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Endothelin-1 (ET-1) is synthesized primarily by endothelial cells. ET-1 administration in vivo enhances the cardiac sympathetic
afferent reflex and sympathetic activity. Previous studies have shown that sympathetic hyperactivity promotes malignant
ventricular arrhythmia (VA). The aim of this study was to investigate whether ET-1 could activate the left stellate ganglion
(LSG) and promote malignant VA. Twelve male beagle dogs who received local microinjections of saline (control, n = 6) and
ET-1 into the LSG (n = 6) were included. The ventricular effective refractory period (ERP), LSG function, and LSG activity were
measured at different time points. VA was continuously recorded for 1 h after left anterior descending occlusion (LADO), and
LSG tissues were then collected for molecular detection. Compared to that of the control group, local ET-1 microinjection
significantly decreased the ERP and increased the occurrence of VA. In addition, local microinjection of ET-1 increased the
function and activity of the LSG in the normal and ischemic hearts. The expression levels of proinflammatory cytokines and the
protein expression of c-fos and nerve growth factor (NGF) in the LSG were also increased. More importantly, endothelin A
receptor (ETA-R) expression was found in the LSG, and its signaling was significantly activated in the ET-1 group. LSG
activation induced by local ET-1 microinjection aggravates LADO-induced VA. Activated ETA-R signaling and the
upregulation of proinflammatory cytokines in the LSG may be responsible for these effects.

1. Introduction

Malignant ventricular arrhythmia (VA) is a main cause of
sudden cardiac death after acute myocardial infarction. Stud-
ies have demonstrated that cardiac sympathetic hyperactivity
is a key factor in the initiation and maintenance of VA [1, 2].
Cardiac sympathetic left stellate ganglion (LSG) activity
increases markedly before VA onset in an ischemia model
[1], and inhibition of LSG activity effectively reduces the inci-
dence of VA [3]. A recent clinical study also demonstrated
that stellate ganglion dysfunction results in excessive and
dysfunctional efferent sympathetic tone in patients with

cardiomyopathy and refractory VA [4]. These findings indi-
cate that LSG hyperactivity may be a major trigger for malig-
nant VA. In addition, clinical studies have shown that the
plasma levels of endothelin-1 (ET-1) are markedly increased
in patients with sympathetic hyperactivity cardiovascular
disease, such as patients with myocardial infarction [5] and
hypertension [6], which suggests that ET-1 may play a key
role in the regulation of sympathetic activity.

ET-1 was identified as a peptide with strong vasoconstric-
tive effects; it is synthesized primarily by vascular endothelial
cells and by a variety of other cells, including neurons and
astrocytes, and it exerts its effects through two subtypes of
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G-protein coupled receptor, known as endothelin A receptor
(ETA-R) and endothelin B receptor [7–9]. The presence of
ET-1 and ETA-R in different regions of the brain suggests
that ET-1 plays a role in neuroendocrine modulation [8].
Furthermore, sympathetic neurons extend axons mainly
along arteries, innervating a large variety of distinct ulti-
mate target tissues during development [10], and the
endothelins, especially ET-1, serve as vascular-derived axo-
nal guidance cues for the development of sympathetic neu-
rons [10, 11]. In an animal model of postinfarct ventricular
tachycardia, the occurrence of arrhythmia was closely
related to impaired sympathetic innervation [12]. The above
studies suggest that ET-1, sympathetic nerves, and malignant
VA are closely related.

Abundant ET-1 expression is found in the paraventricu-
lar nucleus (PVN) [13], which is an important integrative
center in the control of the cardiac sympathetic afferent reflex
(CSAR) [14]. The microinjection of ET-1 into the bilateral
PVN enhances the CSAR and increases renal sympathetic
nerve activity via binding to ETA-R [15]. Based on the above
studies, we hypothesized that increased ET-1 in the LSG may
contribute to LSG remodeling, which would result in LSG
hyperactivity and subsequent malignant VA. In the present
study, ET-1 was microinjected locally into the LSG, and its
effects on LSG remodeling and ventricular electrophysiology
were detected in a canine ischemia model.

