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Oxidative stress has been implicated in the pathophysiology 
of multiple human diseases, in addition to the aging process. 
Although various stimuli exist, acute exercise is known to induce a 
transient increase in reactive oxygen and nitrogen species (RONS), 
evident by several reports of increased oxidative damage following 
acute bouts of aerobic and anaerobic exercise. Although the results 
are somewhat mixed and appear disease dependent, individuals 
with chronic disease experience an exacerbation in oxidative stress 
following acute exercise when compared to healthy individuals. 
However, this increased oxidant stress may serve as a necessary 
“signal” for the upregulation in antioxidant defenses, thereby 
providing protection against subsequent exposure to prooxidant 
environments within susceptible individuals. Here we present 
studies related to both acute exercise-induced oxidative stress in 
those with disease, in addition to studies focused on adaptations 
resulting from increased RONS exposure associated with chronic 
exercise training in persons with disease.

Introduction

The production of reactive oxygen and nitrogen species (RONS) 
and the subsequent processing via the antioxidant defense system is 
a delicately balanced and continual process in vivo that serves several 
key roles in human physiology. RONS are very small molecules which 
are highly reactive due to their unpaired valence shell electrons, and 
are short-lived (e.g., 10-6, 10-5, 10-9 seconds for singlet oxygen, 
superoxide radical and hydroxyl radical, respectively). Hence, they 
often react with other molecules promoting either positive or nega-
tive effects. While RONS generation occurs in part as a consequence 
of normal cellular metabolism, they are also generated through 
exposure to a wide variety of environmental (e.g., cigarette smoke, 
ozone, dietary fat and carbohydrate) and physiological (e.g., physical 
and mental stress) challenges.1 Specifically, RONS may be mediated 
by an increased activity of radical generating enzymes (e.g., xanthine 

oxidase), activation of phagocytes, phospholipases, cyclooxygenases 
and lipoxygenases, as well as through disruption of the electron 
transport system leading to increased electron leakage and superoxide 
radical formation. Under optimal conditions, RONS regulate vital 
processes such as cellular signaling, immune function, apoptosis and 
gene transcription.1 However, in response to a variety of stressors 
such as exposure to chemical pollutants,2 cigarette smoke3, excess 
nutrient intake4 and physical exercise,5 RONS production increases. 
When in conjunction with poor antioxidant defense, a state of oxida-
tive stress occurs, which may ultimately lead to oxidative damage to 
cellular DNA, proteins and lipids.2

Oxidative stress has been linked to the pathophysiology of a 
myriad (>100) of human diseases, as well as to the aging process.6 
This relationship has been illustrated by several investigators reporting 
an increased production of RONS and/or an increased accumula-
tion of oxidative stress biomarkers in diseased compared to healthy 
individuals.7-15 It is unclear as to whether the heightened oxidative 
stress observed in those with disease represents a causal relationship 
or whether increased RONS is simply a consequence of disease 
pathology.2 However, it is plausible that chronic exposure to oxida-
tive stress could represent a contributing factor to disease progression, 
as several mechanic links have been recently described.16-21 Increased 
oxidative stress associated with disease is often related to a depletion 
in enzymatic and nonenzymatic antioxidants,6 thereby reducing the 
ability to protect against excess RONS exposure. This is particu-
larly apparent when diseased individuals are exposed to RONS 
production in response to acute exercise (Tables 1–5), as heightened 
oxidative stress has been observed for such individuals as compared 
to healthy controls.7-12,22-31 While this has traditionally been viewed 
as a negative finding, based on the principle of hormesis, it is plau-
sible to consider that such an acute increase in RONS may actually 
be a necessary stimulus to allow for an upregulation in antioxidant 
defense.32

The purpose of this review is to first provide an account of the avail-
able literature pertaining to the effects of acute exercise on oxidative 
stress biomarkers in those with disease. It is comprised of >30 original 
human investigations focused on acute exercise and oxidative stress in 
a variety of disease conditions, separated by classification. Second, we 
provide a summary of work related to the impact of chronic exercise 
training on the antioxidant defense system and oxidative status of 
those with disease. Due to the relative paucity of data in this latter 
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Table 1  Acute exercise-induced oxidative stress and COPD

Reference	 Subjects	 Exercise	 Tissue	 Marker	 Times	 Effects
Vina	 9 patients w/COPD	 cycle ergometry at 40 W, 50–60	 blood	 GSH	 pre, post	 ↔
(1996)		  revolutions/min until dyspnea		  GSSG		  ↑
Heunks	 16 patients w/COPD	 GXT on cycle	 blood	 GSH	 pre, 0, 60 min post	 ↓ 0 post
(1999)				    GSSG		  ↑ 0 post
				    MDA		  ↑ 0, 60 post
Couillard	 11 patients w/COPD	 knee extension at loads ~40%	 blood	 Phagocytic O2

