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Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that is characterized by inattention,
hyperactivity, and impulsivity. The neural mechanisms underlying ADHD remain inadequately understood, and current
approaches do not well link neural networks and attention networks within brain networks. Our objective is to investigate the
neural mechanisms related to attention and explore neuroimaging biological tags that can be generalized within the attention
networks. In this paper, we utilized resting-state functional magnetic resonance imaging data to examine the differential functional
connectivity network between ADHD and typically developing individuals. We employed a graph convolutional neural network
model to identify individuals with ADHD. After classification, we visualized brain regions with significant contributions to the
classification results. Our results suggest that the frontal, temporal, parietal, and cerebellar regions are likely the primary areas of
dysfunction in individuals with ADHD. We also explored the relationship between regions of interest and attention networks, as
well as the connection between crucial nodes and the distribution of positively and negatively correlated connections. This analysis
allowed us to pinpoint the most discriminative brain regions, including the right orbitofrontal gyrus, the left rectus gyrus and
bilateral insula, the right inferior temporal gyrus and bilateral transverse temporal gyrus in the temporal region, and the lingual
gyrus of the occipital lobe, multiple regions of the basal ganglia and the upper cerebellum. These regions are primarily involved in
the attention executive control network and the attention orientation network. Dysfunction in the functional connectivity of these
regions may contribute to the underlying causes of ADHD.

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a com-
mon neurodevelopmental disorder that is characterized by
inattention, hyperactivity, and impulsivity [1]. These symp-
toms have distinct neural bases [2]. In recent years, the prev-
alence of ADHD in children has gradually increased, with
5.3%—7.1% of children worldwide affected [3]. The effects of
ADHD on children’s academic ability, social skills, executive
functioning, and mood have been shown in several studies
[4, 5]. While some children will experience improvement as

adults, 70% of cases will have permanent consequences [6].
Such a high lifetime prevalence has a significant impact on
the daily life and development of children, as well as a substan-
tial burden on families and society. Therefore, it is becoming
more vital to investigate the cognitive mechanisms underlying
this neurodevelopmental disorder.

Since the first successful use of functional magnetic reso-
nance imaging (fMRI) to study how the human brain works
[7]. An increasing number of studies [8, 9] have used the
functional changes observed by fMRI to explore different
brain disorders. Since fMRI is sensitive to the whole brain
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and shows the detailed anatomy of the brain with high spatial
resolution [10], it has been widely used in neuro-clinical
applications. Resting-state fMRI (rs-fMRI) has become an
important tool for the early diagnosis and prognosis of ADHD
because it does not require subjects to do complicated tasks
and usually only needs them to rest with their eyes open or
closed.

Since machine learning and deep learning are effective in
various fields, researchers are gradually applying them to the
study of fMRI to extract relevant feature information. Machine
learning techniques, such as hyperplane-based SVM [11] and
decision trees [12], are suitable for 1D features or highly inte-
grated features. With the advent of neural networks in image
processing, deep learning models can predict neuroimaging
biomarkers more accurately than conventional machine learn-
ing techniques [13]. Neural networks that can be utilized with
regular grid data, such as convolutional neural networks, deep
confidence neural networks, and deep neural networks, have
gained prominence. Based on the convolution theorem [14],
which states that the convolution in the graph’s spatial domain
is equal to the inverse Fourier transform of the multiplication
in the graph’s spectral domain [15], researchers have devel-
oped a graph convolutional neural network (GCN) to investi-
gate irregular graph information in the spectral domain. In
recent years, there has been increased interest in building
GCN models to study the brain connectome [16, 17]. More
and more researchers have utilized graph convolutional net-
works to detect network abnormalities in the brain under vari-
ous mental health conditions and have achieved remarkable
results for both the classification and prediction of neurologi-
cal diseases. For example, in the field of Alzheimer’s disease
(AD) research, a functional connectivity-based GCN frame-
work for early prediction of AD [18], a new framework based
on multiscale augmented GCN for detecting mild cognitive
impairment (MCI) achieved a classification accuracy of 90.39%
on the ADNI database [19], sample-weight and feature-weight
based on GCN have also made breakthroughs in classification
performance and interpretability [20], and there is a structural
MRI-based multirelational GCN for AD diagnosis by learning
multirelational perceptual representations of brain regions
[21]. In the field of ADHD research, there is population-based
learning of contrastive functional connectivity graphs for
ADHD classification verified to be superior on various metrics
[22], and there is a dynamic GCN framework revealing new
insights into connectome dysfunction in ADHD [23]. In the
others, GCN based on similarity perception and adaptive cor-
rection have obtained good results in predicting severe mem-
ory problems and MCI [24]. The graph structure data in this
paper consists of nodes (brain regions) and edges between
nodes (functional connectivity). It is not a 2D grid but indi-
cates whether two brain regions share information. This sug-
gests that, compared with traditional convolutional neural
networks, GCN can effectively reflect the complex topological
structure of the functional brain network and accurately cap-
ture the spatial dependence relationships. Therefore, a GCN
model may be a valuable tool for distinguishing individuals
with ADHD from typically developing (TD) individuals.