2. Materials and Methods

2.1. Experimental Animals and Surgical Preparation. All ani-
mal experiment protocols were performed according to the
National Institutes of Health guidelines and approved by
the Animal Care and Use Committees of Renmin Hospital
of Wuhan University. Twelve male beagle dogs with body
weights of 10~12 kg were anesthetized with 3% sodium pen-
tobarbital at an initial dose of 1 mL/kg and a maintenance
dose of 2 mL/h. ECG signals and blood pressure were
recorded using a computer-based lab system (Lead 7000,
Jinjiang Inc., Chengdu, China) throughout the experiments.

Unilateral thoracotomy was performed at the fourth
intercostal space. Acute ischemia was established by left
anterior descending occlusion (LADO) for 60 minutes and
confirmed by changes in the acute ST segment and T wave
on surface ECG. The VA during the 60 minutes after myo-
cardial ischemia, including ventricular tachycardia (VT, ≥3
consecutive premature ventricular beats) and ventricular
fibrillation (VF), was recorded by the Lead 7000 system
and numbered manually after the experiment according to
Wang et al. [16].

2.2. Experimental Protocol. To test whether ET-1 can directly
activate the LSG, we performed local microinjection of ET-1
(n = 6) or 0.9% saline (n = 6) into the LSG. LSG function and
activity and the effective refractory period (ERP) were mea-
sured before and 30 min after ET-1 or saline administration.
Then, LADO was performed and the VA during the 60 min
after LADO was recorded. At the end of the experiment,
LSG tissues were collected for molecular detection.

2.3. Local Microinjection of ET-1 into the LSG. A 0.1 mL vol-
ume of ET-1 (Enzo Biochem Inc., New York, USA, 0.25
mg/mL) or 0.9% saline was injected into the LSG at four
points under direct visual control to ensure optimal local
microinjection.

2.4. Measurement of the Ventricular ERP. Multielectrode
catheters were sutured to the left ventricular free walls. The
ventricular ERP was examined from the following three sites
(Figure 1(a)): the left ventricular apex (LVA), the left ventric-
ular base (LVB), and the median area of the left ventricle
(LVM). The ERP at each site was examined by programmed
stimulation comprising 8 basic stimulation conditions (S1,
basic stimulus; S2, a premature stimulus; S1-S1, the interval
between S1 and S1; S1-S2, the interval between S1 and S2)
(S1-S1, 350 ms cycle length), followed by a premature stimu-
lus (S2). The ERP was defined as the longest S1-S2 interval
that failed to capture the ventricles. The S1-S2 interval was
progressively decreased from an initial 250 ms by decrements
of 10 ms and decrements of 2 ms when approaching ERP
until refractoriness was achieved.

2.5. Evaluation of LSG Function and Neural Activity. Eval-
uation of LSG function and neural activity uses the
method of Wang et al. [16] and Huang et al. [17], and the
methods’ description partly reproduces their wording.
Briefly, high-frequency stimulation (HFS; 20 Hz, 0.1 ms pulse
duration at different voltages) was applied to LSG using a
Grass-S88 stimulator (Astro-Med, West Warwick, Rhode
Island, USA). Due to the significant variation in SBP-
elevating responses to HFS in each beagle dog, four incre-
mental voltage levels (level 1 = 1 to 5 V, level 2 = 5 to 7.5 V,
level 3 = 7 5 to 10 V, and level 4 = 10 to 15 V) were used for
LSG stimulation. The relative change in maximal systolic
blood pressure (SBP) in response to direct electrical stimula-
tion of the LSG reflected LSG function. LSG function was
evaluated at baseline and 30 min after local microinjection
of ET-1 or saline.

