-
vides neuroprotection [17, 21, 22, 74–76] by attenuating some
of the ischemia-induced cerebral injury mechanisms such as
glutamate excitotoxicity [77–80], neuroinflammation [81–83],
oxidative stress [84–86], blood-brain barrier dysfunction [87,
88], apoptosis [89, 90], autophagy [91–94], and cortical spread-
ing depression [95, 96]. In the subacute and chronic phases of
ischemic stroke, the neuroregenerative effects of this noninva-
sive brain stimulation [14, 23, 62, 97, 98] are more prominent
and most likely reflect enhancement of neurogenesis [24, 99],
synaptogenesis [100, 101], angiogenesis [17], and neurotrans-
mitter metabolism [102–104]. In many clinical studies, acute
and long-term treatment with TES is proved safe and effective
in improving functional outcomes [36, 105–107].

2.1.1. Cerebral Molecular Response to TES. The exact molecular
mechanism by which TES exhibits beneficial effects in post-
stroke patients is still largely unknown (Table 1). Mounting evi-
dence shows that, most likely, TES does not have a singular
effect that stimulates recovery but rather influences many pro-
cesses such as astrocytic calcium and glutamate pathways
[108] and reduced the number NMDA receptor 1 (NMDAR1)
in the hippocampus [109] resulting in a decrease spontaneously
of peri-infarct depolarization (PID). The direct consequence of
all themolecular effects adds to twomain effects. The first is that
cathodal tDCS (C-tDCS) decreases the DNA fragmentation
and lowers the number of Bax- and caspase-3-positive cells,
with a simultaneous increase in Bcl-2 protein expression and
Bcl-2/Bax ratio, both reliable markers for the antiapoptotic
pathways [109]. The second is that C-tDCS lowers the expres-
sion of stress proteins and suppresses global protein synthesis,
thereby providing neuroprotection [22, 110] by reducing neu-
ronal activity, and thus, it decreases cell metabolism, thereby
providing neuroprotection [109] and promoting cell survival
after an ischemic lesion. The main molecular pathway involved
in in this process is inhibition of caspase-3-dependent apoptosis
that seems to be promoted by TES-dependent activation of
brain-derived neurotrophic factor (BDNF) and phosphoinosi-
tide 3-kinase (PI3K)/Akt/mammalian target of rapamycin
(mTOR) pathway [17, 111, 112]. Molecular markers of inflam-
mation, such as hippocampal levels of IL-1b and TNF-a, were
found to be decreased, after C-tDCS, in MCAO mice [109].
Likewise, rodents subjected to C-tDCS or A-tDCS had
increased levels of superoxide dismutase (SOD) and decreased
malondialdehyde (MDA - a membrane lipid peroxidation
marker), thus attenuating the oxidative stress induced by cere-
bral ischemia [109].

The consequences of electric stimulation (ES) on the
molecular mechanisms also come with functional changes.
One of the most interesting observations was the change in
membrane polarity induced by direct current stimulation
(DCS), which, in turn, modulates Ca2+ influx through activa-
tion or inhibition of NMDA receptors [102]. This modulation

can activate then the enzyme cascades that add or remove glu-
tamatergic AMPA receptors on the postsynaptic membrane,
thus strengthening or weakening synaptic connections [113].
The capacity of DCS to influence the strength of neuronal con-
nections has a direct effect on LTP. In vitro experiments done
on brain slices investigating the connection strength between
pyramidal cells of the CA3 hippocampal region and neurons
of the CA1 area were able to show that anodal DCS markedly
increases LTP, whereas cathodal DCS reduces it. These effects
are most likely explained by the increase in Zif268- and C-fos
protein-positive cells found in the CA subregions after anodal
and cathodal stimulation [114]. Apart from the above-
mentioned neuroplastic effects, the GABAergic system seems
to play a role in tDCS-induced plasticity. Simultaneous
administration of lorazepam (a GABA receptor agonist) to
healthy subjects caused a reduction in neuroplastic excitability
induced by anodal tDCS in the early phase and an enhance-
ment of it in the late phase [103]. As for synaptic plasticity
mediated by BDNF, in vivo studies support its enhancement
by DCS [115, 116], while an in vitro experiment showed the
opposite effect [114]. Neuroprotection following ES can be
enhanced through the suppression of autophagy, another dam-
aging effect excessively triggered by acute and severe cerebral
ischemia [117]. The reperfused rat somatosensory cortex that
was subjected to ES showed an upregulation of P62 coupled
with the suppression of LC32, two apoptotic markers that vary
according to the autophagic flux. [111].

At a molecular level, an early A-tDCS application was
shown to increase the expression of microtubule-associated
protein 2 (MAP-2) and growth-associated protein 43
(GAP-43). This increase directly impacts dendritic plasticity,
axonal regrowth, and synaptogenesis both in the ischemic
penumbra and in the contralateral cortex with a measurable
functional recovery assessed by (improved Barnes maze per-
formance, motor behavioral index scores, and beam balance
test) [101]. After global ischemia, A-tDCS increased the
expression of postsynaptic density protein 95 and synapto-
physin both in the cortex and hippocampus with beneficial
effects on recovery assessed by quantitative electroencepha-
logram, neurological deficit score, and 96 h survival [118].

