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Background. Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are two widespread chronic disorders characterized
by shared risk factors and molecular pathways. Glucose metabolism, pivotal for cellular homeostasis and energy supply, plays
a critical role in these diseases. Its disturbance has been linked to the pathogenesis of both AD and T2DM. However, a com-
prehensive investigation into the specifc roles of glucometabolic genes in the onset and progression of AD and T2DM has yet to
be conducted. Methods. By analyzing microarray datasets from the Gene Expression Omnibus (GEO) repository, we identifed
diferentially expressed glucometabolic genes (DEGs) in AD and T2DM cohorts. A range of bioinformatics tools were employed
for functional annotation, pathway enrichment, protein interaction network construction, module analysis, ROC curve as-
sessment, correlation matrix construction, gene set enrichment analysis, and gene-drug interaction mapping of these DEGs. Key
genes were further validated using quantitative real-time polymerase chain reaction (qRT-PCR) in AD and T2DMmurinemodels.
Results. Our investigation identifed 41 glucometabolic-related DEGs, with six prominent genes (G6PD, PKM, ENO3, PFKL,
PGD, and TALDO1) being common in both AD and T2DM cohorts. Tese genes play crucial roles in metabolic pathways
including glycolysis, pentose phosphate pathway, and amino sugar metabolism.Teir diagnostic potential was highlighted by area
under curve (AUC) values exceeding 0.6 for AD and 0.8 for T2DM. Further analysis explored the interactions, pathway en-
richments, regulatory mechanisms, and potential drug interactions of these key genes. In the ADmurine model, quantitative real-
time polymerase chain reaction (qRT-PCR) analysis revealed signifcant upregulation of G6pd, Eno3, and Taldo1. Similarly, in the
T2DM murine model, elevated expression levels of G6pd, Pfkl, Eno3, and Pgd were observed. Conclusion. Our rigorous research
sheds light on the molecular interconnections between AD and T2DM from a glucometabolic perspective, revealing new op-
portunities for pharmacological innovation and therapeutic approaches.Tis study appears to be the frst to extensively investigate
glucometabolic-associated DEGs and key genes in both AD and T2DM, utilizing multiple datasets. Tese insights are set to
enhance our understanding of the complex pathophysiology underlying these widespread chronic diseases.

1. Introduction

Alzheimer’s disease (AD) and type 2 diabetes mellitus
(T2DM) are two prevalent chronic diseases that afect
millions worldwide [1]. AD, a progressive neurodegenera-
tive disorder, is characterized by cognitive impairment,
memory loss, and behavioral changes [2]. Its early symptoms
result from synaptic dysfunction, which disrupts neural
circuit connections, leading to continuous memory loss [3].
Research indicates that glucose, the primary energy source

for brain activity, shows impaired metabolism in the brains
of AD patients before structural changes and cognitive
impairment become evident. Tis impairment in glucose
metabolism may serve as an early indicator of AD [4].

T2DM, a metabolic disorder, is characterized by hyper-
glycemia, insulin resistance, and impaired insulin secretion
[5]. Tis metabolic disturbance also increases the risk for
dementia [6]. AD and T2DM share several metabolic defects,
including insulin resistance, impaired glucose metabolism,
and mitochondrial dysfunction [7]. Furthermore, T2DM has
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been linked to an increased risk of dementia [8, 9] and of AD
by 45–90% [10, 11], as well as an increased risk of AD in
T2DM patients [12]. Certain diabetes complications, such as
imbalances between glucose and insulin, signifcantly elevate
the risk of developing dementia [8].

Te molecular mechanisms connecting AD and
T2DM remain incompletely understood; however, ac-
cumulating evidence points to a critical role for glucose
metabolism in both conditions [13]. Essential for
maintaining cellular homeostasis and energy supply,
glucose metabolism encompasses pathways like glycoly-
sis, gluconeogenesis, the PPP, and glycogen synthesis/
degradation [14]. Disruption in glucose metabolism can
lead to the accumulation of toxic metabolites or in-
termediates, mitochondrial dysfunction, increased oxi-
dative stress, and infammation [15]. Tese pathological
processes can compromise brain function and structure
in AD patients or pancreatic β-cell function and insulin
sensitivity in T2DM patients [16].