•-	 pre, 0, 6 h post	 ↔
(2002)	 12 controls	 MVC (12 per min) until exhaustion		  TBARS		  ↑ 6 h post in COPD
				    Vitamin E		  ↔
Couillard	 10 patients w/COPD	 knee extension at loads ~30%	 muscle	 TBARS	 pre, 48 h post	 ↑48 h post in COPD
(2003)	 12 controls	 MVC (6 per min) until exhaustion		  PC		  ↑48 h post in COPD
				    GPx		  ↑ 48 h post in Control
Agacdiken	 21 patients w/COPD	 GXT on TM	 blood	 MDA	 pre, 1, 3 h post	 ↑ 3 h post in COPD
(2004)	 10 controls			   GSH		  ↔
				    Vitamin E		  ↑ 1 h post in COPD
Koechlin	 10 patients w/COPD	 knee extension at loads ~40%	 blood	 Phagocytic O2

•-	 pre, 0, 6, 24, 48 h post	 ↑ 6 h post in both
(2004)	 7 controls	 MVC (12 per min) until exhaustion		  TBARS		  ↑ 6 h post in COPD
				    PC		  ↑ 6 h post in both
				    Vitamin E		  ↔
				    TAS		  ↔
Koechlin	 9 patients w/COPD	 Couillard 2002	 blood	 Phagocytic O2

•-	 pre, 0, 6 h post	 ↑ 6 h post
(2004)				    TBARS		  ↑ 0, 6 h post
				    PC		  ↑ 6 h post
				    TEAC		  ↔
				    Vitamin E		  ↔
Mercken	 11 patients w/COPD	 GXT on cycle and	 blood	 DNA damage	 pre, 0, 4 h post	 ↑ 0, 4 h post in COPD
(2005)	 11 controls	 submax ride at 60% Wmax	 urine	 (comet assay)
			   breath	 MDA		  ↑ 0, 4 h post in COPD
						      4 h post only in Control
				    H2O2		  ↑ 4 h post in COPD
						      0 h post in Control
van Helvoort	 20 patients w/COPD	 GXT on cycle and	 blood	 Neutrophil O2

•-	 pre, during, post	 ↑ in COPD
(2006)	 10 controls	 submax cycle ride at 50%		  TAS		  ↓ in both
		  Wmax		  PC		  ↔
				    TBARS		  ↑ in COPD
				    GSH		  ↓ in both
				    GSSG		  ↑ in COPD
Rabinovich	 20 patients w/COPD	 11 min of cycling at 40%	 muscle	 TGSH	 pre, post	 ↔
(2006)	 5 controls	 Wpeak		  cis-parinaric acid		  ↔
Pinho	 15 patients w/COPD	 GXT on cycle	 blood	 TBARS	 pre, post	 ↔
(2007)				    TRAP		  ↔
				    XO		  ↓
van Helvoort	 10 patients w/COPD	 6 minute walk test	 blood	 Neutrophil O2

•-	 pre, post	 ↑ post both protocols
(2007)		  GXT on cycle		  TAS		  ↓ post both protocols
				    PC		  ↑ post 6 min walk
				    TBARS		  ↑ post both protocols

Definitions: GSH, reduced glutathione; GSSG, oxidized glutathione; MDA, malondialdehyde; O2
•-, superoxide radical; TBARS, thiobarbituric acid reactive substances; PC, protein carbonyls; GPx, glutathione peroxidase; 

TAS, total antioxidant status; TEAC, trolox equivalent antioxidant capacity; H2O2, Hydrogen Peroxide; TGSH, total glutathione; TRAP, total radical-trapping antioxidant parameter; XO, xanthine oxidase; SOD, superoxide 
dismutase; oxLDL, oxidized low density lipoprotein; GR, glutathione reductase; GST, glutathione transferase; CAT, catalase; LOOH, lipid hydroperoxides; 8-OHdG, 8-hydroxydeoxyguanosine; CD, conjugated dienes; 
↑, significant increase from pre exercise value; ↓, significant decrease from pre exercise value; ↔, no significant change; numbers following ↑, ↓, ↔, represent respective time points where significant findings 
occurred.
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Chronic obstructive pulmonary disease (COPD). Chronic 
obstructive pulmonary disease (COPD) is a progressive, irreversible 
disease of the respiratory tract, characterized by limited or obstructed 
airflow, believed to be brought on by an abnormal and/or exces-
sive inflammatory response in the lungs.33 Cigarette smoking is 
suggested to be the primary etiological factor in the development of 
COPD, as more than 90% of patients with COPD are smokers.34 
Both inflammation and oxidative stress appear to play a critical role 
in the development and/or the progression of COPD (reviewed in 
ref. 33). Mechanistically, both RONS, as well as inflammatory cells 
likely exert both an independent, as well as an intricately connected 
impact on disease development, as both activate each other in a 
cyclical manner. This process has been reviewed recently,33,35,36 and 