2.1.2. Cerebral Cellular Response to TES. It is not surprising
that all molecular changes following ES will also elicit a cellular
response. One of the most important cellular consequences of
TES is an increase in neurogenesis both in healthy [23] and
injured central nervous system [24, 99, 119]. Research data
showed that TES (subconvulsive train of 30mA, 60 pulses/
sec, 0.5ms pulse width, 1 s duration, and in total for 5 s) during
the subacute phase of stroke was followed by an increase in the
number of BrdU+/tubulin beta III+ cells in the infarct core.
The same stimulation elicited increased subventricular (SVZ)
ratio of BrdU/DCX+ cells and an increase in the number of
ipsilateral hippocampus neurons positive for doublecortin
(DCX) [24] (Figure 1). Other studies showed that MACO rats
subjected to C-tDCS (500μA, 15 minutes, once per day for 5
days in the acute and 5 days in the subacute phase) were able
to evoke an increase in the Nestin+/Ki67+ andNg2+ cells in the
SVZ [99] while A-tDCS increased number of DCX+ cells in
the SVZ, 10 days after stroke [119].
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The generation of new brain cells after TES may explain
the increase in its structural, functional, and connective reor-
ganization. Increased structural neuroplasticity after stroke,
evaluated by the density of dendritic spines in the mouse
cerebral cortex, was reported after daily sessions of A-tDCS
over the ipsilesional motor cortex paired with C-tDCS stim-
ulation of the contralesional motor cortex. Significant
improvement in motor function, assessed by beam walking
test scores, was observed in the tDCS group compared to
the MCAO group [100].

After alteration of inflammatory molecular pathways,
MCAO receiving mouse C-tDCS showed reduced levels of
macrophage activation markers (CD68+ cells), microglia
(Iba1+ cells), lower astrogliosis (GFAP+ cells), less neutro-
phils (MPO+), and mononuclear cells (CD45+) in the ische-
mic penumbra of the cerebral cortex [17, 21, 111].
Interestingly, MCAO mice that received anodal tDCS (A-
tDCS) treatment had an increase in CD45+ and MPO+ cells
around the ischemic cortex and in the striatum [21].

An extensive cerebral vasculature is necessary for the
support of these neuroprotective and neuroregenerative
effects. Thus, TES was shown to enhance angiogenesis in ani-
mal stroke models through the increased number of
laminin-positive vessels in the ischemic penumbra and
upregulation of vascular endothelial growth factor (VEGF)
[17]. On the other hand, the effects of TES on the postis-
chemic blood-brain barrier (BBB) are conflicting. Thus,
anodal stimulation amplified the BBB damage with a subse-
quent increase in edema and ischemic lesion volume proba-
bly caused by the accumulation of endogenous IgG in the
ipsilateral ischemic hemisphere compared to the contralat-
eral healthy hemisphere and the significant disruption of
blood vessel tight junctions [21]. Also, in healthy rat, the
brain stimulated with A-tDCS transiently enhanced the per-
meability of the BBB through activation of nitric oxide syn-
thase, disruption of the endothelial glycocalyx, basement
membrane, and the tight junctions, as well as the increase
of the gap width between endothelial cells and basement

membrane [120]. Some of these effects were also found in
an in vitro study [121]. However, C-tDCS applied to stroke
rat models reduced the ischemic volume, brain edema [21],
and nitric oxide synthase level [109]. The integrity of tight
junctions after C-tDCS was similar to that of nonstimulated
animals, but the IgG leakage was lower compared to both the
sham and A-tDCS groups [21].

2.2. Clinical Studies Using TES. Several clinical studies investi-
gated the effects of tDCS on motor recovery in stroke patients
(Table 2). In a pilot randomized controlled trial, a current of
1.5mA or sham current was delivered for 20 minutes hourly
over a period of 6 hours and 20 minutes in hyperacute middle
cerebral artery territory stroke patients receiving reperfusion
therapy (intravenous thrombolysis alone ormechanical throm-
bectomy with or without prior intravenous thrombolysis).
Although no major adverse effects (death or neurological dete-
rioration) were reported, the study found no difference
between the treated and sham groups. Although the results
were not satisfactory, patients receiving reperfusion therapy
and ES had smaller infarct volumes. The potential benefits of
C-tDCS in patients were also shown for patients with a
National Institute of Health Stroke Scale (NIHSS) score of
>10 or large vessel occlusion who showed improved functional
independence at 3-month poststroke [107]. The lack of a clear
benefit in this study was attributed to the fact that on a molec-
ular level, only certain C-tDCS protocols can reduce PID and
influence local neuronal networks [107, 122]. On the other
hand, C-tDCS exerts its inhibitory effects depending on the
organization of cortical neuronal arrangement (i.e., lissence-
phaly and gyrencephaly) [65]. Building on the partial success
of these findings, two clinical trials, TESSERACT and TESSER-
ACT-BA, were approved. The TESSERACT study is testing the
use of incremental C-tDCS doses in patients ineligible for
reperfusion therapies (URL: https://www.clinicaltrials.gov and
unique identifier: NCT03574038) while the TESSERACT-BA
study is investigating tDCS in acute stroke patients with sub-
stantial salvageable penumbra due to a large vessel occlusion