Glucose metabolism-related genes encode enzymes or
regulators that modulate glucose metabolism. Alterations in
these genes can impact metabolic pathways and disease
pathogenesis [17]. Previous studies have identifed associ-
ations between certain glucose metabolism-related genes
and susceptibility or progression of AD or T2DM [18–20].
However, a comprehensive analysis of these genes in both
AD and T2DM has yet to be conducted.

Given the rising global incidence of diabetes and neu-
rodegenerative diseases, identifying new biomarkers asso-
ciated with these conditions is critically important for
developing future diagnostic methods. In our study, we
conducted a thorough analysis of DEGs related to glucose
metabolism in AD and T2DM using multiple datasets. We
pinpointed six hub genes involved in key metabolic path-
ways with potential diagnostic relevance for both diseases.
Our results contribute to a deeper understanding of the
pathophysiology of these prevalent chronic diseases from
a glucometabolic standpoint and ofer novel targets for drug
development and therapy.

2. Materials and Methods

2.1. Data Source. Te purpose of this study is to study the
biomarkers and therapeutic targets of AD and T2DM based
on bioinformatics methods. Microarray expression data for
AD and T2DM were downloaded from the Gene Expression
Omnibus (GEO) database, with our methodologies in-
formed by prior research [21]. A total of 104 control and 145
AD samples were sourced from the GSE63060 dataset which
is a human blood sample-related AD, and the data are also
matched in age and gender. Te GSE95849 dataset is a hu-
man peripheral blood mononuclear cell sample of T2DM,
including 6 T2DM samples and 6 control samples.Tese two
datasets are in line with our research purposes, so these two
datasets are selected.

Te glucometabolic-related genes were obtained from
the Gene Ontology-biological process (GO-BP) gene sets in
the Molecular Signature Database (MSigDB; https://www.
gsea-msigdb.org/gsea/msigdb/index.jsp).

2.2. Acquirement of Diferentially Expressed Genes (DEGs).
Generally, all the microarray data after normalization were
analyzed by R software.

R package “limma” was used to identify diferentially
expressed mRNAs in AD and T2DM dataset. Te threshold
of DEGs’ screening was ∣log2FC|≥ 1 and adj.P. Val <0.05
[22]. Te DEGs obtained from the two datasets were vi-
sualized using the R packages “pheatmap” and “ggplot2” to
generate the heat maps and volcano maps, respectively.

2.3. Functional Annotation and Pathway Enrichment
Analysis. We overlapped DEGs from two datasets and
glucometabolic-related genes to obtain glucometabolic-
related DEGs both in AD and T2DM datasets.

To reveal the functions of DEGs, GO annotation [23] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment [24] analysis were conducted using the “cluster-
Profler” package. Te GO terms were composed of the
following three categories: biological process (BP), cellular
component (CC), and molecular function (MF). While the
KEGG pathway enrichment analysis is prone to describe
gene function in the genomic and molecular levels and show
the correlated genes. Adj.P. Val <0.05 was regarded as
statistically signifcant.

2.4. Protein-Protein Interaction (PPI) Network Construction.
Te PPI network was constructed through the Search Tool
for the Retrieval of Interacting Genes (STRING) database
[25]. Cytoscape software was used to visualize the network
[26]. Ten, Cytoscape plugin-MCODE was used to screen
the signifcant modules in the PPI network.

2.5. Evaluation of Diagnostic Performance of Hub Genes.
ROC curve analysis was performed using the pROC package
to evaluate the diagnostic value of the hub genes for AD and
T2DM, respectively. Receiver operating characteristic
(ROC) curve analysis, which yields indictors of accuracy
such as the area under the curve (AUC), provides the basic
principle and rationale for distinguishing between the
specifcity and sensitivity of diagnostic performance [27].

2.6. Correlation Analysis and Gene Set Enrichment Analysis
(GSEA) of Hub Genes. Te “ggpubr” package was used to
perform Spearman correlation analysis on hub genes.
Moreover, GSEA of hub genes was performed using the
“GSEABase” packages, and KEGG gene sets were used as
a reference, with P< 0.05 being a statistically signifcant
diference.