area of investigation (11 original studies), this section is sparse in 
comparison to the initial section on acute exercise.

Acute Exercise-Induced Oxidative Stress and Disease

While multiple disease states have been reported to be associated 
with elevated oxidative stress, those categories that have been inves-
tigated in relation to exercise include chronic obstructive pulmonary 
disease, cardiovascular disease (e.g., heart failure, atherosclerosis, 
peripheral arterial disease), and metabolic disease (e.g., diabetes and 
obesity). Additionally, the impact of acute exercise on oxidative stress 
in cigarette smokers has been investigated. Because cigarette smoking 
is considered a major risk factor for most of the above mentioned 
disease states, these studies will be discussed.

Table 2  Acute exercise-induced oxidative stress and cardiovascular disease

Reference	 Subjects	 Exercise	 Tissue	 Marker	 Times	 Effects
Chen	 30 hypercholesterolemic	 GXT	 blood	 MDA	 pre, 0, 10 min post	 ↑ 0 min post in both
(1994)	 patients			   SOD		  ↑ 0, 10 min post in both
	 30 controls
Nishiyama	 12 CHF patients	 GXT	 blood	 MDA	 pre, post	 ↑ in CHF
(1998)	 7 controls			   SOD		  ↔
Leaf	 18 patients w/or w/out	 GXT	 blood	 MDA	 pre, post	 ↑ in ischemic group
(1998)	 exercise-induced
	 myo-cardial ischemia
Leaf	 20 CAD patients	 GXT	 blood	 MDA	 pre, 5 min post	 ↑
(1999)	 (10 were tested			   Ethane		  ↑
	 post cardiac rehab)			   Pentane		  ↑
Jimenez	 7 heart transplant patients	 GXT	 blood	 MDA	 pre, 0, 30 min post	 ↔
(2000)	 7 controls			   GPX-plasma	 pre, 24 h post	 ↔
				    GPX-erythrocyte	 (enzymes)	 ↔
				    SOD		  ↑ 24 h post in HTR
				    Vitamin E		  ↑ 30 min post in Control
Andican	 12 CAD patients	 GXT	 blood	 TBARS	 pre, post	 ↔
(2001)	 8 w/out CAD			   GSH		  ↓ in CAD
				    GPx		  ↓ in CAD
				    SOD		  ↓ in CAD
				    Vitamin E		  ↔
Silvestro	 30 w/intermittent	 Group 1—exercise until	 blood	 TBARS	 pre, post	 ↑ in group 1 only
(2002)	 claudication	 claudication intollerable (max)
	 10 controls	 Goup 2—exercise until
		  claudication discomfort
		  Controls—exercise to HR max
Sayar	 46 CHF patients	 GXT	 blood	 MDA	 pre, post	 ↑ in CHF
(2007)	 24 controls
Jorde	 48 CHF patients	 GXT	 blood	 oxLDL	 pre, post	 ↑ in CHF patients
(2007)	 12 controls					     ↔ in controls
Lo Presti	 15 CAD patients	 GXT	 blood	 TBARS	 pre, 0, 10 min post	 ↔
(2007)	 13 controls			   TAS		  ↔

Definitions: GSH, reduced glutathione; GSSG, oxidized glutathione; MDA, malondialdehyde; O2
•-, superoxide radical; TBARS, thiobarbituric acid reactive substances; PC, protein carbonyls; GPx, glutathione peroxidase; 