LSG neural activity was recorded for 1 min at baseline, 30
min after local microinjection of ET-1 or saline, and 15 min
after LADO. A pair of tungsten-coated microelectrodes was
inserted into the fascia of the LSG, and the ground lead was
connected to the chest wall to reduce noise. Neural recordings
from theLSGwere detected using aPowerLab data acquisition
system (8/35, AD Instruments, New South Wales, Australia)
and amplified using an amplifier (DP-304, Warner Instru-
ments, Hamden, CT, USA) with bandpass filters set at 300
Hz (high-pass) to 1 kHz (low-pass) and an amplification range
of 30–50 times. Neural activity, characterized by the recorded
amplitude and frequency, was defined as deflections with a
signal-to-noise ratio greater than 3 : 1 and was determined
manually according toWang et al. [3] and Yu et al. [18].

2.6. Western Blotting and Real-Time PCR. At the end of the
experiment, fresh LSG tissues were excised rapidly, washed
with 0.9% saline, dissected into small portions, and main-
tained at -80°C until use. Western blot analysis was per-
formed to examine protein expression levels of P-PI3K,
PI3K, AKT2, P-GSK3β, and GSK3β in LSG tissue. The
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primary antibodies used were anti-P-PI3K (Bioss, Woburn,
Massachusetts, USA), anti-PI3K (Abcam Trading (Shanghai)
Company, Shanghai, China), anti-AKT2 (Biorbyt, Cam-
bridge, Cambridgeshire, United Kingdom), anti-P-GSK3β
(Abcam Trading (Shanghai) Company, Shanghai, China),
and anti-GSK3β (Bioss, Woburn, Massachusetts, USA). Pro-
tein expression levels were normalized to β-actin (CST,

Danvers, MA, USA). Real-time PCR was used to quantita-
tively describe the mRNA expression of IL-1β, IL-6, and
TNF-α. For quantification, the expression levels of mRNAs
were normalized to the reference gene GAPDH.

2.7. Histological Staining. Hematoxylin-eosin (HE) staining
was used to reveal the elementary structure of LSG and the
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Figure 1: Local ET-1 microinjection increased ventricular electrophysiological instability in the normal hearts. (a) Schematic representation
of the electrode position in the left ventricular free walls. (b) Representative ECG during ERP detection. (c–e) The effects of local ET-1
microinjection on ventricular ERP in the normal hearts. ∗p < 0 05. ERP: effective refractory period; LAA: left atrial appendage; RA: right
atrium; RAA: right atrial appendage; RV: right ventricle; LV: left ventricle; LVA: left ventricular apex; LVB: left ventricular base; LVM:
median area between the LVA and LVB.
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infiltration of inflammatory cells. At the end of the experi-
ment, the LSG tissues were excised rapidly and fixed in 4%
paraformaldehyde at room temperature. Paraffin-embedded
LSG tissue was cut into 5 μm sections. The LSG sections were
examined by light microscopy and photographed with a
digital camera. Images were analyzed with Image-Pro Plus
(Version 6.0) in a blinded manner.

Immunofluorescence staining was used to determine the
expression and localization of ETA-R, nerve growth factor
(NGF), c-fos, and tyrosine hydroxylase (TH) in the LSG.
The LSG sections were incubated in PBS containing 10% fetal
bovine serum for 60 min and incubated overnight at 4°C with
primary antibodies, including anti-ETA-R (Enzo Biochem,
New York, USA), anti-c-fos (Santa Cruz Biotechnology, Dal-
las, Texas, USA), anti-NGF (Abcam, Cambridge, England),
and anti-TH (Abcam, Cambridge, England) antibodies.
The sections were washed with PBS and incubated with
the secondary antibody for 1 h at 37°C. The nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI). All
images were obtained at 400x with a fluorescence microscope
(Olympus DX51) and DP2-BSW software 2.2 (Olympus) and
analyzed with Image-Pro Plus 6.0 (Media Cybernetics) in a
blinded manner.

2.8. Statistical Analysis. All continuous data are expressed
as the mean ± standard deviation and were analyzed by
unpaired t-tests or two-way ANOVA. The Mann–Whitney
U test was used to analyze the incidence of VT/VF. SPSS
19.0 and GraphPad Prism 6.0 software were used for data
analysis and graphing. Differences for which p < 0 05 were
considered statistically significant.