Neural Plasticity

Additional research indicates that functional connectiv-
ity may be a significant factor in identifying individuals with
ADHD from TD individuals [25]. In this study, rs-fMRI data
were utilized to investigate the functional connectivity net-
work in individuals with ADHD and TD individuals. Given
the high-dimensional nature of fMRI data, feature selection
was necessary before data classification to reduce its high
dimensionality [26]. The differences in functional connectiv-
ity were input into a GCN to identify individuals with ADHD.
After classification, brain regions with significant contribu-
tions to classification were visualized based on the results.
Furthermore, we explored the relationship between classifica-
tion features and attention-related regions, as well as the con-
nection between important nodes and the distribution of
positively and negatively correlated connections. This explo-
ration allowed us to identify the most discriminative brain
regions. These investigations help pinpoint ADHD-related
brain regions and the role of attention-related regions, pro-
viding a foundation for aiding in the diagnosis and treatment
of ADHD.

We propose a GCN architecture and explore the attention-
related brain regions to offer a reasonable explanation for the
neural mechanisms of ADHD. The major contributions of our
study are summarized as follows: (1) Our GCN model achieves
cross-subject and cross-site classification of ADHD, outper-
forming traditional machine learning and other neural net-
works, particularly in the context of the typical graphical
data structure of functional connectivity. (2) In feature selec-
tion, we choose differential mean values in ADHD and TD
individuals as classification features. This approach not only
reduces the high-dimensional characteristics of fMRI data but
also enhances classification accuracy for the distinctions
between ADHD and TD individuals. (3) Through classifica-
tion visualization, we can identify the brain regions with the
most significant contributions. Combining this information
with prior knowledge of attention networks, we can visualize
the most discriminative brain regions related to the attention
network, providing a theoretical foundation for the diagnosis
and treatment of ADHD patients.

2. Materials and Methods

2.1. Data Acquisition. Data used in the preparation of this
paper were obtained from the ADHD-200 public database.
The rs-fMRI data of the ADHD-200 database contains data
on 947 individuals from eight institutions, of whom 362 have
ADHD and 585 do not. At least one rs-fMRI scan, a T1-
weighted structural scan, and data on several behavioral
characteristics were provided for each subject (age, gender,
hand-use habits, and, for most subjects, one or more 1Q
scores). In the dataset, subjects were categorized as healthy
controls, ADHD-Type C, and ADHD-Type I. Due to uneven
data categories (e.g., all normal subjects or only a few ADHD
subjects) and incomplete phenotypic information of subjects
at some sites, data from Peking University (PK), the Kennedy
Krieger Institute (KKI), the New York University Child
Study Center (NYU), and Oregon Health and Science Uni-
versity (OHSU) were selected for this paper. Following
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preprocessing, incomplete or corrupt data were eliminated,
leaving 460 subjects.

2.2. Preprocessing of rs-fMRI. The raw rs-fMRI data were
preprocessed using the data processing and analysis for the
brain imaging toolbox [27]. To eliminate the effect of mag-
netic saturation at the beginning of the scan, the first 10 time
points were removed before preprocessing. The preproces-
sing steps for fMRI were as follows: (1) slice-timing correc-
tion to realign 3D brain functional images at each time point;
(2) space registration to realign the neural images of each
subject with the first data after the removal of 10 time points.
We used the Friston 24-parameter model for head motion
correction. This is a robust model of head movement that
combines six standard head motion parameters for spatial
transformation (rigid body model) to perform head motion
regression. Afterward, we combined the structural images for
segmentation and mapped the functional phases to the MNI
standard space by spatial normalization, excluding subjects
with translational movements greater than 2 mm and rota-
tional movements greater than 2°. We calculated the mean
frame-wise displacement (mean-FD Jackson) for each sub-
ject to assess head motion, removing subjects with FD greater
than 0.5 mm to ensure data quality and reliability. This step
did not eliminate the effects of head motion completely, and
head motion covariate control was performed in subsequent
group analyses to effectively control head motion noise and
eliminate head motion artifacts; (3) normalization and resam-
pling voxel of 3x 3 x3mm”. The functional image data and
structural item data were realigned, then the T1 structural
image data were segmented into white matter, gray matter,
and cerebrospinal fluid, and the gray matter density map was
applied to the resting state functional image to complete the
normalization; (4) smooth, in order to improve the signal
quality, using a Gaussian spatial filter with a 6-mm full width
at half maximum; (5) remove covariates, white matter, cere-
bral fluid, whole brain signal, and 24 head motion parameters
were removed as covariates in order to improve signal quality;
(6) detrend and filter, fMRI signal belonged to low-frequency
signal, band-pass filtering (0.001-0.1 Hz) was performed on
the signal to remove out-of-band noise.