2.7. Construction of Gene-Drug Interaction Network and
Regulatory Network of Hub Genes. In order to explore the
potential therapeutic drugs for gene-related diseases, the
targeted drugs of proteins encoded by key genes through the
DGIDB database were identifed (https://dgidb.genome.
wustl.edu/) [28].
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We used miRNet [29] databases to predict the TFs and
miRNAs of hub genes. Hub genes and their TFs and
miRNAs were integrated into a regulatory network and
visualized using Cytoscape software.

2.8. Experimental Animals. Te study, sanctioned by the
Animal Experiment Committee of Shenyang Fourth Peo-
ple’s Hospital, utilized male C57BL/6J mice (8weeks old)
sourced from China Medical University. Te mice were
maintained at a consistent temperature of 22± 2°C and
subjected to a 12 :12-hour light-dark cycle, with unrestricted
access to food and water. Body weight and food intake were
recorded weekly.

2.8.1. Alzheimer’s Disease (AD) Model. For the AD model,
male 5XFAD transgenic mice from Jackson Laboratory,
harboring familial AD mutations (K670N/M671L, I716V,
V717I in App; M146L, L286V in Ps1) [30], along with wild-
type C57BL/6J mice, were utilized for AD and control
groups, respectively (8 mice/group). Genotyping was per-
formed using PCR from tail DNA samples.

2.8.2. Type 2 Diabetes Mellitus (T2DM) Model. Te T2DM
model involved inducing the condition in male C57BL/6J
mice using streptozotocin (STZ, 55mg/kg; Solarbio, batch
S0130) [31]. Temice were categorized into STZ-treated and
control groups (8 mice/group), with the former receiving
daily intraperitoneal injections of STZ for 5 consecutive
days. Blood glucose levels were monitored four weeks
postinjection using an ACCU-CHEK glucometer (Roche
Diagnostics).

Blood samples were collected from all mice at 12weeks
for analysis. Te bleeding techniques and administration of
anesthetics and analgesics adhered to contemporary veter-
inary guidelines. All mice were treatment-naı̈ve prior to this
study. For all procedures, approximately 100 μl of blood was
collected using either marked capillary pipettes or a syringe
and immediately stored in EDTA-coated tubes (BD
Microtainer) for thorough mixing. Experienced researchers
conducted all bleeding in this study.

A modifed tail-clip procedure was employed [32].
Briefy, 2.5% Lidocaine and 2.5% Prilocaine (EMLA) cream
(Hi-Tech Pharmacal Co., Inc, Amityville, NY) was topically
applied to the distal 0.5 cm of the tail 15minutes prior to
bleeding. A segment of ≤1mm was amputated with surgical
scissors, and blood was collected using capillary pipettes.

2.9.QuantitativeReal-TimePolymeraseChainReaction (qRT-
PCR). Total RNA was extracted from the peripheral blood
of mice using TRIzol® reagent (Invitrogen Life Technolo-
gies, Carlsbad, CA, United States). Reverse transcription of
total RNA was performed using a high-capacity cDNA re-
verse transcription kit (code: FSQ-101, Osaka, Japan). Te
primer sequences for qRT-PCR are as follows for G6pd
primers: 5′-CAG GGA CGA GCT CCT TGA G-3′ and
5′-GGG GGT TCA CCC ACT TGT AG-3′; Eno3 primers:
5′-CGC AGA TCT TGC AGG CAA TC-3′ and 5′-GGG

TCA TCG GGT GAC TTG AA-3′; Taldo1 primers: 5′-AAA
AAG TTG GCA TGT CGA GC-3′ and 5′-GCT GAT CCC
AGC TTC CTT GT-3′; Pfkl primers: 5′-TCA TGT GTG
TCA TCC CAG CC-3′ and 5′-CAT GCG GTG CTC GAA
ATC AG-3′; Pgd primers: 5′-CCA TGG CCC AAG CTG
ACA TC-3′ and 5′-ACC GTC TTG TGG TGT CCC TA-3′.
For qRT-PCR, SYBR Green PCR Master Mix (Cat. No.
04913850001, Roche, Germany) and the BIO-GENER Real-
Time System (China) were used according to the manu-
facturer’s instructions. Te number of mice in each group
was eight, and each sample was tested in triplicate-
independent qRT-PCR. Te threshold cycle (Ct) values
were standardized to the glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) values measured on the same plate,
and the 2−ΔΔCt method ·was used to determine the fold
changes in gene expression [33].