TAS, total antioxidant status; TEAC, trolox equivalent antioxidant capacity; H2O2, Hydrogen Peroxide; TGSH, total glutathione; TRAP, total radical-trapping antioxidant parameter; XO, xanthine oxidase; SOD, superoxide 
dismutase; oxLDL, oxidized low density lipoprotein; GR, glutathione reductase; GST, glutathione transferase; CAT, catalase; LOOH, lipid hydroperoxides; 8-OHdG, 8-hydroxydeoxyguanosine; CD, conjugated dienes; 
↑, significant increase from pre exercise value; ↓, significant decrease from pre exercise value; ↔, no significant change; numbers following ↑, ↓, ↔, represent respective time points where significant findings 
occurred.
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of phagocytic cells.37 This increase in inflammation and circulating 
phagocytes (particularly macrophages and neutrophils) gives rise to 
further RONS production via activation of certain radical generating 
enzymes and/or phagocytic respiratory burst, respectively.33 Potential 

it has been suggested that intra and extracellular RONS production 
via mitochondrial respiration and/or membrane bound NADPH 
or xanthine oxidase gives rise to the increased gene transcription of 
certain inflammatory cytokines, as well as the increased circulation 

Table 3  Acute exercise-induced oxidative stress and diabetes

Reference	 Subjects	 Exercise	 Tissue	 Marker	 Times	 Effects
Laaksonen	 9 type 1 diabetics	 cycle for 40 min @ 60%	 blood	 TBARS	 pre, post	 ↑ in both
(1996)	 13 controls	 VO2max		  TGSH		  ↔
				    GSSG		  ↑ in both
Atalay	 9 type 1 diabetics	 cycle for 40 min @ 60%	 blood	 TBARS	 pre, post	 ↑ in both
(1997)	 14 controls	 VO2peak		  TGSH		  ↔
				    GPx		  ↑ in Control
				    GR		  ↔
				    GST		  ↔
				    SOD		  ↔
				    CAT		  ↔
Davison	 12 type 1	 GXT on cycle	 blood	 PBN adducts	 pre, post	 ↑ (pooled data)
(2002)	 13 controls			   (α-phynyl-tert-butylnitrone)
				    MDA		  ↔
				    LOOH		  ↑ (pooled data)
				    Vitamin C		  ↔
				    Vitamin E		  ↓ in Control
				    Beta-carotene		  ↔
Villa-Caballero	 12 sedentary type 2	 GXT on treadmill	 blood	 TBARS	 pre, 5, 15, 30, 60 min	 ↔
(2007)	 9 active type 2			   GSH	 post	 ↔
	 12 controls

Definitions: GSH, reduced glutathione; GSSG, oxidized glutathione; MDA, malondialdehyde; O2
•-, superoxide radical; TBARS, thiobarbituric acid reactive substances; PC, protein carbonyls; GPx, glutathione peroxidase; 

TAS, total antioxidant status; TEAC, trolox equivalent antioxidant capacity; H2O2, Hydrogen Peroxide; TGSH, total glutathione; TRAP, total radical-trapping antioxidant parameter; XO, xanthine oxidase; SOD, superoxide 
dismutase; oxLDL, oxidized low density lipoprotein; GR, glutathione reductase; GST, glutathione transferase; CAT, catalase; LOOH, lipid hydroperoxides; 8-OHdG, 8-hydroxydeoxyguanosine; CD, conjugated dienes; ↑, 
significant increase from pre exercise value; ↓, significant decrease from pre exercise value; ↔, no significant change; numbers following ↑, ↓, ↔, represent respective time points where significant findings occurred.

Table 4  Acute exercise-induced oxidative stress and obesity

Reference	 Subjects	 Exercise	 Tissue	 Marker	 Times	 Effects
Vincent	 14 obese	 resistance Rx (7 exercises, 3	 blood	 TBARS	 pre, post	 ↑ post RX/AX in both
(2004)	 14 nonobese	 sets, 45–80% 1RM) (RX) &		  LOOH		  ↑ post RX/AX in both
		  aerobic exercise (same HR		  TAS		  ↑ post RX in nonobese/
		  and duration w/RX) (AX)				    ↓ post AX in obese
Vincent	 24 obese 8 nonobese	 GXT on treadmill	 blood	 LOOH	 pre, post	 ↑ in obese
(2005)				    Total thiols		  ↔
Vincent	 29 overweight/obese	 GXT on treadmill	 blood	 LOOH	 pre, post	 ↑ in both
(2006)	 20 control			   TBARS		  ↑ in both
Vincent	 23 obese	 30 min constant load cycle	 blood	 LOOH	 pre, post	 ↑ in both
(2006)	 25 nonobese	 test		  TAS		  ↔
Lwow	 200 overweight/obese	 30 cycle test (30–50%	 blood	 TBARS	 pre, 0, 6 h post	 ↑0, 6 h post
(2007)	  	 VO2max)