2.3. Construct the Functional Brain Networks. The human
brain is a complex system. On the one hand, various brain
regions perform distinct functions, while on the other, they
collaborate effectively to accomplish more complex cognitive
tasks. The current brain atlas divides the cerebral cortex into
distinct regions with specific functions. Since there is no
consensus on which brain atlas is most accurate in identify-
ing functionally relevant regions of the brain [28]. Thus, the
choice of which atlas to use depends on the research objec-
tives, data quality, and considerations of computational com-
plexity and ease of interpretation. We referred to previous
studies on functional brain networks, many of which are
based on the AAL116 atlas [23, 29], and therefore, we chose
the AAL116 brain atlas for ease of comparison with and
interpretation of previous research results. In addition, the
AAL brain atlas, although with relatively few partitions, reduces
the complexity of data processing and analysis and is a simpler

and more widely recognized framework. In contrast, high-
resolution atlases such as the Schaefer atlas have more parti-
tions, though which also means more complexity in performing
data processing and network analysis, requiring more compu-
tational resources and time. High-resolution brain atlases are
more sensitive to noise, and the fMRI data used in this paper is
of average quality, and we eliminated some data during prepro-
cessing, so using Schaefer atlases may not be able to show the
expected advantages. In addition, as the number of brain regions
increases, it may lead to functional heterogeneity in some
regions, i.e., different subregions of the same region may be
functionally more different, which will make it more difficult
to interpret the results and relate them to other studies. As the
aim of this paper is to find the brain regions with large categori-
cal contributions and interpret them at the cognitive level in
conjunction with the pathology of attention network theory, to
explore their attention-related neural mechanisms, and to find
their generalizable imaging biomarkers on the attention net-
work, in order to provide a basis for assisting in the diagnosis
and treatment of ADHD. Therefore, we selected the AAL116
brain atlas in this paper. It comprises 90 brain regions in the
cerebral cortex and 26 in the cerebellum. These different brain
regions are clearly differentiated and collaborate effectively,
forming a complex network capable of performing a wide range
of cognitive tasks. Functional connectivity is a method used to
construct a functional network by leveraging the interdepen-
dence of various brain regions. Functional networks consist of
nodes and edges. There are three common methods for defining
nodes: voxels, regions of interest, and structural template brain
regions. In this paper, we use the structured AAL116 template as
nodes. Typically, the signal-time or frequency-domain rela-
tionship between two corresponding network nodes is used to
quantify the functional network edge. Methods like Pearson
correlation, partial correlation, mutual information, etc., are
frequently employed. This paper utilizes the Pearson correla-
tion method.

The procedure following data preprocessing is shown in
Figure 1. Time signals were extracted using the AAL116
template, and the time series of all voxels within each region
were spatially averaged, resulting in data dimensions of (116,
n—10), representing 116 brain regions, each with n— 10 time
points. The connectivity between brain regions was deter-
mined by calculating the correlation between time series; a
stronger correlation indicated synergy between brain regions.
Pearson correlation coefficients were used to construct the
functional connectivity matrix of (116, 116) by calculating
the correlations between any two brain regions. The correla-
tion coefficient matrix of the functional brain network was
then subjected to Fisher Z transformation to create the func-
tional brain network. As nodes in graph theory, 116 brain
regions were employed, and the correlation coefficients between
brain regions served as edges. Functional connectivity has
been used as a classification feature in many previous classifi-
cation studies, and the accuracy of classification based on
multisite data in previous studies is low due to the presence
of site effect, which may also be related to the small sample
size and high dimensionality of fMRI data. Considering the
effects of these factors, this study first resampled the data to
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FiGure 1: A workflow after data preprocessing. We use differences in functional connectivity as nodal features. After classification, we
visualized brain regions with a significant impact on classification outcomes. We also explored the relationship between classification features
and regions associated with attention, as well as the impact of important nodes on the distribution of positively and negatively correlated

connectivity.

reduce the effects of heterogeneity of different sampling
parameters. Second, the functional connectivity matrix of
the subjects was statistically analyzed using different p-values,
and the connections with large differences obtained from the
statistical analysis were used as classification features to
reduce the effect of low classification accuracy due to high
data latitude. The Regress operation was performed afterward
to remove sites as covariates. Ten-fold cross-validation was
used to evaluate the classification effect. Since the fMRI data
were acquired at four different sites, we then performed a
stratified sampling of the data by drawing on the methodology
used in a previous study, dividing the data into 10 strata
according to the acquisition site [23]. Recent studies have
shown that an SMA-based standardization scheme for de-
site effects in multicenter big data for brain imaging can
help to further improve the accuracy and reliability of multi-
site studies [30], which is also useful for us in future studies. In
this study, we selected connectivity features with differences
in mean values for classification. Age, gender, hand-use habits,
sites, and six head movement signals were removed as covari-
ates in the two-sample t-test to reduce the influence of irrele-
vant variables on the data. For classification features, we chose
connectivity at different p-values, ranging from 0.005 to 0.05,
with an interval of 0.005.