2.10. Statistical Analysis. In this study, R software was used
for statistical analysis. Spearman correlation analysis was
used to evaluate the correlation between continuous vari-
ables. Te diference of variables between the disease group
and the control group was evaluated by the Wilcoxon rank
sum test, and GraphPad Prism 9.0 was used for statistical
analysis and visualization of qRT-PCR. ∗P< 0.05, ∗∗P< 0.01,
and ∗∗∗P< 0.001. P< 0.05 was considered statistically sig-
nifcant, and the calibration method of P value is the false
discovery rate (FDR).

3. Results

3.1. Identifcation of Diferentially Expressed Glucometabolic-
Related Genes and Functional Analysis. A total of 3148
DEGs, including 1652 up-regulated genes and 1496 down-
regulated genes, were identifed in the AD dataset
GSE63060. Te volcano map of DEGs is shown in
Figure 1(a). Te heatmap for the top 15 upregulated and top
15 downregulated DEGs is displayed in Figure 1(b).

A total of 3280 DEGs were identifed in the T2DM
dataset GSE95849. Of these DEGs, 3023 genes were upre-
gulated and 257 genes were downregulated. Te volcano
map of DEGs is shown in Figure 2(a). Te heatmap for the
top 15 upregulated and top 15 downregulated DEGs is
displayed in Figure 2(b).

After intersecting the glucometabolic-related genes with
DEGs from two datasets, we found total 41 glucometabolic-
related DEGs (Figure 3). GO analysis revealed that
41 glucometabolic-related DEGs were enriched in the
monosaccharide metabolic process, cellular carbohydrate
metabolic process, and hexose metabolic process
(Figure 4(a)). Analysis of the KEGG signal pathways
revealed that glucometabolic-related DEGs were mainly
enriched in carbon metabolic, amino sugar and nucleotide
sugar metabolism, and pentose phosphate pathway
(Figure 4(b)).

3.2. PPI Network Construction and Module Analysis. To
further study the interaction of 41 glucometabolic-related
DEGs, we constructed the PPI network by using the
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STRING database (Figure 5(a)).Temost signifcantmodule
consisting of 6 genes and 14 edges was found using the
MCODE plug-in of Cytoscape software. Further, six genes
including G6PD, PKM, ENO3, PFKL, PGD, and TALDO1 in
the key module were selected as potential hub genes
(Figure 5(b)).

3.3. Evaluation of Diagnostic Performance of Hub Genes.
We analyzed the expression level of hub genes in AD and
T2DM, respectively. Te results showed that the expression
of all hub genes was upregulated in AD patients in GSE63060
(Figure 6(a)). For ROC curve analysis, the AUC values of the
six hub genes were above at 0.6 (Figure 6(b)). In addition, all
hub genes were upregulated in T2DM patients in GSE95849
(Figure 7(a)). For ROC curve analysis, the AUC values of the
six hub genes were above at 0.8 (Figure 7(b)), which in-
dicated that these genes had better distinguish performance
in T2DM.

3.4. Correlation and GSEA Analyses for Hub Genes. In AD,
the correlation results showed that TALDO1 was highly
positively correlated with PGD and G6PD (Figure 8(a)). By
performing GSEA analysis of each hub gene, we found that
all hub genes were enriched in ribosome. Moreover, G6PD,
PFKL, PGD, and TALDO1 were also associated with oxi-
dative phosphorylation. PFKL, PGD, PKM, and TALDO1
were also associated with lysosome. G6PD, PGD, and
TALDO1 were also associated with Parkinson disease
(Figures 8(b)–8(g)).

In T2DM, PGD and PFKL had the strongest correlation,
followed by the correlation between PGD and TALDO1
(Figure 9(a)). By performing GSEA analysis of each hub
gene, we found that ENO3, G6PD, TALDO1, PKM, and
PFKL were enriched in ribosome. In addition, ENO3, G6PD,
and TALDO1 were also associated with proteasome.
TALDO1 and PGD were also associated with lysosome
(Figures 9(b)–9(g)).
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dataset, including 1652 upregulated genes and 1496 downregulated genes. (b) Te heatmap of DEGs in the GSE63060 dataset for the top 15
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3.5. Construction of Gene-Drug Interaction Network and
Regulatory Network of Hub Genes. In order to explore the
potential therapeutic drugs for the diseases related to 6 hub
genes, the compounds targeting the proteins encoded by hub
genes were identifed (Figure 10). Only three genes, G6PD,
PGD, and PKM, were found to have interactions with small
molecule drugs in the DGIdb database.Tere were 108 drugs
with therapeutic efects on 3 hub genes, such as sulfame-
thoxazole, glyburide, and nitrofurantoin.