Definitions: GSH, reduced glutathione; GSSG, oxidized glutathione; MDA, malondialdehyde; O2
•-, superoxide radical; TBARS, thiobarbituric acid reactive substances; PC, protein carbonyls; GPx, glutathione peroxidase; 

TAS, total antioxidant status; TEAC, trolox equivalent antioxidant capacity; H2O2, Hydrogen Peroxide; TGSH, total glutathione; TRAP, total radical-trapping antioxidant parameter; XO, xanthine oxidase; SOD, superoxide 
dismutase; oxLDL, oxidized low density lipoprotein; GR, glutathione reductase; GST, glutathione transferase; CAT, catalase; LOOH, lipid hydroperoxides; 8-OHdG, 8-hydroxydeoxyguanosine; CD, conjugated dienes; 
↑, significant increase from pre exercise value; ↓, significant decrease from pre exercise value; ↔, no significant change; numbers following ↑, ↓, ↔, represent respective time points where significant findings 
occurred.
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by reported increases in MDA,8,10 thiobarbituric acid-reactive 
substances (TBARS),7,41 protein oxidation (protein carbonyls),41 
DNA damage (comet assay),10 phagocytic superoxide produc-
tion,7,41 as well as changes in glutathione redox status7 and other 
components of the antioxidant defense system (e.g., total antioxi-
dant status).7 In those studies in which a healthy control group was 
utilized for comparison, exacerbated increases have been reported 
in COPD patients.7,8,10 These effects appear most pronounced in 
muscle-wasted COPD patients [fat-free mass <16 kg•m-2 (men) 
or <15 kg•m-2 (women)], as they have been shown to present with 
lower levels of GSH at rest, as well as experience greater increases in 
oxidative stress post exercise, compared to their non-muscle wasted 
counterparts.7 Hence, lower antioxidant defense may be a contrib-
uting factor to increased exercise-induced oxidative stress in those 
with COPD.

Although the majority of investigations using COPD patients 
have reported an increase in oxidative stress in response to exer-
cise, significance has not been observed for all biomarkers studied 
(i.e., lipid, protein, DNA, antioxidant status). This is a common 
occurrence throughout the literature, as null findings for certain 
biomarkers may be related to the time to oxidation and “repair” of a 
given molecule. In this regard, inadequate sampling time may help to 
explain much of the variability in results,43 as the majority of studies 
have only taken samples immediately pre and post exercise.7,42,44,45

Aside from aerobic exercise, investigators have also measured the 
oxidative stress response in COPD patients following knee extension 
exercise performed at 30–40% maximal voluntary contraction until 
exhaustion.9,22,23,46 Findings have included increased lipid peroxida-
tion,9,22,23,46 protein oxidation,9,23,46 and phagocytic superoxide 
production.9,46 Similar to aerobic exercise, exacerbated increases in 
oxidative stress biomarkers have been reported for COPD patients 
compared to healthy controls.9,23

Cleary, acute exercise has the ability to result in increased RONS 
and subsequent oxidative damage in COPD patients. Inadequate 
oxygen likely leads to an acute state of ischemia followed by 

sources of increased RONS production and inflammation include 
exposure to cigarette smoke, other pollutants, ischemia/reperfusion 
injury to peripheral tissues resulting from inadequate lung function, 
as well as increased mitochondrial superoxide production.33 Because 
the latter two events can be brought about during an acute exercise 
session, several studies have investigated the impact of acute exercise 
on the systemic oxidative stress response in COPD patients. These 
studies are discussed below and presented in Table 1.

The impact of acute exercise on oxidative stress in COPD patients 
was first investigated by Vina and colleagues,38 who reported an 
increase in oxidized glutathione (GSSG) following cycle ergom-
etry at an intensity comparable to normal activities of daily living 
(~3 METS). This post-exercise increase in GSSG was prevented 
following supplemental administration of oxygen at a flow rate of 2-3 
L•min-1, suggesting a role of alternate RONS generating pathways 
(e.g., NADPH oxidase, xanthine oxidase) other than increased mito-
chondrial superoxide production, in eliciting an oxidative insult post 
exercise.38 In agreement with these findings, a similar study reported 
an increase in GSSG and malondialdehyde (MDA), as well as a 
decrease in reduced glutathione (GSH), following a graded exercise 
test (GXT) in COPD patients, which was prevented by infusion with 
300 mg allopurinol 24 and one hour pre exercise.39 Allopurinol is a 
known inhibitor of the radical generating enzyme xanthine oxidase,40 
which has been shown to be activated in response to periods of isch-
emia followed by reperfusion. Taken together, these results suggest 
that the impaired pulmonary function seen in COPD patients likely 
leads to an imbalance between oxygen supply and demand to the 
exercising musculature during acute exercise, potentially resulting 
in the increased production of RONS via xanthine oxidase. This 
increase in RONS appears evident even at low intensities comparable 
to activities of daily living, suggesting that patients with COPD may 
be under a chronic state of oxidative stress.38