2.4. Construction of Graphs. The graph G consists of a vertex
Vand an edge E (V, E), where V ={v,, ---, v, } is the vertex
set and EC VXV is the edge set. Let n be the number of
vertices and m be the number of edges. Each graph can be
represented by an adjacency matrix A of size n X n, where
Aj; = 1 if there is a connectivity from vertex v; to v;, otherwise
A;;=0. In this paper, we used AAL116 brain regions as a
template to extract the average time series of each brain
region and calculated the Pearson correlation coefficients
between brain regions as edges to construct a functional
connectivity network. The functional connectivity network
was binarized according to the set threshold to form a binary

network, and a GCN model was constructed for graph
classification.

Based on what convolution means, the GCN model is a
filter built in the Fourier domain. According to the convolu-
tion theorem, the convolution equation is as follows:

fxg=F'{F{f}F{g}} (1)
Define its first-order derivative on the graph as follows:

feg(®) =f(x) = f(y), (2)

where x and y are neighboring nodes whose corresponding
second-order derivatives, the Laplace operators are defined
as follows:

A ()= 3 1) =) G)

y~x

Define D € (n X n) as the degree matrix of the adjacency
matrix A when i=j and D(i, ) as the degree of the node d,
then the Laplace operator of the graph can be written as L =
D - A, and the normalized Laplace operator is shown as
follows:

L=Iy - D:ADD™. (4)

The Fourier basis of the graph is the eigenvector of the
Laplace matrix of U= [uy, --u,|, at this time L= UAUT,
where A is the diagonal matrix composed of eigenvalues.
At this point, the graph Fourier transform equation and the
Fourier inverse transform are as follows:
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FIGURE 2: A 2-layer GCN model with a self-attentive pooling mechanism was built in this study and called 2L_AGCN. The number of
convolutional kernels is 32 and 16; the pooling parameter is 0.35; the activation function is ReLU; the learning rate is 0.034; and the weight

decay is 0.00005.

{ GF{X} = UTx )

IGF{X} = Ux

The convolution expression of the graph can be obtained
from the Fourier definition equation of Equation (1) and the
Fourier transform Equation (5) of the graph:

gXxx=U(UTgUTx), (6)

where g is the filter function, to give the network better local
properties during convolution so that it affects only neigh-
boring vertices, g is defined as a function of the Laplacian
matrix g(L). Put UTg is a function g,(A) of the eigenvalue
matrix A of the Laplacian matrix L with the parameter 6. At
this point, the convolution equation is as follows:

GoXx=Ug,UTx=Ug,(A)U"x. (7)

The above equation needs to require the eigenvectors of
the Laplace matrix; for the brain function, connected graphs
have more vertices and edges, the process of solving the
eigenvectors is complicated, the approximation of the filter
function according to the Chebyshev polynomial can save
that complicated step, when the order K of the Chebyshev
inequality is taken as 1, the forward transfer to the function
of the convolution of the graph can be obtained, the formula
is as follows:

HI* = o(DHADHHWY). (8)

The structure of GCN is shown in Figure 2, which is a
subgraph level GCN that requires graph embedding, con-
verting the connectivity matrix into a connectivity table
DA to facilitate the construction of the adjacency matrix A.
DA consists of coordinates that represent the connectivity
between nodes i and j. DA contains the connectivity of all

graphs; for each node, record the node label, which is a
different brain region. For each node, the graph embedding
process requires a graph index to record the number of
graphs it belongs to. This study is a supervised binary classi-
fication task, so graph labels are needed. Since the self-
attention mechanism plays an important role in improving
the performance and interpretability of neural networks [31].
Therefore, a two-layer GCN model with a self-attentive pool-
ing mechanism was built in this study and called 2L_AGCN.
The number of convolutional kernels is 32 and 16; the pool-
ing parameter is 0.35; the activation function is ReLU; the
learning rate is 0.034; and the weight decay is 0.00005.

3. Results

3.1. Classification Accuracy. In this study, sensitivity (SEN),
specificity (SPE), and accuracy (ACC) were used as measures
of classification accuracy [23]. A one-tailed, two-sample ¢-test
was done on the data to investigate the functional connectivity
in the case of different execution spaces p (0.005-0.05)
as input. The classification accuracy obtained with 10-fold
cross-validation is shown in Figure 3, where the classification
accuracy first increases with increasing p-value and then grad-
ually plateaus. With p=0.005, the classification accuracy is
80%. The best classification accuracy is achieved at p =0.03,
with Ss=83.64% +4.36%, Sc=85.12% +5.95%, and Gr=
84.49% =+ 3.53%. To provide a basis for comparison, we adopt
two baselines: the SVM using the radial basis function kernel
and a traditional GCN model without attention mechanisms.
The classification results are shown in Table 1. SVM has the
highest classification accuracy when p =0.045, and GCN has
the best classification accuracy when p =0.035. The results
show the effectiveness of our proposed GCN model with an
attention mechanism. We used a leave-one-site-out cross-
validation procedure to assess the GCN model’s ability to
classify data from various sites. This procedure excluded data
from one site from the training process, trained the model
iteratively using data from three other sites, and evaluated the
model using data from the excluded site. The study selected