By using the miRNet database, the miRNAs-hub genes
and TFs-hub genes networks were constructed by Cytoscape
software (Figures 11(a) and 11(b)). Among them, miRNAs
targeting at least three hub genes were selected to construct
the network. Finally, the network was composed of 6 hub
genes, and 17miRNAs and 36 TFs were established.Te blue
squares were hub genes, the brown ovals were miRNAs, and
the purple rhombus was TFs.

3.6. Validation of Hub Genes. To validate the results of the
bioinformatics analysis, the expression of hub genes in AD,
T2DM, and mouse peripheral blood was analyzed using
qRT-PCR, and statistical analysis of the data results was
performed using GraphPad Prism 9.0. Consistent with the
bioinformatics results, it was found that, compared to
normal mice in peripheral blood, AD mice exhibited in-
creased expression ofG6pd, Eno3, and Taldo1 (Figure 12(a)).
Similarly, T2DMmice showed increased expression ofG6pd,
Pfkl, Eno3, and Pgd (Figure 12(b)).

4. Discussion

Glucose metabolism is essential for maintaining cellular
homeostasis and energy supply. Disorders in glucose
metabolism are linked to various diseases, including AD and
T2DM [34–36]. Abnormal glucose metabolism in the brain
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Figure 5: Construction of the protein-protein interaction (PPI) network. (a) PPI network of candidate genes consisting of 6 genes and 14
edges. (b) PPI network of six potential hub genes.
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Figure 8: Correlation and gene set enrichment analysis (GSEA) analyses for hub genes in the GSE63060 dataset. (a)Te correlation analysis
of six hub gene expression. GSEA of six hub genes. TALDO1 (b), ENO3 (c), G6PD (d), PFKL (e), PGD (f ), and PKM (g).
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Figure 9: Continued.
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is now recognized as an early biomarker of AD and may also
contribute to its pathogenesis, afecting Aβ and Tau meta-
bolism, mitochondrial function, cellular signaling, and
neuronal plasticity [13]. Increasing evidence indicates
a connection between DM and AD with impaired glucose
homeostasis and altered brain function [37]. Abnormal
glucose metabolism thus acts as a link between DM and AD.
Te primary aim of our study was to identify the difer-
entially expressed genes (DEGs) related to glucose meta-
bolism abnormalities in AD and DM, uncover potential
targets, and explore their shared possible pathogenesis.

In our research, we identifed 41 glucose metabolism-
related DEGs in AD and T2DM patients through bio-
informatics analysis. We also pinpointed six central genes
(G6PD, PKM, ENO3, PFKL, PGD, and TALDO1) involved in
key metabolic pathways with diagnostic potential for both

diseases. Moreover, we investigated the correlation, enrich-
ment, regulation, and drug interactions of these hub genes.

In our study, DEG enrichment was observed in
monosaccharide metabolism, cellular carbohydrate meta-
bolism, and hexose metabolism. Abnormal cellular carbo-
hydrate metabolism is a reliable biomarker for diagnosing
precursor AD in MCI patients [38]. Te main pathways in
cellular carbohydrate metabolism include glycolysis and the
pentose phosphate pathway (PPP). Tese pathways involve
the participation and regulation of multiple enzymes. No-
tably, hub genes G6PD, PKM, ENO3, PFKL, PGD, and
TALDO1 are key enzymes in this study. G6PD and ENO3
have been implicated in AD risk and progression [39, 40],
and an increase in G6PD activity is related to T2DM [41].