Control

(a) (b) (c)

NeuN/DCX/BrdU
tDCS

Contra
0

2

4

6
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Control
tDCS
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D
CX
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Figure 1: Increase of hippocampus neurogenesis in poststroke mice 14 days after receiving tDCS. (a) Compared to controls, in ES rats, we
were able to identify a hippocampal increase in the number of (b) DCX (yellow arrows) and BrdU cells (white arrows). (c) This effect was
seen in both the ipsilateral (Ipsi) and contralateral (Contra) hippocampus.
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Table 2: Main clinical outcomes after transcranial electric stimulation.

Model
Stroke
stage

Technique Types of protocol Reported results Clinical outcome
Possible
signalling
pathway

Data

Clinical
data

Healthy
volunteers

A-tDCS
and C-
tDCS

Continuous currents
for 4 s (excitability

shifts during tDCS), 5
(short-lasting

excitability shifts), 9
(C-tDCS), or 11min
(A-tDCS), with an
intensity of 1.0mA.
A-tDCS was repeated
20min after the first

stimulation

A-tDCS can modulate
GABAergic inhibition

Anodal stimulation
enhances excitability,
cathodal stimulation

reduces it
enhancement of
neurotransmitter

metabolism

Might be due to
influences of
remote cortical
or subcortical
structures

Nitsche
et al., [103]

A-tDCS 1mA current,
with a ramp up time
of 10 s, held at 1mA
for 10min, and then
ramped down over
10 s. For sham
stimulation, the

current was ramped
up over 10 s and then
immediately switched

off

A-tDCS caused locally
reduced GABA, C-
tDCS caused reduced

glutamatergic
neuronal activity with
a highly correlated
reduction in GABA

A-tDCS - decreased
metabolism, C-tDCS -

intensive
neurotransmitter

metabolism

Reduced activity
of GAD-67, the
rate-limiting
enzyme in the
major metabolic
pathway for

GABA synthesis

Stagg et al.,
[104]

Acute

C-tDCS

A current of 1.5mA
or sham current

delivered hourly for
20min each, over a
period of 6 hours and

20min; C-tDCS
started before
completion of
recanalization
procedure in all

patients

Reduced infarct
volume of stroke
patients receiving
reperfusion therapy

Better motor
improvement and
more functional
independence at 3
months post stroke;
no major adverse
effects (death or
neurological

deterioration); no
statistical difference
between the treated
and sham groups

No data

Pruvost-
Robieux

et al., [107]

C-tDCS,
A-tDCS
and

bilateral
tDCS

Each patient received
10 sessions (5

consecutive days for 2
weeks) of real or sham
stimulation at 2mA
intensity and current
density equivalent to
0.05A/m2. For sham

stimulation, the
current was ramped
up over 30 seconds
and then turned off

No data

Significant motor
recovery sustained at
least three months

beyond the
intervention;

decreased risk of falls;
only in the bilateral

stimulation group was
reported an increase
in the lower limb’s

motor skills

Andrade
et al., [38]

C-tDCS
vs. A-
tDCS

A current of 2mA for
25min daily for 6

consecutive days over
the motor cortex hand

area

A-tDCS over the
affected hemisphere
may be as effective as

C-tDCS on the
unaffected

hemisphere to
enhance recovery after
acute ischemic stroke

Clinical
improvements not

only in the upper limb
but also in the lower
limb on the affected

side

Khedr et al.,
[106]

Chronic A-tDCS
Current (1mA)
remained on for

The effect outlasted
the stimulation period

Beneficial influence
on skilled motor

Hummel
et al., [105]
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before and after endovascular therapy (URL: https://www
.clinicaltrials.gov and unique identifier: NCT04061577). No
data had been reported prior to the writing of this review.

2.2.1. TES Influence on the Outcome of Acute and Subacute
Stroke. The use of tDCS was not duplicated in other small
clinical trials. Bihemispheric tDCS modulation in acute
stroke patients (48-96 h after stroke) for five continuous days,
40 minutes per day over the primary motor cortex (M1), did
not show any clinical benefit beyond the one achieved by the
physical therapy alone or through spontaneous recovery
[123]. However, some neurophysiological changes were
noted (i.e., decrease of the interhemispheric imbalance of
excitability and modulation of plasticity), but the lack of clin-

ical improvement was most likely caused by the inappropri-
ate inhibition of the unaffected hemisphere through A-
tDCS during the acute stage of stroke [124], as well as the
unsuitable tDCS parameters of stimulation [125]. Similarly,
A-tDCS applied over the affected motor cortex of acute
stroke patients (2mA for 20min daily for five consecutive
days) showed no significant improvement in NIHSS and
Fugl-Meyer scores compared to sham. The lack of efficacy
was also attributed to the imbalance of excitability generated
through this technique [126].

One targeted study investigated the potential of A-tDCS
to improve dysphagia in acute-subacute stroke patients with
unilateral ischemic infarction. It is reported that ES sessions
(2mA either twice daily for a total of 20 minutes or

Table 2: Continued.

