
Research Article
Imbalance of Microbacterial Diversity Is Associated with
Functional Prognosis of Stroke

Xintong Zhang ,1 Xiangyu Wang ,2 Hong Zhao ,1 Risheng Cao ,3 Yini Dang ,4

and Binbin Yu 1

1Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
2Department of Rehabilitation Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing
Medical University, Jiangsu, China
3Department of Science and Technology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
4Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China

Correspondence should be addressed to Risheng Cao; rishengcao@njmu.edu.cn, Yini Dang; yeani_hi@126.com,
and Binbin Yu; coldrain24@163.com

Received 30 October 2022; Revised 25 November 2022; Accepted 11 April 2023; Published 8 May 2023

Academic Editor: Xi-Ze Jia

Copyright © 2023 Xintong Zhang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Objectives. There is mounting evidence to suggest that the pathophysiology of stroke is greatly influenced by the microbiota of the
gut and its metabolites, in particular short-chain fatty acids (SCFAs). The primary purpose of the study was to evaluate whether
the levels of SCFAs and the gut microbiota are altered in poststroke patients and to examine the relationship between these
alterations and the physical condition, intestinal health, pain, or nutritional status of patients. Methods. Twenty stroke patients
and twenty healthy controls were enrolled in the current study, and their demographics were matched. Gas chromatography
was used to determine the fecal SCFAs, and 16S rRNA gene sequencing was used to evaluate their fecal microbiota. Microbial
diversity and richness were examined using the diversity indices alpha and beta, and taxonomic analysis was utilized to
determine group differences. The relationships between the gut microbiome and fecal SCFAs, discriminant bacteria, and
poststroke clinical outcomes were analyzed. Results. Less community richness (ACE and Chao) was observed in the poststroke
patients (P < 0:05), but the differences between the poststroke group and the healthy control group in terms of species diversity
(Shannon and Simpson) were not statistically significant. The makeup of the poststroke gut microbiota was distinct from that
of the control group, as evidenced by beta diversity. Then, the relative abundances of the taxa in the poststroke and control
groups were compared in order to identify the specific microbiota changes. At the level of phylum, the poststroke subjects
showed a significant increase in the relative abundances of Akkermansiaceae, Fusobacteriota, Desulfobacterota,
Ruminococcaceae, and Oscillospirales and a particularly noticeable decrease in the relative abundance of Acidobacteriota
compared to the control subjects (P < 0:05). In regard to SCFA concentrations, lower levels of fecal acetic acid (P = 0:001) and
propionic acid (P = 0:049) were found in poststroke subjects. Agathobacter was highly correlated with acetic acid level
(r = 0:473, P = 0:002), whereas Fusobacteria (r = −0:371, P = 0:018), Flavonifractor (r = −0:334, P = 0:034), Desulfovibrio
(r = −0:362, P = 0:018), and Akkermansia (r = −0:321, P = 0:043) were negatively related to acetic acid levels. Additionally, the
findings of the correlation analysis revealed that Akkermansia (r = −0:356, P = 0:024), Desulfovibrio (r = −0:316, P = 0:047), and
Alloprevotella (r = −0:366, P = 0:020) were significantly negatively correlated with high-density lipoprotein cholesterol. In
addition, the Neurogenic Bowel Dysfunction score (r = 0:495, P = 0:026), Barthel index (r = −0:531, P = 0:015), Fugl-Meyer
Assessment score (r = −0:565, P = 0:009), Visual Analogue Scale score (r = 0:605, P = 0:005), and Brief Pain Inventory score
(r = 0:507, P = 0:023) were significantly associated with alterations of distinctive gut microbiota. Conclusions. Stroke generates
extensive and substantial alterations in the gut microbiota and SCFAs, according to our findings. The differences of intestinal
flora and lower fecal SCFA levels are closely related to the physical function, intestinal function, pain, or nutritional status of
poststroke patients. Treatment strategies aimed at modulating the gut microbiota and SCFAs may have the potential to
enhance the clinical results of patients.
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1. Introduction

Stroke is the main cause of disability and death, respectively,
and imposes huge individual and societal burdens [1, 2].
Although advanced stroke emergency treatments, such as
endovascular thrombectomy and intravenous thrombolysis,
can improve the physical and mental status of some patients,
the prognosis of most stroke patients is still poor [3].