3. Results

3.1. Effect of ET-1 on LSG Function. HFS of the LSG signifi-
cantly increased SBP in the control and ET-1 groups at
baseline. In the control group, there were no significant
differences in LSG function before or after local microin-
jection (Figure 2(b)). However, the LSG function 30 min
after local ET-1 microinjection was significantly increased,
as indicated by the increased relative change in maximal
SBP in response to electrical stimulation at the same voltage
level compared to the baseline (Figure 2(c)).

3.2. Effect of ET-1 on LSG Neural Activity. Figure 3(b) shows
that no significant differences in LSG neural activity were
observed between the two groups at baseline. Local ET-1
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Figure 2: Local ET-1 microinjection increased LSG function. (a) Representative blood pressure (BP) elevation in response to LSG electrical
stimulation. (b) The effects of ET-1 on LSG function in the two groups. ∗p < 0 05. BP: blood pressure.
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microinjection significantly increased the frequency and
amplitude of spontaneous LSG spikes in the normal hearts,
whereas no significant difference was found in the control
group (Figure 3(b)). Myocardial ischemia significantly
increased LSG neural activity, as shown by the increased fre-
quency and amplitude of spontaneous LSG spikes in the
myocardial ischemia group compared to those in the control
group. As expected, local ET-1 microinjection further aggra-
vated the increased LSG activity induced by myocardial
ischemia (Figure 2(b)).

3.3. Effect of ET-1 on Ventricular ERP. Basic ventricular elec-
trophysiology was investigated with left ventricular ERP. As
shown in Figure 1, no significant differences in ERP were
found after local saline microinjection. The ERP at three sites
was significantly decreased after local ET-1 microinjection
compared to that at baseline.

3.4. Effect of ET-1 on the Incidence of VT/VF in the Ischemic
Hearts. Typical examples of VT/VF induced by ischemia
are shown in Figure 4(a). Compared to that in the control
group, the number of VT and VF episodes was significantly
increased in the ET-1 group (Figure 4(b)).

3.5. Effect of ET-1 on the Inflammatory Response in the LSG.
The expression of proinflammatory cytokines was detected

to reveal the severity of inflammatory cell infiltration around
the neurons in the LSG (Figure 5(a)). The staining showed a
low level of inflammatory cell infiltration in the LSG in the
control group, whereas aggravated inflammatory cell infiltra-
tion was found in the ET-1 group. Additionally, the mRNA
levels of the proinflammatory cytokines IL-1β, IL-6, and
TNF-α were significantly increased in the ET-1 group.

3.6. Effect of ET-1 on the Expression of c-fos and NGF in
the LSG. Immunofluorescence staining of the LSG in the
ET-1 group showed that increased expression levels of c-
fos in the LSG were primarily localized to sympathetic
neurons that stained with TH, which is a marker for sym-
pathetic neurons. Quantitative data indicated that the
number of c-fos-positive sympathetic neurons in the ET-
1 group was also dramatically increased (Figure 6(b)).
Compared to those in the control group, the expression
levels of NGF were significantly increased in the ET-1
group (Figure 6(d)).

3.7. ET-1 Activates the PI3K/Akt/GSK-3β Pathway in the
LSG. Based on the immunofluorescence results concerning
ETA-R+ TH+ double-positive cells in the LSG, we revealed
ETA-R expression in the cardiac autonomic nervous system
(Figure 7(a)). The protein expression of P-PI3K, PI3K,
AKT2, P-GSK3β, and GSK3β in the LSG was evaluated
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Figure 3: Local ET-1 microinjection increased LSG activity. (a) Representative schematic of spontaneous LSG spikes. (b) Quantification of
the frequency and amplitude of LSG neural spikes. ∗p < 0 05. LADO: left anterior descending occlusion.
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(Figure 7(b)), and the results indicated that compared to the
control treatment, ET-1 microlocal microinjection signifi-
cantly decreased the activation of PI3K and Akt and stimu-
lated the phosphorylation of GSK-3β in the LSG, which
induced the activation of the PI3K/Akt/GSK-3β pathway
via ET-1 binding to the ETA-R as a potential mechanism
for LSG hyperactivity.