Model
Stroke
stage

Technique Types of protocol Reported results Clinical outcome
Possible
signalling
pathway

Data

20min in the tDCS
session and for up to
30 s in the sham

session

functions of the
paretic hand in
patients suffering

from chronic stroke;
significant functional
improvement of the

paretic hand
compared with motor

therapy alone
Applied with the

anode positioned over
the ipsilesional M1
and the cathode over
the contralateral

supraorbital region for
20min (1mA); sham
current applied for

only 1min after which
it was slowly tapered
down to 0 for the
remainder 19min

Effects maintained 1
and 6 days after the
completion of the

training

No complications
were reported;
improved motor
performance

compared with motor
practice or with

practice combined
with either

intervention alone;

Celnik
et al., [126]

C-tDCS
and A-
tDCS

30min of 1.5mA
direct current with the
anode placed over the
ipsilesional and the
cathode over the

contralesional motor
cortex

Functional
reorganization of the
ipsilesional motor

cortex

No adverse effects
were observed;
improved motor

functions

Lindenberg
et al., [36]

Single session of
20min with 1.5mA
current. The anode
was over the M1
contralateral to the
paretic limb and the
cathode over the M1
contralateral to the
nonparetic limb
(current density
0.06mA/cm2)

Effects maintained for
3 weeks

Improved retention of
gains in motor

function

Might be
modulated
through

intracortical
inhibitory
pathways

Goodwill
et al., [127]

A-tDCS: anodal transcranial direct current stimulation; C-tDCS: cathodal transcranial direct current stimulation; GABA: γ-aminobutyric acid; GAD-67:
glutamate decarboxylase 67; tDCS: transcranial direct current stimulation.
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alternating with sham stimulation daily for a total of 20
minutes) performed along with standardized swallowing
over five days, starting from day 2 to 6 after stroke onset,
did not decrease aspiration risk assessed through Penetra-
tion and Aspiration Scale score. Since A-tDCS exerts its
effects mainly by modulation of activity in the other intact
hemisphere, the limitations, in this case, were most likely
due to the extent of damage to the corticobulbar tracts in
each case [127].

The use of tDCS on stroke patients during the subacute
period elicits diverging results. Six consecutive sessions (25
minutes at 2mA daily) of either C-tDCS over the unaffected
hemisphere or A-tDCS over the affected hemisphere admin-
istered in early subacute stroke patients seem to have clinical
improvements both in the upper and lower limb only after 6
sessions [106]. However, a stimulation of 2mA using A-
tDCS or C-tDCS combined with robot-assisted bilateral
arm training applied to subacute stroke patients (3 to 8
weeks from stroke onset) every workday for 6 weeks did
not have any additional effect compared to sham [128].

Although some minimal effects were reported, the general
consensus seems to be that DCS has a minimal impact on
acute and subacute stroke patients. This low efficacy could
be explained in several ways. First, a lack of standardization
in the way tDCS is applied in stroke patients and the optimal
timing of ES. Also, the current characteristics are still
unknown. Second, it could be that cellular effects seen in
rodent studies have only a limited impact on large lesions or
the effect is difficult to quantify in a clinical setting. Whatever
the case, the results reported by various clinical studies suggest
that some benefits exist and an improvement may be possible.

2.2.2. TES Influence on the Outcome of Chronic Stroke.While
the acute and subacute effects of tDCS are still debated, the
benefits of tDCS stimulation are far more obvious in chronic
stroke patients. Several studies showed motor improvement
after A-tDCS, especially in association with other recovery
strategies. Thus, A-tDCS (1mA for 20min on the affected
hemisphere) given at 1.9 to 8.9 years after stroke, preceding
motor therapy of the upper limb, was able to evoke a signif-
icant functional improvement of the paretic hand as mea-
sured using the Jebsen–Taylor Hand Function Test
compared with motor therapy alone. Furthermore, this effect
outlasted the stimulation period [105]. Even patients suffer-
ing a stroke up to 7.2 years prior to combined peripheral
nerve stimulation of the paretic hand (5 single pulses of
1ms duration delivered at 10Hz applied simultaneously
over the median and ulnar nerve at the wrist) and A-tDCS
applied over the ipsilesional primary motor cortex at an
intensity of 1mA for 20min showed an improved motor
performance, evaluated through the number of correct key
presses on a special keyboard containing only 5 keys as com-
pared with motor practice or with practice combined with
either intervention alone. This study also reported that the
effect outlasted the stimulation and training [129]. Bihemi-
spheric tDCS at 1.5mA for either 20min (current density
0.06mA/cm2) or 30min repeated in five sessions done on
patients that were subjected to physical/occupational ther-
apy also showed improvements in motor function in chronic

stroke patients. The effects were assessed by either Upper
Extremity Fugl-Meyer, Wolf Motor Function Test, or Motor
Assessment Scale, Tardieu Scale, and grip strength [36, 130].