Recent studies have focused on the finding of the
microbiome-gut-brain axis, which describes the relationship
between the gut and the brain via gut bacteria [4]. The
microbiome-gut-brain axis consists primarily of gut micro-
biota and its metabolites, neurological (enteric, central, and
autonomic nervous systems), immunological, and hormonal
pathways, of which gut microbiota is an important compo-
nent [5, 6]. Stroke is commonly associated with hyperten-
sion, diabetes, hyperlipidemia, and low physical activity, all
of which have major influences on the gut microbiota [7].
In addition, stressful stimuli at the onset of stroke, limb
paralysis, neurogenic intestinal dysfunction, neuropathic
pain, malnutrition, and other problems caused by stroke will
lead to microbiome disturbances [3, 8, 9]. On the other
hand, the gut microbiota and its metabolites, such as the
highly concerned short-chain fatty acids (SCFAs), may affect
poststroke outcomes through multiple pathways, including
intestinal leakage, local and systemic inflammation, and
endotoxemia [10]. The gut microbiota and its metabolites
have great potential to become therapeutic targets for stroke.

Some studies have demonstrated the existence of signifi-
cant intestinal flora disturbance in poststroke patients [11,
12]. Our previous study also found that stroke may lead to
changes in gut microbiota structure, especially a significant
decrease in the abundance of SCFA-producing microbiota,
but the level of SCFAs was not explored in that study [13].
A recent study reported that reduced SCFAs, especially ace-
tate, were associated with poor motor functional outcomes
after stroke [14]. However, that study did not explore the rela-
tionship between SCFAs and other complications, such as
gastrointestinal dysfunction, pain, and malnutrition. These
complications may have potential interactions with intestinal
flora and SCFAs, which are also important factors affecting
the long-term prognosis of stroke patients [9, 15–17].

We carried out this research to evaluate the following
two hypotheses by comparing the gut microbiota composi-
tion and SCFA levels of poststroke patients with those of
healthy individuals: (1) the makeup of the gut microbiota
and levels of SCFAs in poststroke patients differ significantly
from those of healthy controls, and (2) the alteration of gut
microbiota composition and SCFA level in poststroke
patients may be potentially related to physical function,
intestinal function, pain, and nutritional status.

2. Methods and Materials

2.1. Study Design and Patient Enrollment. An individual-
center prospective observational case-control research was
conducted. Patients were recruited from the regular medical
wards or the stroke unit at the Affiliated Lianyungang Orien-
tal Hospital of Kangda College of Nanjing Medical Univer-

sity from 19 January 2022 to 29 July 2022. The inclusion
criteria were as follows: (1) age of between 18 years and 80
years, (2) ischemic/hemorrhagic stroke as confirmed by
computerised tomography (CT) or magnetic resonance
imaging (MRI), and (3) were able to provide a vocal
response to the directions they were given and provided
informed consent [18]. Patients were excluded from the
study if (1) diagnosed with silent cerebral infarction or tran-
sient ischemic attack (TIA), (2) with serious cognitive
impairments or mental dysfunctions, and (3) current partic-
ipation in another clinical trial or participation in another
clinical trial in the 6 months prior to enrolment [19]. Age-,
gender-, and risk factor-matching healthy subjects served
as the controls. Prior to conducting the study, ethics
approval using an approval code was acquired (Institutional
Review Board, 2022-041-01). The clinical trial was formally
registered in advance with the Clinical Trials Registry (regis-
tration number: NCT03938311). Prior to enrolment, con-
sent was acquired with knowledge.