0.92

0.88

0.84

0.80

0.76

(%)

0.72

0.68

0.64

0.60

Neural Plasticity

0.005 0.01 0.015 0.02

SEN
@ SPE

ACC

‘ ‘ ‘T T‘T ‘ T‘T ‘ l IT T

0.025

0.03
p Value

0.035 0.04 0.045

FIGURE 3: Variation of classification accuracy with p value. The best classification accuracy was achieved at p =0.03 with SEN =83.64% +

4.36%, SPE =85.12% =+ 5.95%, and ACC = 84.49% + 3.53%.

TasLe 1: Classification performance comparison (%).

Ss (mean = std) Sc (mean =+ std) Gr (mean = std)

SVM 72.76 £6.17 71.72 £5.84 7224 £5.27
GCN 80.214+5.86 78.45 £5.62 79.43 £4.14
Ours 83.64 4.36 85.12 £5.95 84.49+3.53

Taste 2: Classification performance (%) of leave-one-site-out cross-
validation.

Ss (mean = std) Sc (mean = std) Gr (mean = std)

PK 57.45£6.72 62.07 £6.43 58.76 £5.65
KKI 55.86 £7.62 51.22+£5.44 53.97 £6.58
NYU 64.24 £5.85 60.90 £ 8.53 62.17 £6.38
OHSU 56.55+£7.43 52.24+9.31 54.86 £ 6.60

information from PK, KKI, NYU, and OHSU. Table 2 dis-
plays the results of leave-one-site-out cross-validation.

3.2. Visualization of Functional Connectivity. Different func-
tional connectivity at p=0.03 was used as input to achieve
the highest degree of precision. The total number of brain
network connectivity was 1,110, with 599 connectivity in the
ADHD > TD group and 511 connectivity in the ADHD < TD
group, as visualized by the brain network of differentially
functional connectivity.

Some regions of the frontal, parietal, and cerebellar lobes of
the brain had higher nodal degrees; Figure 4 shows the brain
regions with the highest nodal degree. The region of the brain
with the highest nodal degree is the left angular gyrus in the
parietal lobe. Additionally, the nodal degrees in the gyrus rec-
tus, the right superior frontal gyrus, the medial orbital, the
right Heschl’s gyrus, the left lenticular nucleus, the putamen,
and the right superior cerebellar area 1 are significant.

3.3. Visualization of ADHD Classification Contribution Regions.
The contribution of each brain region to the classification was
calculated by superimposing the weight values of the functional
connectivity connected to each node in the classification. The
size of the nodes varied with the percentage of classification
contribution; a total of 34 nodes with a large contribution
(>2%) to the visualization are shown in Figure 5(a), and the
overall classification contribution of these nodes is greater than
80%. REC.L/R indicates left and right rectus gyrus, STG.R indi-
cates right superior temporal gyrus, ORBsup.R indicates right
superior frontal gyrus, orbital part, TPOsup.L indicates left
superior temporal gyrus, CAU.L indicates left caudate nucleus,
PUT.L indicates left lenticular nucleus, putamen, SMA.R indi-
cates right supplementary motor area, MTG.R indicates right
middle temporal gyrus, Cerebelum_crusl_R indicates right cer-
ebellar area 1, PCG.L indicates left posterior cingulate gyrus,
ANG.L indicates left angular gyrus, LING.L indicates left lin-
gual gyrus. Nodes with a classification contribution of 3% are
highlighted in red, nodes with contributions ranging from 2.4%
to 3% are marked in purple, and nodes with a contribution of
24% are represented in green. There are three red nodes, all
located in the right side of the brain, namely the gyrus rectus,
superior temporal gyrus, and superior frontal gyrus, as well as
the orbital part; 12 purple nodes are distributed in the frontal,
temporal, and parietal lobes; and 19 green nodes are mainly
distributed in the cerebellum and parts of the temporal lobe.
Their specific categorical contributions are shown in Table 3.
Prefrontal regions (rectus gyrus and superior orbital frontal
gyrus), the striatum, the temporal lobe (superior temporal
gyrus, middle temporal gyrus, and inferior temporal gyrus),
some regions of the parietal lobe, and some regions of the
cerebellum are the regions with large classification contribu-
tions. Seven of these cerebellar regions indicate that cerebellar-
related connectivity is also important for differentiating
ADHD from TD individuals. In recent years, previous studies
have explored the possible role of different brain regions in
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visualized several brain regions with a higher nodal degree and marked them in red.