Increased oxidative stress has also been reported in COPD 
patients following both acute maximal7,8,10,41 and submaximal7,10 
aerobic exercise. This has been the case with one exception,42 evident 

Table 5  Acute exercise-induced oxidative stress and cigarette smokers

Reference	 Subjects	 Exercise	 Tissue	 Marker	 Times	 Effects
Surmen-Gur	 19 smokers	 20 maximal isokinetic knee	 blood	 MDA	 pre, post	 ↔
(1999)	 17 non-smokers	 extensions w/nondominant		  SOD		  ↓ in nonsmokers
		  leg		  GPx		  ↔
				    Vitamin E		  ↓ in both
Bloomer	 14 smokers	 GXT	 blood	 MDA	 pre, post	 ↑ in smokers
(2007)	 15 non-smokers			   PC		  ↑ in both
	 (all untrained)			   8-OHdG		  ↔
Gochman	 14 smokers	 GXT	 blood	 PC	 pre, post	 ↑ in both
(2007)	 14 non-smokers			   LOOH		  ↔
	 (physically active)			   CD		  ↑ in smokers
				    Vitamin A		  ↔
		   	  	 Vitamin E		  ↔

Definitions: GSH, reduced glutathione; GSSG, oxidized glutathione; MDA, malondialdehyde; O2
•-, superoxide radical; TBARS, thiobarbituric acid reactive substances; PC, protein carbonyls; GPx, glutathione peroxidase; 

TAS, total antioxidant status; TEAC, trolox equivalent antioxidant capacity; H2O2, Hydrogen Peroxide; TGSH, total glutathione; TRAP, total radical-trapping antioxidant parameter; XO, xanthine oxidase; SOD, superoxide 
dismutase; oxLDL, oxidized low density lipoprotein; GR, glutathione reductase; GST, glutathione transferase; CAT, catalase; LOOH, lipid hydroperoxides; 8-OHdG, 8-hydroxydeoxyguanosine; CD, conjugated dienes; ↑, 
significant increase from pre exercise value; ↓, significant decrease from pre exercise value; ↔, no significant change; numbers following ↑, ↓, ↔, represent respective time points where significant findings occurred.
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to the training status of the subject population, as all were aerobically 
trained and may have had improved antioxidant defense.56

Diabetes. Diabetes is a condition characterized by chronic 
elevations in blood glucose brought on either via the autoimmune 
destruction of pancreatic beta cells (type 1) or the development of 
insulin resistance in the peripheral tissues (type 2).57 Both forms 
of diabetes are associated with an increased risk for developing 
microvascular (retinopathy, neuropathy) and macrovascular (athero-
sclerosis) complications, which have been linked to oxidative stress.57 
Increased oxidative stress biomarkers have been reported in diabetics 
compared to healthy controls, and the role of RONS in diabetes 
etiology has been the topic of numerous reviews.18,58 It appears 
that this chronic exposure to hyperglycemic conditions gives rise to 
increased superoxide production resulting from postprandial hyper-
glycemia,18 glucose autooxidation,59 the formation of advanced 
glycation end products60 and activation of the polyol pathway.61

As with COPD and CVD patients, diabetics (in particular type 
1) have been the focus of exercise-induced oxidative stress research 
(Table 3). Increased TBARS13,14 and GSSG13 have been reported 
following submaximal aerobic exercise in type 1 diabetic subjects. 
In regards to maximal exercise, direct production of RONS via 
electron spin resonance spectroscopy has been reported following 
a GXT; however, it is important to note that significance was only 
achieved when data for both type 1 diabetic and healthy control 
subjects were pooled.15 Despite the observation of increased levels 
of exercise-induced oxidative stress biomarkers in studies involving 
type 1 diabetics, when compared to healthy individuals, the relative 
magnitude of increase does not differ; rather the group differences 
at rest are merely maintained during the post exercise period. Other 
investigators have reported no changes in MDA,15 total glutathione 
(TGSH), antioxidant enzyme activity,14 or circulating antioxidants15 
in response to acute exercise in type 1 diabetics.