3. Transcranial Magnetic
Stimulation—Short Introduction

Transcranial magnetic stimulation is another noninvasive
technique that is able to modulate brain activity already used
in different clinical settings. For example, TMS is used as a
treatment method for several psychiatric pathologies such
as depression [131, 132] or schizophrenia [133]. It is also
applied in some neurologic pathologies to improve the out-
come of different movement disorders [134, 135], stroke
[105], multiple sclerosis [136], Alzheimer’s disease [137],
and disorders of consciousness [138]. Extensive recent
reviews of repetitive TMS on specific poststroke conse-
quences, such as poststroke dementia [139] and poststroke
depression [140], have been made, and on the matter, we
encourage their reading for further in-depth knowledge.

As is the case with ES, in practice, TMS can also be applied
under different protocols. Depending on the applied protocol,
TMS can have different effects on brain excitability. Thus,
high-frequency repetitive TMS (HF-rTMS) (>1Hz) [28] and
intermittent theta burst stimulation (iTBS) [29] can increase
cortical excitability, while TMS protocols using low-
frequency repetitive TMS (LF-rTMS) (≤1Hz) [141] or contin-
uous theta burst stimulation (cTBS) [29] decrease it. One
major advantage of using TMS is that its effects last beyond
the stimulation period [142]. However, for accurate and
meaningful interpretation of TMS results, controls need to
be matched at least for age, height, and sex [143].

3.1. Experimental Data Supporting the Use of TMS in Stroke.
The molecular and cellular mechanisms through which TMS
exerts its effects on stroke are not fully elucidated (Table 3).
Although technically TMS is more difficult to use in an
experimental setup, especially in rodents that have a small
cortical volume, several studies were able to show changes
in molecular and cellular responses.

3.1.1. Cerebral Molecular Response to TMS. Extensive molec-
ular research found that cTBS reduces poststroke neuroin-
flammation by lowering the levels of cytokines associated
with infiltrating immune cells into the central nervous sys-
tem (i.e., CNTF, CX3CL1, IFN-r, IL-α, IL-1β, IL-1ra, IL-2,
IL-3, IL-6, IL17, and TNFα) or the cytokines related to endo-
thelial inflammation (i.e., CD54, CXCL9, CXCL10, and
CCL5) [19, 20]. Adding to this anti-inflammatory effect is
the attenuation of oxidative stress by reducing the NADPH
oxidase activity with subsequent reduction in MDA and 4-
hydroxynonenal (another marker of lipid peroxidation)
and increasing manganese-superoxide dismutase which
clears the free radicals generated by mitochondrial respira-
tion [20, 144, 145].

However, one of the most important molecular effects of
TMS is its influence of neurotransmitter metabolism. Post
TMS, different neurotransmitter levels increase or decrease
depending on the investigated region. For example, TBS

10 Neural Plasticity
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lowered the level of cerebellar glutamate in the extracellular
space of healthy rodents by increasing its uptake from the
synaptic cleft and its turnover in neurons. This is done by
increasing the number of plasmatic glutamate transporter 1
and by lowering the levels of vesicular glutamate transporter
1 [146]. However, LF-rTMS could not evoke any change in
glutamate and glutamine levels in the primary motor cortex
but increased GABA levels [147]. Increased extracellular
dopamine and glutamate levels in the nucleus accumbens
were also found after TMS [148]. Either this heterogeneous
response is due to a random way the brain responds to
TMS or it can be attributed to the variation in the applied
techniques used in animal models. HF-rTMS applied in the
subacute phase of stroke in a rat model did not found
changes in the expression of NMDA and MAP-2 around
the peri-ischemic area, questioning the role of TMS in syn-
aptic plasticity, LTP, and dendritic plasticity in the early
phases of stroke. Although no evidence of neuroplasticity
was reported, the same groups showed that the animals
receiving HF-rTMS had an improvement in functional
recovery [149].

The potential of TMS to alter apoptosis/augmented
autophagy might be of great importance in the clinical prac-
tice, as preventing additional cellular death after stroke gen-
erates more recovery potential compared to neuronogenesis
or anti-inflammatory strategies. In a rat model, HF-rTMS
applied during the acute and subacute phase of cerebral
ischemia inhibited apoptosis by significantly enhancing the
expression of Bcl-2 and reducing the expression of Bax com-
pared to controls [149, 150]. The use of c-TBS was reported
to have an inhibitory effect on the activation of caspase-3
and caspase-9 [20], while rTMS can increase the ratio of
LC3-II/I and decrease p62 through NMDAR–Ca2+–mTOR
signaling [151]. Although this TMS effect can be important
for poststroke recovery, it is not completely clear if this
potentially augmented autophagy of TMS is eliciting a ben-
eficial effect through clearance of the postischemic debris
rather than prevention of neuronal death.

Recent reports showed that TMS can influence the integ-
rity of the BBB and promote angiogenesis. The observation
was done by using rTMS on a rat photothrombotic stroke
model. Stimulated animals had less ischemic-induced degen-
eration and showed an upregulation in important BBB com-
ponents such as zona occludens-1, claudin-5, occludin, and
caveolin-1. In addition, a reduction in the extravasation of
IgG into the peri-infarcted area and upregulation of Col
IV, an essential element to vascular structure, were also
reported [19]. An increase in angiogenesis-related proteins,
such as matrix metalloproteinase-9 and VEGF plus the colo-
calization of vascular endothelial with cellular proliferation
markers RECA1/Ki67 and CD31/BrdU, suggests the angio-
genic potential of TMS [19].