2.2. Clinical Assessment and Sample Collection. The follow-
ing demographic data was collected: age, gender, and
subtype of stroke. Clinical assessments were conducted by
a trained researcher. The degree of physical symptoms, such
as pain, was assessed using tools such as the Visual Analogue
Scale (VAS) as well as the Brief Pain Inventory (BPI). A VAS
value of 0 showed that there was no pain, while a VAS score
of 10 indicated severe pain [20, 21]. The BPI was used to
characterize pain severity and functional interference in
daily life. On a scale from 0 (never interferes) to 10 (totally
interferes), participants evaluate each item [22, 23]. Bowel
function was assessed by using the Neurogenic Bowel Dys-
function (NBD) score, for which a higher score indicates
worse bowel function [24, 25]. Scores on the Barthel index
(BI) range from 0 to 100, with higher scores showing better
performance in activities of daily living (ADL) [26, 27]. The
Fugl-Meyer Assessment, often known as the FMA score, was
used to evaluate either the upper or lower extremity motor
function, and higher score represents better function [28,
29]. Patients’ fresh stool samples were taken and stored at
a temperature of -80 degrees Celsius for use in DNA extrac-
tion at a later time.

2.3. DNA Extraction, 16S rRNA Gene Amplification, and
Sequencing. Using the Qiagen QIAamp DNA Stool Mini
Kit (Qiagen, catalogue number 51504, Hilden, Germany)
and following the manufacturer’s instructions, bacterial
genomic DNA was extracted from the prepared frozen cecal
samples. The DNA concentration and purity were evaluated
both with a NanoDrop-2000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). For the microbial
community diversity analysis, the V3-V4 region of the bac-
terial 16S rRNA gene was targeted with the barcoded primer
pair 341F/806R (341F: CCTAYGGGRBGCASCAG, 806R:
GGACTCNNGGGTATCTAAT). The Illumina 16S Metage-
nomic Sequencing Library preparation protocol was
followed to perform the 16S rRNA gene amplification and
index PCR for sequencing (Illumina, San Diego, CA, USA).
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2.4. Quantification of SCFAs in Stool Samples. According to
other reports, gas chromatography-mass spectrometry
(GC-MS) was used to quantify numerous SCFAs (acetic
acids, butyric acids, propionic acids, caproic acids, isobutyric
acids, isovaleric acids, and valeric acids) in fecal samples [30].

2.5. Bioinformatic Gut Microbiota Analyses. Using QIIME
v.1.9.1 (QIIME permits analysis of high-throughput com-
munity sequencing data) and USEARCH v.10.0, the 16S
rRNA gene sequences were processed in this investigation
(Magnit search and clustering orders). The raw FASTQ files
had their quality filtered by Trimmomatic, and then,
USEARCH merged them based on the following criteria:
the removal of barcodes and primers, the removal of low-
quality reads, and the detection of nonredundancy readings.
Sequences assigned by the UPARSE software to the same
operational taxonomic units (OTUs) had a 97% similarity rate
(version 7.0.1001). With the QIIME software displayed, alpha
diversity indices such as ACE, Chao, Shannon, and Simpson
were computed, and beta diversity was evaluated using princi-
pal coordinate analysis (PCA) and nonmetric multidimen-
sional scaling (NMDS). Linear discriminant analysis (LDA)
and linear discriminant effect size (LEfSe) techniques were
used to assess metagenomic biomarkers among groups utiliz-
ing the Galaxy Online Analysis Platform.

2.6. Statistical Analysis. The means and standard deviations
of continuous variables are shown. The categorical variables
are represented by numbers (percentages). Microbiota data
and SCFA levels were tested by one-way analysis of variance
(ANOVA) and the Wilcoxon rank-sum test. Alpha diversity
and beta diversity among groups were tested by the
Wilcoxon rank-sum test. Using the Bonferroni correction,
the P values were adjusted for multiple testing. Pearson
correlation was used to estimate the correlations between
bacterial or SCFA levels and clinical evaluations. P values
under 0.05 were used to determine whether a difference
between groups was significant. With SPSS 24.0, all statisti-
cal evaluations were completed (SIBM SPSS, Armonk, NY,
USA). Software called GraphPad Prism 5.0 was used to plot
the data (La Jolla, CA, USA).

3. Results

3.1. Participant Demographics. Twenty patients with a clinical
diagnosis of stroke were evaluated (average age 64 ± 13 years;
gender, male : female 11 : 9) and were recruited. In the mean-
time, 20 healthy persons of the same age and gender were
examined (average age 60 ± 8 years; gender, male : female
6 : 14) who attended annual physical examinations and were
also recruited. The clinical features and demographics of
stroke patients and controls are shown in Table 1.