ADHD pathology. In addition, a range of cognitive deficits,
including symptoms of impaired working memory, have been
observed in ADHD individuals due to abnormal development
of cerebellar structures [32]. More gray matter volumes were
observed in studies of adults and adolescents with ADHD,
which further indicated that ADHD was related to cerebellum
dysfunction [32]. In conclusion, our results are consistent with
existing investigations and build on previous results indicating
that the frontal, temporal, parietal, and cerebellar regions may
be the main areas of dysfunction in ADHD individuals.

3.4. ADHD Difference Network and Attention Correlation
Analysis. Previous theories have shown that ADHD is strongly
associated with abnormalities in the attentional network, and
the purpose of this paper was to explore the neural mechan-
isms underlying the association between ADHD and atten-
tion. To better understand the relationship between attention
deficit and ADHD symptom severity, we calculated functional
connectivity between all pairs of brain regions and investi-
gated their correlation with ADHD-RS ADHD inattention
score in the ADHD group. The sum of the Z values of

functional connectivity of all nodes was correlated with the
inattention score to explore which brain regions may cause
attention deficits. Nodes had both enhanced and weakened
connectivity. To avoid cancelations between enhanced and
weakened connectivity, the absolute values of Z-values of func-
tional connectivity were weighted and summed at each node
according to the methods of ADHD > TD and ADHD < TD,
then correlation analysis was performed with the subjects’
inattention score. The higher the ADHD inattention score,
the poorer the attentional concentration ability. The presence
of a positive correlation indicates that the stronger the func-
tional connectivity, the more significant the degree of atten-
tional deficits. A negative correlation indicates that as the
strength of functional connectivity decreases, the degree of
attentional deficits becomes more significant.

The functional connectivity with significant correlations
(uncorrected, p<0.05) is shown in Figure 5(b). Our purpose
is to screen the significant regions and the regions that have a
large contribution to the previous classification to get the
most discriminative brain regions. However, there were
fewer significant brain regions after FDR correction, which
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FIGURE 5: Visualization of brain regions: (a) brain regions with high contribution to classification (>2%), those with a classification
contribution of 3% are red nodes, those with a contribution of 2.4% and 3% are purple nodes, and those with a contribution of 2.4% are
green nodes; (b) the functional connectivity with significant correlations (uncorrected, p <0.05). The nodes indicate different brain regions,
the red lines indicate positively correlated connectivity, and the black lines indicate negatively correlated connectivity.
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TasLE 3: Classification of brain regions with a high contribution.

Brain area Contribution rate (%) Brain area Contribution rate (%)
Rectus_R 3.13 Cerebelum_Crus2_L 2.26
Temporal_Sup_R 3.12 Temporal_Inf L 2.25
Frontal_Sup_Orb_R, 3.00 Vermis_9 2.25
Putamen_L 2.96 Postcentral R 2.20
Angular_L 2.93 Frontal_Sup_Orb_L 2.16
Supramarginal R 2.92 Temporal_Inf R 2.16
Cerebelum_Crusl_R 2.84 Vermis_1 2.15
Rectus_L 2.80 Pallidum_L 2.09
Lingual L 2.79 Rolandic_Oper_R 2.07
Paracentral_L 2.71 Temporal_Sup_L 2.07
Temporal_Mid_R 2.58 Lingual R 2.06
Heschl_R 2.53 Precuneus_R 2.05
Temporal_pole_sup_L 2.48 Putamen_R 2.05
Caudate_L 2.41 Insula_R 2.03
Cerebelum_8_L 2.40 Cerebelum_Crus2_R 2.02
Vermis_8 2.37 Pallidum_L 2.01
Insula_L 2.30 Heschl_L 2.00

did not have statistical significance. Therefore, we did not
correct for multiple testing in this exploratory study. All
statistical data were analyzed at a 0.05 level of significance.
The uncorrected results, combined with previous studies,
may reveal the relationship between ADHD and attention
deficit, which is cognitively interpretable. Since this paper is
an exploratory study on cognition, uncorrected p-value has
been proven to be useful for exploratory analysis. Some studies
have explored the relationship between early-onset obsessive—
compulsive disorder and local gyrification index through
uncorrected p-value [33]. There are also some studies without
multiple comparison corrections [34, 35], and some studies
report both corrected and uncorrected results [36-38]. The
larger the node degree, the larger the nodes in the graph, while
the node ranges are marked with different colors. Figure 5(b)
shows all connectivity significantly related with attention: 129
in total, with 97 positive and 32 negative correlations. Impor-
tant nodes of ADHD individuals are in anterior brain regions
(basal ganglia, prefrontal cortex, thalamus), several vermes,
and inferior regions of the cerebellum. Most of the positively
correlated connectivity is concentrated in the prefrontal to
parietal and temporal connectivity. The more inattentive the
subjects are, the stronger the functional connectivity in the pre-
frontal lobe, which may be the reason for the inattention of
children with ADHD. While the negatively correlated con-
nectivity is mainly from the frontal-parietal lobe to the cere-
bellum, indicating that the more inattentive the subjects are,
the weaker the connectivity is. It should be noted that the
exploratory analyses were not corrected for multiple testing.
Therefore, the results of these analyses must be replicated in
future confirmatory studies.