4. Discussion

4.1. Major Findings. In the present study, we evaluated the
effects of ET-1 on LSG neural remodeling, the inflammatory
response, and the incidence of malignant VA in a canine
model using beagles. The study results showed the following:
(1) the local microinjection of ET-1 into the LSG reduced left
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Figure 4: Local ET-1 microinjection increased the incidence of VT/VF in the ischemic hearts. (a) Representative ECG of ischemia-induced
VT/VF. (b) The effects of local ET-1 microinjection on the incidence of VT/VF in the ischemic hearts. ∗p < 0 05. VT: ventricular tachycardia;
VF: ventricular fibrillation.
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Figure 5: Local ET-1 microinjection increased the inflammatory response in the LSG. (a) Representative image of HE staining. (b–d) The
effects of local ET-1 microinjection on the expression levels of IL-1β, IL-6, and TNF-α. ∗p < 0 05.
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ventricular ERP, which contributed to the increased inci-
dence of VA induced by myocardial ischemia; (2) the local
microinjection of ET-1 into the LSG resulted in sympa-
thetic hyperactivity; (3) the local microinjection of ET-1
into the LSG increased the expression of c-fos and NGF
in the LSG, which contributed to increased sympathetic
activity; (4) the local microinjection of ET-1 into the
LSG increased the expression of proinflammatory cyto-
kines; and (5) the local microinjection of ET-1 into the
LSG significantly decreased the activation of PI3K and
Akt and stimulated the phosphorylation of GSK-3β in
the LSG. These results indicate that ET-1 contributes to
LSG hyperactivity, possibly through activating the ETA-R
signaling pathway directly and upregulating proinflamma-
tory cytokines indirectly, which increases the incidence of
malignant VA.

4.2. ET-1 Activated the LSG to Induce Malignant VA. Clinical
studieshave shown that theplasma levels ofET-1aremarkedly
increased in patients with acute coronary syndrome induced
by emotional stress compared to those in similar patients

without apparent sympathetic activation [19]. Furthermore,
low-dose ET-1 administered via the intrapericardial [20] or
intracoronary [21] route resulted inVA in vivo in large animal
models. The above research suggests that there are strong rela-
tionships among ET-1, the sympathetic system, and the resul-
tant effects on arrhythmogenesis.

A previous study demonstrated that impaired cardiac
autonomic control contributes to increased inducibility of
malignant VA [22] and that sympathetic hyperactivity results
in the reduction of ventricular ERP and APD [23, 24]. In the
present study, we found that ET-1 application decreased
ventricular ERP, which demonstrated that electrophysio-
logic instability may be increased in the ET-1 group. In
addition, our results showed increased LSG function and
neural activity in the ET-1 group, which further verified
that local ET-1 microinjection into the LSG resulted in
sympathetic hyperactivity.

Consistent with these findings, our results showed that
local ET-1 microinjection into the LSG could contribute to
cardiac sympathetic hyperactivity and thus increase the
occurrence of malignant VA.
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Figure 6: Local ET-1 microinjection increased the expression of c-fos and NGF in the LSG. (a) Double staining of c-fos (red) and TH (green)
to indicate the activation of sympathetic neurons. (b) Quantitative analysis of the expression of c-fos in the LSG in different groups. (c)
Representative image of simple NGF staining. (d) Quantitative analysis of the expression of NGF in the LSG in different groups. ∗p < 0 05.
TH: tyrosine hydroxylase; NGF: nerve growth factor.
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4.3. Potential Mechanisms. It has been demonstrated that
sympathetic ETA-R is required for pathological cardiac
remodeling and disturbed sympathetic nerve function [25].
Previous studies have shown that ETA-R exists in the sympa-
thetic nerve terminals of the heart [26]. In this study, our