3.2. Poststroke Subjects Harbor an Altered Gut Microbiota
Composition. As shown in Figure 1(a), 900 and 93 OTUs
were individually identified from the control group and the
poststroke group, and there were 634 OTUs that overlapped
between the two groups. Between the poststroke and control
groups, there were significant differences (P < 0:05) in terms

of community richness (ACE and Chao) when comparing
bacterial alpha diversity (Figures 1(b) and 1(c)).The differ-
ences between each group were not statistically significant
when assessing the species diversity of the microbiota (Shan-
non and Simpson) (Figures 1(d) and 1(e)). PCA and NMDS
were used to determine differences in bacterial community
composition between the two groups. Poststroke samples were
predominantly dissimilar from those of healthy controls, indi-
cating variations in the community structure of the microbiota
between the two groups (Figures 1(f) and 1(g)).

We evaluated the average relative abundances of the taxa
in the poststroke and control groups to identify the precise
changes in the microbiota. At the phylum level, poststroke
patients have significantly less Acidobacteriota than controls
(0.0005% vs. 0.2710%), whereas the abundance of Fusobac-
teriota was considerably increased in poststroke patients
(0.9640%) compared to controls (0.0961%). Furthermore,
we also observed that Desulfobacterota was enriched in post-
stroke samples compared to control samples (Figure 2(a)).
LEfSe was utilized to discover substantial changes in the bac-
terial composition of the poststroke and control groups. Sig-
nificantly higher levels of Akkermansiaceae, Fusobacteriota,
Desulfobacterota, Ruminococcaceae, and Oscillospirales were
found in the poststroke individuals (Figures 2(b) and 2(c)).

3.3. The Levels of SCFAs in the Poststroke Group Differ
Significantly from Those of the Control Group. In Figure 3,
the amounts of acetic acid, butyric acid, propionic acid,
caproic acid, isobutyric acid, isovaleric acid, and valeric acid
in feces are displayed. The concentration of acetic acid was
dramatically reduced in patients with stroke (67:60 ± 36:98)
compared with controls (212:28 ± 95:25, P = 0:001). Between
the two groups, there were no discernible variations in butyric
acid levels (P = 0:070). Compared with healthy control group
(160:41 ± 27:36), the propionate concentration was signifi-
cantly decreased in the poststroke group (114:54 ± 65:72, P
= 0:049). However, there were no appreciable variations in
the concentrations of caproic acid, isobutyric acid, isovaleric
acid, or valeric acid between the groups.

3.4. Correlation between the Intestinal Microbiota and Fecal
SCFA Levels. At the genus level, a Pearson correlation was
employed to establish a relationship between the differen-
tially abundant taxa and the levels of SCFAs in the feces
(shown in Figure 4). The relative abundance of Agathobacter
was highly correlated with acetic acid level (r = 0:473, P =
0:002), whereas the relative abundances of Fusobacteria
(increased considerably in the poststroke group, r = −0:371,
P = 0:018), Flavonifractor (r = −0:334, P = 0:034), Desulfovi-
brio (increased considerably in the poststroke group, r = −
0:362, P = 0:018), and Akkermansia (increased considerably
in the poststroke group, r = −0:321, P = 0:043) were nega-
tively correlated with acetic acid level. Furthermore, we dis-
covered a negative association between Fusobacteria and
butyrate (r = −0:362, P = 0:022). Additionally, there was a
positive correlation between the amounts of isovaleric acid
and isobutyric acid and the presence of Desulfovibrio, Akker-
mansia, Parabacteroides, Alistipes, and Odoribacter.

3Neural Plasticity



Table 1: Characteristics of study participants.