3.1.2. Cerebral Cellular Response to TMS. After TMS, a pleth-
ora of other cellular phenomena has been reported, espe-
cially in animal models of stroke. Apart from this
molecular effect, cTBS has cellular anti-inflammatory effects
as evidenced by decreasing the number of Iba1+ and GFAP+

cells in the peri-infarct region [20]. In the early phase of

stroke, both HF-rTMS and iTBS increased the number of
Ki67 and DCX/Nestin or NeuN+ cells suggesting that they
could promote an increase in the neural stem cells (NSC)
followed by a migration to the peri-infarct striatum. Further-
more, by analyzing the SVZ number of Ki67+, an increase
was observed after rTMS [152]. IN the subgranular zone,
an increase in the ratio BrdU/Nestin+ cells was observed
after rTMS in MCAO rats [150]. HF-rTMS applied over
the primary motor cortex in healthy mice modulates spino-
genesis by increasing the number and complexity of thin
spines in apical and basal dendrites [25], showing that it
can also have a neuroplastic effect.

By combining peripheral nerve stimulation and TMS
application, an increase in the expression of MAP-2 and
GAP-43 in the ischemic penumbra was reported in the acute
phase focal cerebral ischemia and reperfusion, suggesting
that TMS is promoting dendritic plasticity and axonal
regrowth [153]. The same association was shown to also
promote functional neuroplasticity by enhancing LTP at
synapses in the CA3 and CA1 regions of the hippocampus
through upregulation of mRNA expression of BDNF and
NMDAR1, with subsequent amelioration of poststroke
impaired learning and memory [154]. If the effects on
NMDA-mediated neuroplasticity are paradoxical, neuro-
plasticity mediated through upregulation of c-Fos and
BDNF expressions was supported in a study that applied
LF-rTMS in the early phase of stroke in rodents, leading to
a neurological function recovery [26]. All this data suggests
that the effect of TMS on poststroke recovery might be the
overall result of an accumulation of different activity-
dependent synaptic plasticity, also known as metaplasti-
city [155].

3.2. Clinical Studies Using TMS. With the successful use of
TMS in other clinical settings [131, 132] and considering
the molecular and cellular results from animal models, it
did not take long until TMS was tested on stroke patients
(Table 4).

3.2.1. TMS Influence on the Outcome of Acute and Subacute
Stroke. Compared to DCS, data generated from patients
receiving TMS in the acute period of stroke was shown to
have beneficial effects on motor function. One of the first
studies used a combination of standard physical rehabilita-
tion strategies (passive limb manipulation from the second
day, increasing, by the end of the first week, to more active
movements if patients improved function), medical thera-
pies (anticoagulants, antiplatelets, and nootropics), and
HF-rTMS (10-second trains of 3Hz stimulation with 50 sec-
onds between each train for 10 days) over the stroke hemi-
sphere of early postischemic patients. The study reported
improvement in clinical scales (Scandinavian Stroke Scale,
NIHSS, and Barthel scores) in patients receiving magnetic
stimulation [39], suggesting that TMS could impact specific
motor impairments. Due to the nature of TMS, specific cor-
tical areas can be targeted, as such, by applying HF-rTMS
over the oesophageal cortical area of the affected hemisphere
(10 trains of 3Hz stimulation, 10min every day for five con-
secutive days), a clinical improvement of patients suffering
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Table 4: Main clinical outcomes after transcranial magnetic stimulation.

Model
Stroke
stage

Technique Types of protocol Reported results Clinical outcome
Signalling
pathway

Data

Clinical
data

Healthy
volunteers

LF-rTMS

1Hz rTMS for 20–
22min at an intensity of
90% RMT (1Hz rTMS:
train of 10 pulses, 1 s

wait time between trains,
120 trains, total pulses
= 1200; 5Hz rTMS:

train of 25 pulses, 45 s
wait time between trains,
24 trains, total pulses =
600); one volunteer
additionally received

5Hz rTMS in a separate
session, 3 weeks after the

1Hz protocol

Modulates
neurotransmitter

metabolism (increased
GABA concentrations)

No significant changes
for functional
connectivity

No data
Gröhn et al.,

[143]

Acute and
subacute

LF-rTMS

20 minutes with 1Hz
rTMS, 5 days per week
for a 2-week period

No side effects

Motor improvement
and cognitive functions
amelioration (unilateral

spatial neglect and
aphasia)

No data

Zheng et al.,
[152] Cha
and Kim,

[42]
Weiduschat
et al., [154]

For 20-30min each time,
1 time/day, and 5 times/

week, 4 weeks

Higher SOD levels,
lower MDA and ET-1

Improvement in
cerebral oxygen
metabolism and

regulation of brain
neurotransmitter

No data
Peng et al.,

[141]

c-TBS

In every session, 3-pulse
bursts at 50Hz repeated
every 200msec for 40 s
were delivered at 80% of

the active motor
threshold over the left
PPC (600 pulses). 15
every day 2 sessions of
left PPC cTBS were

applied with an interval
of 15 minutes.