Only one study to our knowledge has been conducted addressing 
the impact of acute exercise (GXT) on measures of oxidative stress 
(TBARS, GSH) in type 2 diabetics.62 Unfortunately, findings proved 
difficult to interpret, as the authors failed to report if the post exercise 
values were statistically significant from the pre exercise values; thus 
these are presented as null findings in Table 3. Taken together, unlike 
findings for patients with COPD and CVD, diabetic subjects do not 
appear to experience any further increase in exercise-induced oxida-
tive stress compared to healthy controls.

Obesity. Closely linked to the development of type 2 diabetes, 
obesity has been studied in relation to exercise and oxidative stress 
(Table 4). This association between these two disorders appears due 
to the increased circulating levels of tumor necrosis factor-α within 
obese individuals, which has been shown to be released from adipo-
cytes63 as well as impart an insulin resistant state.64

Increased lipid peroxidation has been reported in obese indi-
viduals following acute submaximal29,31,65 and maximal30,66 aerobic 
exercise, as well as following a single session of resistance exercise.29 
Moreover, obese individuals (BMI > 30 kg•m-2) have been noted to 
experience a greater magnitude of increase in selected biomarkers 
when compared to normal weight controls.29,30 However, these 
results appear mixed in overweight (BMI > 25 kg•m-2) populations, 
with studies reporting conflicting results.31,66

Cigarette smoking. Although not a disease itself, cigarette 
smoking has consistently been shown to increase the susceptibility for 

reperfusion, resulting in the formation of RONS via radical gener-
ating enzymes (e.g., NADPH oxidase, xanthine oxidase). While two 
studies have successfully used antioxidants in patients with COPD 
to minimize the oxidative stress associated with acute exercise,8,46 
exercise training has also been investigated and will be discussed in 
a later section.

Cardiovascular disease (CVD). Cardiovascular disease (CVD) 
is the leading cause of death in the United States.47 Two common 
conditions that exist under the umbrella of CVD that contribute 
significantly to morbidity and mortality include congestive heart 
failure (CHF)17 and coronary artery disease (CAD).48 Oxidative stress 
has been suggested to play a role in either the primary or secondary 
etiology of both CHF17 and CAD,48 evident by increased oxidative 
stress biomarkers and/or decreased antioxidant defenses at rest in 
diseased compared to healthy controls.17 As with COPD, several 
mechanistic links related to increased RONS production in CVD 
have been identified, including increased NADPH and xanthine 
oxidase activity, increased mitochondrial superoxide production 
resulting from mitochondrial dysfunction, as well as enhanced circu-
lating concentrations of inflammatory cytokines.49 Increased RONS 
production leads to an exacerbation of disease severity, illustrated 
primarily by the role of RONS in promoting endothelial dysfunc-
tion19 and atherogenesis,16 as well as cardiomyocyte apoptosis, left 
ventricular remodeling and depressed myocardial contractility.49 
Exposure to excess RONS may lead to the increased accumulation 
of oxidized LDL (oxLDL) particles within the intima of arteries, 
thereby promoting atherogenesis and systemic inflammation.16 This 
increase in fatty lesion formation and a pro-inflammatory environ-
ment could lead to the development and/or progression of arterial 
disease, myocardial infarction or stroke.16 Myocardial infarction 
could in turn promote the development of CHF due to impaired 
ventricular performance, resulting in severely compromised func-
tional capacity.

Exercise induced oxidative stress has been studied within patients 
with various forms of CVD, as presented in Table 2. Increased oxida-
tive stress in response to a GXT has been noted in patients with 
both CHF12,25,26 and CAD,27,50 evident by increased MDA,12,25,50 
oxLDL26 and expired breath pentane/ethane50, as well as decreased 
GSH27 and antioxidant enzyme activity.27 Moreover, in those 
studies in which a healthy control group has been utilized for 
comparison, exacerbated oxidative stress has been evident in those 
with CVD.12,25-27 In opposition to the above, null findings for lipid 
peroxidation have also been reported following a GXT in CAD 
patients.27,51 However, lipid peroxidation was assessed via TBARS, 
which has been shown to lack sensitivity.52