ADHD is characterized by attention deficits. Multiple
studies on ADHD have revealed abnormalities in various
attention-related brain regions and networks. Qualitative
analyses of rs-fMRI data consistently show significant

differences in sensory areas, including the anterior cingulate
gyrus, prefrontal cortex, putamen nucleus, occipital cortex,
and temporal cortex in ADHD patients [39, 40]. Additionally,
low-frequency oscillations in the cerebellum and thalamus of
individuals with ADHD differ significantly from those of TD
individuals [41]. Abnormalities in internal functional connec-
tivity are observed in the default network, somatosensory
network, and dorsal attention network, as well as abnormal
internetwork functional connectivity in the default network
and ventral attention network, were present in children with
ADHD and were positively correlated with ADHD symptoms
[42]. The brain regions associated with attention that are dis-
cussed here were all implicated in ADHD, and their abnor-
malities align with the findings presented in this study.

In this study, there is a correlation between the strength
of functional connectivity and attention in ADHD patients.
Putamen, pallidum, thalamus, the left cerebellar area 1, the
right paracentral lobule, vermis 1, vermis 6, the left superior
frontal gyrus, orbital part, gyrus rectus, the right Heschl’s
gyrus, and the inferior temporal gyrus have the highest nodal
degrees. In addition to these regions comprising the anterior
cingulate and paracingulate gyri, the insula and several cere-
bellar regions are involved. It is possible that damage to the
structure or function of these attention-related regions can
result in abnormalities in the functional information trans-
mission network. A positive correlation indicates that as
functional connectivity strength increases, the severity of
attention deficit also increases. Previous studies indicated
that the posterior cerebellum is involved in visuospatial func-
tion and attentional orienting, whereas the left cerebellar
areas 1 and 2 were involved in spatial attentional control
[43]. Children with ADHD have enhanced connectivity in
left cerebellar areas 1 and 2 and more active attentional-
orienting functions, which may be related to the fact that
they are more easily drawn to the outside world.
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3.5. Categorical Contribution Region and Attention Correlation
Analysis. Through the above analysis, we visualized a total of
16 brain regions, which are not only the regions with greater
categorical contributions but also the regions significantly
associated with inattention scores (p<0.05). There are two
negative correlations in the ADHD < TD group and 14 posi-
tive correlations in the ADHD > TD group, which are shown
in Figure 6. The most discriminative brain regions include the
right superior frontal gyrus, orbital part, left gyrus rectus and
insula in the frontal lobe, right inferior temporal gyrus and
Heschl’s gyrus in the temporal lobe region, lingual gyrus in the
occipital lobe, left caudate nucleus, right putamen, and left
pallidum, as well as the superior cerebellum and vermis 8,
which are mostly involved in executive control of attention
and attentional orienting networks according to Posner’s
attention model [44].

4. Discussion

In this paper, rs-fMRI data were used to investigate the func-
tional connectivity network of ADHD and TD individuals,
and we visualized the brain regions with high classification
contributions. Our investigation revealed that the frontal,
temporal, parietal, and cerebellar regions contributed signifi-
cantly to the classification of ADHD. Additionally, to explore
the relationship between classification features and attention-
related regions, we visualized the brain regions associated
with attention networks. Finally, we filtered out a total of 16
brain regions, including the right superior frontal gyrus, the
left direct frontal gyrus, and other brain regions. These regions
are primarily involved in the executive control of attention and
the attention orientation network. These investigations can
help identify ADHD-related brain regions and the role of
attention-related regions, providing a basis to assist in the
diagnosis and treatment of ADHD.

We classified the data from PK, KKI, NYU, and OHSU,
and we obtained an accuracy of 84.49% =+ 3.53%. Previous
studies used data from three different sites and investigated
which regions, including the prefrontal, cingulate, and visual
cortexes, can best distinguish between healthy controls and
different subtypes of ADHD (inattentive, hyperactive, and
mixed ADHD) [45]. With an accuracy of 90% for compar-
isons, a fully connected cascade artificial neural network was
used to distinguish ADHD and TD individuals. Connectivity
between the frontal lobes and cerebellum was the defining
characteristic [46]. These studies had relatively high classifi-
cation accuracy to distinguish ADHD from TD individuals
and identified problems in multiple regions of the brain
related to attention.

We identified the input features of functional connectiv-
ity differences and obtained brain regions with a greater
contribution to classification. Our results showed that spe-
cific regions in the frontal, temporal, parietal, and cerebellar
lobes had higher nodal degrees. The results were in line with
several previous studies, but there were also some differ-
ences. Research indicates that the frontal and cerebellar
regions [47], as well as the prefrontal, cingulate, and visual
cortex [45], were the most discriminative. In distinguishing

Neural Plasticity

ADHD from TD individuals, the temporal lobe, cingulate
gyrus, and ventral lateral prefrontal cortex were crucial regions
[39]. Local connectivity and regional homogeneity calculations
could effectively distinguish the ADHD group from the con-
trol group. The prefrontal cortex, anterior cingulate gyrus, and
cerebellum were discovered to be the brain regions with the
greatest degree of differentiation [48]. The functional connec-
tivity between the frontal and cerebellar regions appeared to be
a robust candidate for the distinction between ADHD and TD
individuals.