Poststroke group (n = 20) Control group (n = 20) P value

Age in year, mean (SD) 63.55 (12.63) 59.95 (8.02) 0.290

Gender, n (%) 0.201

Male 11 (55.00) 6 (30.00)

Female 9 (45.00) 14 (70.00)

Height in centimeter, mean (SD) 167.55 (6.19) 163.50 (6.49) 0.069

Weight in kilogram, mean (SD) 66.80 (8.03) 62.90 (5.53) 0.238

BMI in kg/m2, mean (SD) 23.79 (2.57) 23.47 (2.01) 0.265

SBP in mmHg, mean (SD) 127.10 (20.45) 118.10 (16.82) 0.390

DBP in mmHg, mean (SD) 78.35 (10.33) 76.00 (8.37) 0.434

Smoking status, n (%) 0.723

Nonsmoker 7 (35.00) 9 (45.00)

Current smoker 7 (35.00) 7 (35.00)

Previous smoker 6 (30.00) 4 (20.00)

Alcohol intake, n (%) 0.326

No drinking 7 (35.00) 12 (60.00)

Light drinking 8 (40.00) 6 (30.00)

Heavy drinking 5 (25.00) 2 (10.00)

Medical history, n (%)

Hypertension 15 (75.00) 9 (45.00) 0.053

Diabetes mellitus 9 (45.00) 2 (10.00) 0.013

Dyslipidemia 7 (35.00) 2 (10.00) 0.058

Laboratory findings

Total protein (g/L) 62.00 (5.00) 64.81 (6.04) 0.118

Albumin (g/L) 39.48 (3.28) 39.99 (3.07) 0.615

Total bilirubin (μmol/L) 12.15 (3.01) 14.63 (6.59) 0.134

Direct bilirubin (μmol/L) 2.00 (0.76) 2.04 (0.96) 0.500

ALT (U/L) 24.55 (17.18) 22.05 (14.09) 0.425

AST (U/L) 24.30 (9.38) 24.45 (9.09) 0.919

Urea (mmol/L) 6.17 (1.86) 5.86 (2.88) 0.689

Creatinine (μmol/L) 68.17 (22.38) 76.66 (38.83) 0.403

Uric acid (μmol/L) 290.44 (116.44) 278.10 (103.76) 0.726

Glucose (mmol/L) 6.63 (1.69) 5.62 (1.19) 0.035

Cholesterol (mmol/L) 4.67 (1.14) 5.05 (1.08) 0.280

Triglyceride (mmol/L) 1.58 (0.76) 1.50 (0.62) 0.654

HDL-C (mmol/L) 0.99 (0.29) 1.06 (0.15) 0.329

LDL-C (mmol/L) 2.07 (0.83) 2.27 (0.45) 0.359

Stroke characteristics

Type of stroke, n (%)

Hemorrhage stroke 7 (35.00)

Ischemic stroke 7 (65.00)

Duration of stroke, n (%)

No more than 3 months 11 (55.00)

More than 3 months 9 (45.00)

Side of hemiparesis, n (%)

Left 8 (40.00)

Right 12 (60.00)

FMA-UE score, mean (SD) 15.8 (10.94)

FMA-LE score, mean (SD) 16.30 (6.07)
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3.5. Correlations among Fecal SCFA Concentrations, Distinct
Bacterial Species, and Clinical Variables. In order to deter-
mine whether there are any significant relationships between
various clinical indexes, including blood parameters, func-
tional parameters, SCFA levels, and clinical parameters and
distinct bacterial species, Pearson correlation analysis was
used. Isovaleric acid (r = −0:344, P = 0:030) and isobutyric
acid (r = −0:335, P = 0:034) were negatively correlated with
serum total protein (TP). Valeric acid (r = −0:338, P =
0:032) and caproic acid (r = −0:390, P = 0:012) were nega-
tively correlated with cholesterol (Figure 5(a)). Furthermore,
isovaleric acid (r = 0:636, P = 0:003), isobutyric acid
(r = 0:606, P = 0:005), and valeric acid (r = 0:456, P = 0:043)
were positively correlated with NBD (Figure 5(b)).