Similar to the above results for those with CHF or CAD, increased 
oxidative stress has been reported in subjects without diagnosed 
CAD but who presented with exercise-induced ischemia,53 as well 
as in subjects with peripheral vascular disease.28 It should be noted 
that infusion of vitamin C (50 mg/min) for 20 minutes pre exer-
cise eliminated the post-exercise increase in TBARS,28 indicating a 
benefit of antioxidant treatment. In hypercholesterolemic subjects, a 
post-exercise increase in MDA has been reported following a GXT,54 
a finding that may be partly explained by the increased superoxide 
production known to be present in hypercholesterolemic patients.55 
Finally, no increase in MDA has been reported in heart transplant 
recipients following a GXT.56 However, the null findings may be due 
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healthy individuals and those with COPD, CVD, type 1 diabetes 
and obesity, as well as for cigarette smokers. What is not entirely 
clear is whether or not those with disease are at increased risk for 
further macromolecule oxidation as compared to otherwise healthy 
individuals. In this regard the available results are mixed, as shown 
in Tables 1–5. How this oxidative stress response and subsequent 
adaptation to the antioxidant defense system ultimately translates 
into long term prognosis remains to be determined. Perhaps a more 
pronounced increase in RONS due to acute exercise is necessary in 
certain disease conditions in order to allow for further beneficial 
adaptations within the antioxidant defense system. The following 
section discusses studies focused on antioxidant upregulation as an 
adaptation to regular exercise training.

Chronic Exercise, Antioxidant Defense and Disease

A heightened oxidative stress response to acute exercise may serve 
as a critical “signaling” mechanism for the upregulation in antioxidant 
defenses, similar to what is commonly observed in healthy popula-
tions.74,75 Please see Figure 1 for an overview of such adaptations. 
Although data are relatively scarce, a few studies have investigated the 
impact of regular aerobic and anaerobic exercise training in diseased 
populations on the attenuation of oxidative stress biomarkers and/or 
the upregulation of antioxidant defenses.

With respect to CHF76,77 and CAD,78-80 regular exercise training 
(12 weeks of moderate intensity aerobic exercise performed three 
days a week) has been shown to decrease lipid peroxidation76,78-80 

the development of several disease conditions, including COPD,34 
CVD67 and diabetes.68 Much of the detrimental effects of cigarette 
smoking have been attributed to their role in inducing a state of 
oxidative stress,69 as a single puff of a cigarette exposes an individual 
to more than 1015 free radicals in the gas phase alone, coupled with 
additional exposure in the tar phase equal to 1017 free radicals per 
gram.3 Elevated resting levels of oxidative stress biomarkers have 
been reported in smokers compared to nonsmokers.67,70-72 In 
regards to acute exercise-induced oxidative stress, three studies have 
been conducted to date (Table 5).

Maximal exercise in the form of a GXT has been shown to elicit 
an increase in lipid peroxidation (MDA,11 conjugated dienes24) and 
protein carbonyls11 in smokers despite no change in 8-hydroxyde-
oxyguanosine,11 lipid hydroperoxides or circulating antioxidants.24 
Two studies noted an exacerbated increase in lipid peroxidation in 
smokers compared to nonsmokers.11,24 In opposition to the above 
results, one study noted no change in MDA, glutathione peroxidase 
(GPx) or superoxide dismutase (SOD), despite a decrease in vitamin 
E in smokers following 20 maximal knee extensions.73 However, it is 
possible that the exercise stress was insufficient to induce any signifi-
cant increase in RONS.73

Summary: acute exercise-induced oxidative stress and disease. It 
is clear that acute exercise has the ability to result in increased RONS 
formation leading to an acute state of oxidative stress. Although 
null findings are present in a few investigations, increased oxidative 
stress biomarkers have been noted following acute exercise in both 

Figure 1. Potential changes in antioxidant defense as a result of chronic exercise training. Exercise-induced RONS production results in the activation of IκB 
kinase (IKK), secondary to the activation of mitogen activated protein kinases (MAPK). IKK then phosphorylates the inhibitory subunit of nuclear transcrip-
tion factor-κB (NFκB), thus releasing it to migrate to the nucleus. Once inside the nucleus, NFκB promotes the transcription of several antioxidant enzymes 
[manganese superoxide dismutase (MnSOD), inducible nitric oxide synthase (iNOS), glumatylcysteine synthetase (GCS)]. Messenger RNA (mRNA) is then 
synthesized for each enzyme, exits the nucleus and undergoes translation, ultimately resulting in an upregulation in antioxidant protein expression and 
improved antioxidant defense.
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joint initiative of the American College of Sports Medicine and the 
American Medical Association, exercise may be viewed as “medicine” 
for individuals who are at increased risk for oxidative stress related 
illness and disease.
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and nitrotyrosine formation,76 as well promote an upregulation in 
antioxidant defense, evident by an increase in the activity of super-
oxide dismutase,77,79 glutathione peroxidase76,77 and catalase.76 In 
agreement with the above results, six months of moderate intensity 
(50–70% HRmax) aerobic exercise resulted in a decrease in lipid 
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Conclusion
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