Our findings suggest that ADHD is associated with
abnormalities in multiple brain regions, indicating that it is
not caused by a single brain region but by issues in how the
brain’s attention networks connect. These findings align with
previous studies [47]. Several regions, such as the right pre-
frontal cortex, cerebellum, and caudate nucleus, have shown
structural abnormalities [49]. Using a local coherence index,
the rs-fMRI of boys with ADHD was examined in a study. It
was discovered that local coherence in the frontal-striatal-
cerebellar pathway decreased, whereas it increased in the
occipital lobe [50]. ADHD patients exhibited enhanced
functional connectivity in the anterior cingulate gyrus and
dorsal frontal lobe [51]. ADHD was associated with decreased
low-frequency amplitudes in the right inferior frontal gyrus
cortex, left sensorimotor cortex, and both cerebella and
increased low-frequency amplitudes in the right anterior cin-
gulate cortex and bilateral brainstem, indicating that changes
in spontaneous neural activity in these brain regions may be
related to the pathophysiological mechanisms of ADHD [52].
Researchers studying the inhibition-related modulation of the
frontoparietal network in children with ADHD found that it
predicted cognitive control and inattention symptoms in chil-
dren. These studies indicated that ADHD is a closely related
psychiatric disorder [53].

In our results, most of the positively correlated connectiv-
ity is concentrated in the prefrontal to parietal and temporal
connectivity, while the negatively correlated connectivity is
mainly from the frontal-parietal lobe to the cerebellum. We
obtained many attention-related brain regions through visu-
alization, which indicates ADHD is a mental disorder closely
associated with attention. Most of the brain regions are
involved in the attentional orienting networks and the atten-
tional executive control networks. A core symptom of ADHD
is the inability to ignore external stimuli, which is thought to
result from abnormalities in the functional connectivity of the
dorsal attentional network [54]. The intraparietal sulcus and
the frontal eye area are vital components of the dorsal atten-
tion network, while the parietal lobe plays a crucial role in
attentional dissociation. In addition, the right posterior cere-
bellar lobe, middle temporal gyrus, and inferior temporal
gyrus are important dorsal network components. The ventral
attentional network consists of the right temporoparietal con-
nectivity and ventral frontal cortex, and it redirects attention
to stimuli [54]. Correlation analysis between the sum of con-
nectivity strengths of contributing brain regions and attention
deficits revealed regions such as the right superior orbital
frontal gyrus, the left rectus gyrus, and bilateral insula in
multiple regions of the prefrontal lobe, the right inferior
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temporal gyrus and bilateral transverse temporal gyrus in tem-
poral lobe regions, the lingual gyrus in the occipital lobe, and the
left caudate nucleus [41]. This is consistent with the presence of
multiple functional connectivity abnormalities in parietal and
temporal brain regions in the present study and indicates that
functional connectivity in parietal and temporal brain regions
can be used to identify ADHD and TD individuals.

There were some limitations to this research. Single static
features were used for classification and identification in this
study; multiple features were not used for classification stud-
ies. This study focused solely on differences in the strength of
functional connectivity in ADHD. The flow of information
was not identified. In addition, existing research has indicated
that extracting connectivity features from multiple brain
atlases improves the diagnostic precision of brain disorders
[55]. The current approach to identifying the best applicable
brain atlases for different scenarios is mainly data-driven [28],
i.e., instead of assuming a priori what atlases would be appro-
priate to use, atlases with different levels of granularity are to
be used, and their performances are to be compared in terms
of recognizing signals of interest. In the future, we will con-
duct an in-depth study of ADHD based on multiple brain
maps and multiple features, as well as the information flow
of ADHD, to explore the etiology of ADHD and improve
diagnostic and treatment approaches.

5. Conclusions

In this paper, a GCN model was developed to classify the
functional connectivity differences between ADHD and TD
individuals. It was investigated that functional connectivity
differences could be used to identify ADHD and TD indivi-
duals with high classification accuracy. In addition, we visu-
alized the functional connectivity network and the regions
that contributed the most to the classification, investigated
the correlation between the features of the attention-related
network regions and the inattention scores, and filtered the
most discriminative regions that contributed the most to the
classification and were significantly associated with atten-
tion. The results revealed that the attention-related regions
were primarily located in the prefrontal and cerebellar
regions of the brain and that these regions helped identify
ADHD individuals. There are problems in the default mode
network, the ventral attention network, the executive control
network, and other attention-related networks, especially in
several dorsal attention network regions. Disruptions in the
functional connectivity of these regions could be the root
cause of ADHD disorders.
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