The correlation analysis results demonstrated that Akker-
mansia (r = −0:356, P = 0:024), Desulfovibrio (r = −0:316, P
= 0:047), and Alloprevotella (r = −0:366, P = 0:020) were sig-
nificantly negatively correlated with HDL-C. Akkermansia
was also negatively correlated with LDL-C (r = −0:390, P =
0:012) and TP (r = −0:370, P = 0:019). In addition, Desulfovi-
briowas significantly positively correlated with glucose (GLU)
(r = 0:352, P = 0:025) (Figure 5(c)). Akkermansia (r = 0:495,
P = 0:026), Odoribacter (r = 0:467, P = 0:038), Alistipes
(r = 0:579, P = 0:007), Parabacteroides (r = 0:522,P = 0:018),
and Parasutterella (r = 0:465, P = 0:039) were positively corre-
lated with NBD. Akkermansia, Odoribacter, and Desulfovibrio
were also negatively correlated with BI, FMA-UE, and FMA-
LE (P < 0:05). Both Paraprevotella and Sutterella were posi-
tively correlated with portions of the BPI (ADL and walking)
(P < 0:05), and both Akkermansia (r = 0:605, P = 0:005) and
Odoribacter (r = 0:471, P = 0:036) were positively correlated
with VAS (Figure 5(d)).

4. Discussion

Several investigations have documented differences in the
gut microbiome composition between poststroke patients
and healthy subjects. In this study, we discovered that stroke

patients had lower species diversity and evenness. The find-
ings are consistent with the studies using rodent experimen-
tal stroke models [31]. Multiple studies have showed a
considerable rise in the prevalence of Prevotella and a
decrease in the prevalence of Bacteroides in stroke patients.
We also observed a considerable reduction of Bacteroides
in stroke patients, consistent with the study of Yin et al.
[19]. Bacteroides play a leading role in the intestinal micro-
biota and were found to be associated with obesity [32,
33]. Furthermore, it has been found that a decrease in Bac-
teroides in cases of obesity and overweight is also recognized
as one of the important risk factors for the ischemic stroke
[34]. In addition, Bacteroides taxa have been shown to fer-
ment polysaccharides to both acetate and propionate [35].
Previous studies have demonstrated a decreased relative
abundance of Akkermansia in poststroke patients [36, 37].
In contrast, Akkermansia increased significantly after stroke
in the current study. There has been a study indicating that
an increase in the number of Akkermansia bacteria in the
poststroke may facilitate the Akkermansia-assisted healing
of wound damage and reinforce the epithelial integrity of
the intestinal mucosa [38]. Meanwhile, some studies have
shown greater abundance of Akkermansia in hypertensive
subjects and it related to an overall proinflammatory envi-
ronment, which is considered to be one of the mechanisms
of stroke occurrence [39, 40]. Therefore, it is tempting to
hypothesize that this microbiota member may have a role
in stroke, and future research may uncover more unique
activities of Akkermansia.

Our findings also revealed a decline in the amounts of
fecal acetic acid and propionic acid in stroke patients. The
most prevalent SCFAs are acetic, butyric, and propionic
acids [41], and it appears that maintaining the function of
the gut barrier involves a significant amount of SCFA gener-
ation [42]. Multiple mechanisms have been identified by
which SCFAs affect the host, involving the control of acety-
lation and methylation of histones, the regulation of G-
protein coupled receptors, the facilitation of the secretion

Table 1: Continued.

Poststroke group (n = 20) Control group (n = 20) P value

Barthel index score, mean (SD) 43.00 (17.73)

VAS score, mean (SD) 4.55 (1.36)

NBD score, mean (SD) 14.55 (5.38)

BPI score, mean (SD)

Activity of daily living 4.75 (1.52)

Emotion 4.80 (1.40)

Sleep 3.85 (1.35)

Work 4.55 (1.43)

Walk 4.90 (1.65)

Relationship 4.95 (0.89)

Interests 5.85 (1.09)