We also assessed the diagnostic performance of these hub
genes through ROC curve analysis, suggesting new possibilities
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Figure 9: Correlation and GSEA analyses for hub genes in the GSE95849 dataset. (a) Te correlation analysis of six hub gene expression.
GSEA of six hub genes. ENO3 (b), G6PD (c), PFKL (d), PGD (e), PKM (f ), and TALDO1 (g).
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for AD diagnosis. Unlike T2DM, where diagnosis primarily
relies on laboratory markers, AD diagnosis is predominantly
based on clinical practice. Blood-based biomarker detection
ofers a novel approach for early diagnosis and monitoring of
AD. Detecting these genetic markers in blood samples during
the disease’s early stages could facilitate AD identifcation
before clinical symptoms’ manifest, potentially enhancing
treatment efcacy and disease management. Biomarkers from
peripheral blood samples are increasingly favored due to their
noninvasiveness and cost-efectiveness compared to other
methods, and they may refect pathological changes in the
brain [42, 43].

In this research, we predicted a total of 108 drugs with
therapeutic efects on the G6PD, PGD, and PKM hub genes.
Some of these drugs are reported to beneft AD while
treating T2DM. For instance, Sulfonylureas, commonly used

for diabetes treatment, have shown potential in infuencing
AD progression by afecting the central nervous system’s
potassium ATP channel, providing potential AD treatment
strategies [44]. Furthermore, the potential link between AD
and brain insulin resistance [45] has made insulin sensitizers
like metformin a focus in AD treatment. A placebo-
controlled clinical trial demonstrated that metformin im-
proved learning, memory, and attention in AD patients [46].
Tere is substantial evidence of a strong connection and
similar pathological mechanisms between AD and T2DM,
with a growing number of studies exploring the therapeutic
efects of antidiabetic drugs on AD [47, 48].

Additionally, we constructed a miRNAs-hub gene and
TFs-hub gene regulatory network using the miRNet database.
We discovered that 17 miRNAs target at least three hub genes,
and 36TFs regulate at least one hub gene. Tese miRNAs and

Figure 10: Construction of gene-drug interaction network. Te potential therapeutic drugs for the diseases related to six hub genes.

(a) (b)

Figure 11: Construction of hub gene regulatory network. (a) Construction of miRNAs-hub gene network. Te blue squares indicate hub
genes, and the brown ovals indicate miRNAs. (b) Construction of TFs-hub gene network. Te blue squares indicate hub genes, and the
purple rhombus indicates TFs.
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TFs, including miR-9, miR-375, andmiR-124a, are reported to
be associated with T2DM, insulin resistance, and β-cell dys-
function pathogenesis [49, 50]. Tey may regulate the glucose
metabolism pathways of AD and T2DM by infuencing the
expression of key enzymes such as G6PD, PGD, and PKM.

However, it is important to acknowledge some limi-
tations of this study. Firstly, being a microarray data
analysis, it is essentially retrospective research. While this
approach expedites the identifcation of disease mecha-
nisms, it necessitates further external validation to confrm
our fndings. Moreover, the study primarily focused on
gene expression changes, not comprehensively considering
other regulatory mechanisms like epigenetic regulation and
protein posttranslational modifcations. Also, although
some diabetes drugs showed improvement in cognitive
impairment in AD patients, inconsistent results have been
observed in in vivo and clinical studies [51]. Teir efects
might depend on complex underlying pathological pro-
cesses. Furthermore, while this study evaluated the di-
agnostic performance of key genes via ROC curve analysis,
accurate blood biomarkers for AD diagnosis are still under
investigation. Te correlation between peripheral markers
and brain changes is not fully established, and the accu-
mulation of various pathological features in the brain is
thought to initiate symptom onset. Additionally, in pro-
gressive diseases like AD, chronic comorbidities can cause
numerous changes in markers, potentially refected in
peripheral blood concentrations [52]. Hence, caution is
advised in interpreting blood sample results for central
disease assessment.

In summary, our study identifed six central genes
(G6PD, PKM, ENO3, PFKL, PGD, and TALDO1) diferen-
tially expressed in AD and T2DM patients, which are in-
volved in key glucose metabolism pathways.Tese hub genes
hold promise as biomarkers for disease diagnosis and po-
tential therapeutic targets.
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Figure 12:Te expression of six hub genes by quantitative real-time PCR (qRT-PCR). (a)Te expression ofG6pd, Eno3, and Taldo1 by qRT-
PCR in the ADmice model compared to the control. ∗∗P< 0.01. (b) Te expression of G6pd, Eno3, Pfkl, and Pgd by qRT-PCR in the T2DM
mice model compared to the control. ∗∗P< 0.01.
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