Stimulation lasted for 10
days (5 days per week,
Monday to Friday) and
was applied daily at the

same hour every
morning (11AM) to all

patients

Possibly by
counteracting the

hyperexcitability of left
hemisphere parieto-

frontal circuits

Recovery from visual
spatial neglect

No data
Koch et al.,

[155]

HF-rTMS

rTMS (daily at noon)
consisted of ten 10-
second trains of 3Hz
stimulation with 50
seconds between each
train, for 10 days

No side effects

10 consecutive days of
rTMS employed as an
add-on intervention to
normal physical and

drug therapies
improved immediate
clinical outcome in
early stroke patients

No data
Khedr et al.,

[39]

rTMS applied for 10min
every day for 5

consecutive days, each
session consisting of 10

trains of 3Hz

Increased excitability of
the corticobulbar

projections from both
hemispheres with better

Motor improvement
and recovery from

dysphagia (maintained
for 2 months)

No data
Khedr et al.,

[40]
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Table 4: Continued.

Model
Stroke
stage

Technique Types of protocol Reported results Clinical outcome
Signalling
pathway

Data

stimulation for 10 s and
then repeated every

minute

projection from the
stroke hemisphere

A daily dose of 1000
pulses of subthreshold
10Hz rTMS, 10 days

Higher movement
accuracy; variable
benefits in motor
performance

Possible variable
functional integrity of
the corticospinal tract
and different BDNF

genotype

No data
Chang et al.,
[43]; Chang
et al., [168]

iTBS and
LF-rTMS

7 days after stroke, for
10 days, iTBS (600

pulses) to the affected
hemisphere; 1Hz
stimulation (1200

pulses) of the unaffected
motor cortex hand area,

also 10 days

No complications;
motor improvement by

iTBS; spasticity
reduction by

contralesional 1Hz
stimulation

Enhance motor
recovery

No data
Watanabe
et al., [41]

Chronic

LF-rTMS

1Hz, 25 minutes, a
subthreshold rTMS over

the unaffected
hemisphere

Increase in the
excitability of the

affected motor cortex

rTMS improved the
motor learning of the

affected hand in
patients after stroke;
enhanced motor skill

acquisition and training
effect

No data
Takeuchi
et al., [44]

HF-rTMS

Pulses were applied
twice daily at 3Hz for
10 s with a 25-second
interval, 20 times per
session, alternating

between left and right
hemispheres (300 pulses
for the left hemisphere
and 300 pulses for the
right hemisphere in one
treatment session, 1,200
pulses per day) and were
followed by 20min of
intensive swallowing
rehabilitation exercise

No deterioration of
neurological symptoms
or adverse reactions

such as convulsions or
pneumonia

Improved laryngeal
elevation delay time

No data
Momosaki
et al., [159]

For the bilateral
stimulation group, 500
pulses of 10Hz rTMS

over the ipsilesional and
500 pulses of 10Hz
rTMS over the

contralesional motor
cortices over the cortical
areas that project to the
mylohyoid muscles were
administered daily, 2
consecutive weeks. For

the unilateral
stimulation group, 500
pulses of 10Hz rTMS
over the ipsilesional
motor cortex over the
cortical representation
of the mylohyoid muscle
and the same amount of

Magnetic stimulation
over the cortical areas

projecting to the
mylohyoid muscles is

effective as an additional
treatment strategy to
traditional dysphagia

therapies

Swallowing parameters
showed an

improvement in the
bilateral simulation

group

No data
Park et al.,

[169]

15Neural Plasticity



from poststroke dysphagia assessed through Dysphagia Out-
come and Severity scale was observed. The observed effect
was speculated to be a consequence of the increase in corti-
cobulbar projection excitability of both hemispheres [40].
Other LF-rTMS protocols in subacute stroke patients also
reported encouraging results [156].

With the large motor deficit, capsular stroke patients
have generally a poor recovery prognostic [157]. Interesting
one of the fists reports that used TMS on capsulat patients
utilized two distinct protocols: one using iTBS on the
affected side for a total of 600 pulses at an intensity of 80%
resting motor threshold (RMT) for 10 days and the other
using LF-rTMS on the unaffected hemisphere for a total of
1200 pulses at an intensity of 110% RMT for 10 days. After
the two, an enhanced movement and reduced spasticity of
the affected limbs compared to the sham group was
observed. The study reported improvement in clinical indi-
cators such as Fugl-Meyer Assessment, Stroke Impairment
Assessment Set, finger-function test, grip strength, and
increase in motor evoked potential amplitude, measured in
the first dorsal interosseous on the affected side [41]. How-
ever, it should be noted that the results are significant only
compared to shams.