SD: standard deviation; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; ALT: alanine aminotransferase; AST: aspartate
aminotransferase; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; FMA-UE: Fugl-Meyer Assessment Upper
Extremity Scale; FMA-LE: Fugl-Meyer Assessment Lower Extremity Scale; VAS: Visual Analogue Scale; NBD: Neurogenic Bowel Dysfunction; BPI: Brief
Pain Inventory.
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Figure 1: Gut microbiota diversity in poststroke and control subjects. (a) Venn diagram of common OTUs. (b–e) Alpha diversity at the
OTU level as measured by the ACE (b), Chao (c), Shannon (d), and Simpson (e) index. (f, g) Beta diversity shown by PCA (f) and
NMDS (g) based on weighted UniFrac distance. OTU: operational taxonomic unit; PCA: principal component analysis; NMDS:
nonmetric multidimensional scaling.
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Figure 2: Compositional changes in the gut microbiota of poststroke and healthy controls. (a) The mean relative abundances of taxa at the
phylum level in poststroke and control subjects. The red and green bars represent the relative abundances of taxa in poststroke patients and
healthy controls, respectively. (b) LEfSe-generated cladograms. (c) LDA scores for the differentially abundant bacterial taxa (LDA score > 2:0).
Taxa enriched in the control group are shown by green bars, whereas taxa enriched in the poststroke group are represented by red bars. LEfSe:
linear discriminant effect size; LDA: linear discriminant analysis.
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of various hormones and neurochemicals, and the stimula-
tion of signals through the vagus nerve [3]. SCFAs also serve
as a source of energy in the mitochondria, which results in
an exceptionally rapid absorption of these molecules in
humans [43]. Acetic acid and propionic acid are the two pri-
mary metabolites that are produced by the microbiome of
the gut, and they are responsible for regulating the actions
of the microbiome-gut-brain axis. It has been demonstrated
that certain concentrations of acetate and propionate exert a
direct effect on the brain. The most frequent SCFA, acetate,
is digested by the liver and subsequently transported to
peripheral tissues, where it participates in cholesterol metab-

olism and lipogenesis and may have a role in the regulation
of central appetite [44]. Acetate also acts as a fuel for the
brain, and it easily penetrates through the blood–brain bar-
rier from the periphery and is metabolized in the brain
[45]. Previous research demonstrated that rats receiving
fecal microbiota transplants from depressed patients showed
increased fecal acetate and total SCFA concentrations as well
as depression-like behavior [46]. According to Maltz et al.,
mice suffering from psychosocial stress exhibit a decrease
in fecal acetate, which is accompanied by an increase in
inflammation in the gut [47]. Additionally, the current study
confirmed a negative association between fecal acetic acid
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Figure 3: Fecal levels of SCFAs of poststroke and control patients. Boxplots showing the absolute concentration distribution of SCFAs
measured in microgram per milliliter in the control group and poststroke group. (a) Acetic acid, (b) butyric acid, (c) propionic acid, (d)
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and Fusobacteria, Desulfovibrio, and Akkermansia, which
were significantly increased in poststroke patients. Propio-
nate is the only SCFA that, after being digested, has the
potential to be a significant source of glucose; it can be uti-
lized for the production of energy and may have a role in
decreasing cholesterol levels [48]. Some investigations have
shown that propionate and butyrate can directly alter brain
physiology and behavior by working on microglial cells
and astrocytes to enhance anti-inflammatory activity and
control general brain maintenance by scavenging damaged
or unneeded neurons, synapses, and infectious agents [49,
50]. Collectively, our results and the aforementioned evi-
dence indicate that acetate and propionate may govern the
gut-brain axis in poststroke patients by modulating the
immune system and energy metabolism.

Despite the fact that there was not a discernible change in
the concentrations of caproic, valeric, isobutyric, isovaleric, or
butyric acid between the two groups of our study, we found a
negative correlation between Fusobacteria and butyrate, and
Fusobacteria abundance was significantly higher in poststroke
patients. There is evidence that butyrate stimulates vascular
endothelial growth factor, which may play central roles in
neurogenesis, angiogenesis, and functional recovery in the
aftermath of stroke [51]. Furthermore, lower fecal butyrate
concentrations were also associated with a high risk of stroke
[52]. This might indicate that butyrate is involved in the pro-
gression of ischemic stroke. Isovaleric acid and isobutyric acid
were negatively correlated with serum total protein, and vale-
ric acid and caproic acid were negatively correlated with
cholesterol. Isobutyrate, isovalerate, valerate, and caproate
are generally considered the typical products of fat and protein
fermentation, and they may have the ability to influence lipid
metabolism, which affects the lipid profile of the host circula-
tion in the disease state of stroke [35, 53]. These are the
research directions warranting further investigation of these
metabolites that have relatively low content.