results showed the presence of ETA-R on the sympathetic
neurons in the LSG (Figure 7), indicating that ET-1 may be
involved in several functions. Additionally, ETA-R activates
multiple signaling pathways, which include the oxidative
stress, the extracellular signal-regulated kinase 1 and 2
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Figure 7: Local ET-1 microinjection activates the PI3K/Akt/GSK-3β pathway in the LSG. (a) Representative images showing double-
immunofluorescence staining for ETA-R (red) and TH (green) in the LSG. (b) Representative images of the Western blots. (c–e)
Quantitative analyses of the Western blot results showed that the ETA-R and PI3K/Akt/GSK-3β pathways were activated in the
LSG. ∗p < 0 05. ETA-R: ETA receptor; TH: tyrosine hydroxylase.
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(ERK1/2) pathway, the phosphoinositide 3-kinase (PI3K)
pathway, and the glycogen synthase kinase- (GSK-) 3β sig-
naling pathway [27, 28]. In particular, an ETA-R antagonist
attenuated sympathetic hyperinnervation and inhibition of
the PI3K/Akt/GSK-3β signaling pathway, which indicated
that the PI3K/Akt/GSK-3β signaling pathway may play an
important role in the activation of sympathetic neurons
[28]. In this study, we showed that local microinjection of
ET-1 into the LSG activated the PI3K/Akt/GSK-3β signaling
pathway and that the activated ETA-R signaling pathway
may play a key role in the direct LSG activation induced by
ET-1 (Figure 8).

Inflammation has been demonstrated to regulate sympa-
thetic activity. To investigate the mechanisms that underlie
the regulation of sympathetic activity by ET-1, we also tested
the levels of proinflammatory cytokines that are known to be
capable of increasing sympathetic nerve activity, such as

TNF-α, IL-1β, and IL-6, in LSG tissues [29, 30]. Our previous
studies have shown increased IL-1β [29] and leptin [30]
levels in the LSG, which was confirmed by the proinflamma-
tory effects of mast cells (MCs) and macrophages; these fac-
tors could significantly upregulate sympathetic activity, and
these effects were reversed by an IL-1 receptor antagonist
and MC stabilizer, resulting in MC inactivation [31]. In addi-
tion, previous studies have confirmed that ET-1 and ETA-R
also play a role in immunoregulation [32]. MCs and mac-
rophages are important immune cells that express ETA-R
[33, 34]; MCs and macrophages drive inflammation, and
their inflammatory response can be modulated by ET-1
[34, 35], which indicates that MCs and macrophages may
be potential mechanisms for the proinflammatory effect of
ET-1. Thus, the above studies suggest that ET-1 increases
proinflammatory cytokines, possibly by activating MCs and
macrophages, which may provide another means by which
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Figure 8: Schematic diagram depicting the potential role of ET-1 in the LSG and the aggravation of VA. ET-1 is mainly synthesized by
vascular endothelial cells and contributes to cardiac sympathetic hyperactivity, aggravating LADO-induced VA. The underlying
mechanisms may be correlated directly with activated ETA-R signaling in the LSG or correlated indirectly with an increased
inflammatory response.
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local ET-1 microinjection indirectly results in LSG hyperac-
tivity (Figure 8).

4.4. Clinical Significance. ET-1 is widely distributed in the
majority of organs and tissues and is involved in physiologi-
cal regulation. ET-1 is closely related to the occurrence of
various cardiovascular diseases, such as myocardial infarc-
tion, hypertension, and heart failure. The results of this study
provide more evidence that ET-1 is a reliable risk marker and
a potential therapeutic target for ischemic VA.

4.5. Study Limitations. This study involved an investigation
of acute effects, and the long-term effect of increased ET-1
in the LSG on sympathetic neural remodeling and ischemic
VA remains to be elucidated.

5. Conclusions

In the present study, we found that local microinjection of
ET-1 into the LSG resulted in LSG neuronal remodeling
and aggravated ischemia-induced VA. Activation of the
ETA-R signaling pathway and inflammation-mediated sym-
pathetic neural remodeling could be a novel mechanism and
therapeutic target for ischemic VA.
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