The complexity of poststroke disabilities does not restrict
to only the motor ones. As such, TMS was used to investi-
gate other nonmotor outcomes. Using a 1Hz for five
minutes with 90% RMT, performed four times, for a total
of 1,200 stimulation events, for four weeks, five times each
week and 10 minutes each day, LF-rTMS was reported to
ameliorate higher-order cerebral functions such as unilateral
spatial neglect as assessed by Line Bisection Test and Albert
Test [42]. Similarly, 5 days per week for 2 weeks, 20 minutes
each day, was shown to improve aphasia (measured by the
Aachen Aphasia Test) [158], and even visuospatial neglect
(evaluated through Behavioral Inattention Test) was

reposted to be impacted by cTBS [159]. Other partial bene-
fits were reported after using different HF-rTMS protocols
such as improved the motor function of the affected upper
limb, but not the lower one [160].

3.2.2. TMS Influence on the Outcome of Chronic Stroke.
While acute and subacute results after TMS are generally
encouraging, depending on the type of used protocol, differ-
ent groups reported diverging recovery outcomes of chronic
stroke patients. While bilateral TMS using 1Hz and 50 sec
train duration over the unaffected hemisphere, alternating
with 10Hz and 5 sec train duration over the affected hemi-
sphere, with an interval of 5 sec for 20 times and LF-rTMS
(1Hz, 90% RMT, 25min) applied to these groups of patients
was reported to enhance motor skill acquisition in paretic
hand movement evaluated through acceleration and pinch
force [44, 161], the use of HF-rTMS had less than expected
effects when applied to the affected cortex. Further diverging
results were reported, with one study (with a protocol of 20
pulses at 10Hz, 80% RMT, for a total of 160 pulses, in 2 ses-
sions) showing improvements in hand motor performance
assessed through movement accuracy and movement time
[162], while another (90% RMT, 10Hz, 1000 stimuli)
showed no effect on motor function [161]; however, in this
case, there was a lack of a stereotactic system with integrated
MRI data or insufficient stimulation power to increase corti-
cal excitability [161].

TMS was also used in an attempt to improve other
aspects of poststroke recovery. In chronic poststroke dys-
phagia, HF-rTMS (10 sessions of rTMS at 3Hz applied to
the pharyngeal motor cortex bilaterally), followed by
20min of intensive swallowing rehabilitation exercise,
improved laryngeal elevation delay time in 4 poststroke
patients [163]. The effect was confirmed in a larger study
that demonstrated that 500 pulses of 10Hz rTMS over the

Table 4: Continued.

Model
Stroke
stage

Technique Types of protocol Reported results Clinical outcome
Signalling
pathway

Data

sham rTMS over the
contralesional

hemisphere were applied

LF-rTMS
and HF-
rTMS

1Hz rTMS over the
unaffected hemisphere,
10Hz rTMS over the
affected hemisphere or

bilateral rTMS
comprising both the
1Hz and 10Hz rTMS

No side effects
An improvement in the
motor function of the

paretic hand
No data

Takeuchi
et al., [156]

iTBS

Bursts of three pulses at
50Hz given every 200
milliseconds in two-

second trains, repeated
every 10 seconds over

200 seconds for a total of
600 pulses

No side effects

Improvements in
semantic fluency
(language skills),
stronger language
lateralization to the

dominant left
hemisphere

No data
Szaflarski
et al., [160]

LF-rTMS: low-frequency repetitive transcranial magnetic stimulation; rTMS: repetitive transcranial magnetic stimulation; RMT: resting motor threshold;
GABA: γ-aminobutyric acid; PPC: posterior parietal cortex; cTBS: continuous theta burst stimulation; BDNF: brain-derived neurotrophic factor; SOD:
superoxide dismutase; MDA: malondialdehyde; ET-1: endothelin-1; iTBS: intermittent theta burst stimulation.
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ipsilesional and 500 pulses of 10Hz rTMS over the contrale-
sional motor administered daily for 2 consecutive weeks
over the cortical areas projecting to the mylohyoid muscles
are effective as an additional treatment strategy to traditional
dysphagia therapies, with improvements in Clinical Dyspha-
gia Scale, Dysphagia Outcome and Severity Scale, Penetra-
tion Aspiration Scale, and Videofluoroscopic Dysphagia
Scale [164]. iTBS (bursts of three pulses at 50Hz given every
200 milliseconds in two-second trains, repeated every 10 sec-
onds over 200 seconds for a total of 600 pulses) applied to
chronic left middle cerebral artery stroke patients with mod-
erate aphasia (≥12 months prior to study participation)
proved to be effective clinically, paraclinically, and subjec-
tively. Thus, after rTMS, patients showed improvements in
semantic fluency, being able to generate more appropriate
words when prompted with a semantic category. fMRI map-
ping of post-rTMS showed shifts in activations predomi-
nantly of the left hemispheric head regions (fronto-
temporo-parietal language networks). Also, patients noted
a subjective improvement in the Communicative Activity
Log [165].

4. Conclusions

With the increase in the global aged population, an increase
in the incidence of stroke is expected. This will become a
larger and larger problem as the number of patients
increases more compared to the number of healthcare pro-
fessionals properly trained to deal with such cases. There-
fore, other ways to improve patient outcomes are needed.
The results of some clinical studies using TMS in acute
and subacute stroke patients paired with the ones from
DCS applied to chronic patients could be the aid that stroke
patients need, to ensure better results of classical medical
recovery and, as such, diminish their disability.
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