According to the findings of our study, alterations in
certain bacteria of the gut appear to be connected with
improvements in pain, bowel function, ADL, and motor func-
tion of poststroke patients, prompting further investigation
into the clinical impact of gut microbiota in this patient pop-
ulation. Some typical SCFA-producing bacteria, Akkermansia
and Odoribacter, were found to be positively associated with
VAS and NBD but negatively correlated with BI, FMA-UE,
and FMA-LE. SCFAs are essential for intestinal barrier main-
tenance andmicrobial regulation [54]. Butyrate has a powerful
anti-inflammatory effect on macrophages in the central ner-
vous system, which can inhibit the inflammatory response,
thus realizing the important role of nerve protection [55, 56].
Moreover, our current study is particularly concerned about
chronic pain associated with stroke. Although SCFAs are cru-
cial for regulating immune responses, their significance in
neurological illnesses, particularly chronic pain, has just
recently been recognized [57, 58]. SCFAs modulate the pro-
duction of inflammatory mediators by macrophages, which
is mainly associated with the attenuation of histone deacetyl-
ase (HDAC) activity and is able to attenuate pain behaviors
[59, 60]. In a rat permanent middle cerebral artery occlusion
model, valproic acid and butyrate, as HDAC inhibitors, pre-
sented antineuroinflammatory and neuroprotective effects
after stroke [61]. This suggested that SCFAs may play a signif-
icant role as key mediators in the modulation of pain in post-
stroke patients. However, the mechanism underlying this
phenomenon is not singular; there may be multiple mecha-
nisms that influence each other and promote each other to
ultimately achieve functional recovery.

Despite its innovative findings and clinical relevance, the
present study included a number of limitations. Larger
samples and multicenter studies would be required for further
validation of the findings because the study was restricted to
just one center, with a somewhat small patient enrollment.
Then, the study investigated the changes in microbiota and
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Figure 4: Correlation of the gut microbiota with fecal SCFA levels. SCFA: short-chain fatty acid.
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SCFA levels following stroke and showed that there may be
links between changes in the gut microbiota and clinical func-
tional parameters. However, the scope of our clinical indica-
tors is limited and needs to be further expanded and more
needs to be done to adjust for the effects from the risk factors
of stroke including dysglycemia and dyslipidemia. Further
studies focusing on possible biological mechanisms are
needed. Finally, grading for the severity of stroke in terms
of mild, moderate, and severe was not performed, so the cor-
relation between the severity of disease and gut microbiota
could not be analyzed. This will be addressed specifically in
future experiments.

5. Conclusion

In conclusion, a shift in the gut microbiota and its connec-
tion with fecal SCFAs was identified in poststroke patients
in comparison to healthy controls. Significant associations
were detected between alterations in SCFA levels, as well as
distinctive gut microbiota and poststroke clinical outcomes

or functional prognosis. Treatment strategies aimed at mod-
ulating the gut microbiota and SCFAs may have the poten-
tial to relieve pain and improve the functional prognosis
after stroke.
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Figure 5: Correlations of fecal SCFA levels with serum index and poststroke clinical variation. (a) Correlation between fecal SCFA levels
with serum index; (b) correlation between fecal SCFA levels with poststroke clinical variation; (c) correlation between differentiated
bacterial genus with serum index; (d) correlation between differentiated bacterial genus with poststroke clinical variation. SCFA: short-
chain fatty acid; DBil: direct bilirubin; TBil: total bilirubin; HDL-C: high-density lipoprotein cholesterol; TG: triglyceride; UA: uric acid;
ALT: alanine aminotransferase; AST: aspartate aminotransferase; CREA: creatinine; UREA: urea; LDL-C: low-density lipoprotein
cholesterol; GLU: glucose; ALB: albumin; CHOL: cholesterol; TP: total protein; NBD: Neurogenic Bowel Dysfunction; VAS: Visual
Analogue Scale; BPI: Brief Pain Inventory; BMI: body mass index; BI: Barthel index; FMA-UE: Fugl-Meyer Assessment Upper Extremity
Scale; FMA-LE: Fugl-Meyer Assessment Lower Extremity Scale.
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