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Nonalcoholic fatty liver disease (NAFLD) is becoming more common in the world and is presenting a great challenge concerning
prevention and treatment. Plant sterol ester of α-linolenic acid (PS-ALA) has a potential benefit to NAFLD. To examine the effect of
PS-ALA on NAFLD, C57BL/6J mice were given a control diet, high fat and high cholesterol diet (HFD), and HFD plus 2% PS, 1.3%
ALA, or 3.3% PS-ALA for 16 weeks. Our results showed that PS-ALA treatment suppressed hepatic steatosis, ameliorated lipid
disorder, attenuated inflammatory response, and inhibited oxidative stress. In the molecular level, PS-ALA downregulated high
transcriptional and translational levels of endoplasmic reticulum (ER) stress markers (Grp78 and Chop) leading to decreased
protein expression of transcription factor and key enzymes involved in de novo lipogenesis (Srebp-1c and Fas) and cholesterol
synthesis (Srebp-2 and Hmgcr). In parallel, PS-ALA blocked Nlrp3 activation and reduced release of IL-1β and IL-18 via
inhibiting ER stress-induced sensitization of unfolded protein response sensors (Ire1α and Xbp1s). Finally, PS-ALA improved
HFD-induced mitochondrial damage and fatty acid accumulation as exhibited by higher protein and mRNA expression of key
genes administering mitochondrial biogenesis (Pgc-1α, Nrf1, and Tfam) and fatty acid β-oxidation (Pparα and Cpt1a). In
conclusion, our study originally demonstrated that PS-ALA rescued ER stress, enhanced mitochondrial biogenesis, and thus
ameliorated NAFLD.

1. Introduction

Currently, nonalcoholic fatty liver disease (NAFLD) is
becoming the most prevalent chronic liver disease around
the world and the main cause of hepatocellular carcinoma
(HCC), liver transplantation, and liver-related mortality [1].
According to recent data, NAFLD is affecting 25% of adult
people worldwide [2] and 85-98% of obese patients [3].
Although the evidence raises a concern about the impact of
NAFLD in the world, the basic mechanism that initiates
NAFLD remains elusive [4]. Recently, evidence revealed that

endoplasmic reticulum (ER) stress played a crucial role in the
development of NAFLD [5]. ER is the main cell organ taking
charge of protein folding, lipid biogenesis, and calcium
homeostasis. Stressors that impair the folding capacity of
the ER may lead to immature defective protein overflows
and trigger ER stress [6]. Although ER stress may active a
cascade of compensatory responses, called unfolded protein
response (UPR), helping restore ER homeostasis and cell sur-
vival, persistent ER stress is known to enforce a detrimental
pathological outcome, involving ectopic fat deposition,
inflammation, oxidative stress, apoptosis, and dysregulated
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autophagy [7]. All of the processes mentioned above are
capable of provoking the development of NAFLD [8].

Moreover, recent data in the literature showed that
NAFLD was caused by ER stress-mediated mitochondrial
dysfunction [9]. ER stress activates ER oxidoreductin 1
(ERO1) and leads to reactive oxygen species (ROS) overpro-
duction. Then, ROS activates ER protein inositol-1,4,5-tris-
phosphate receptors and inactivates sarcoplasmic reticulum
Ca2+-ATPase, which resulted in the raised level of cytosolic
Ca2+, increased mitochondrial uptake of Ca2+, and ultimately
mitochondrial dysfunction [10]. Being the primary site for
the β-oxidation of fatty acid (FA), mitochondria play a
central role in FA degradation. Impaired mitochondrial
FA β-oxidation may result in fat accumulation in the liver
and implicate in the pathogenesis of NAFLD [11].

It has been reported that intracellular accumulation of
saturated fatty acid (SFA) and cholesterol, seen in obesity
or atherosclerosis, resulted in ER stress [12]. Thus, modula-
tion of lipid metabolism through dietary intervention may
be capable of ameliorating SFA or cholesterol overload-
induced ER stress.

Plant sterol (PS) is a specific phytochemical widely exist-
ing in cereal, legumes, vegetables, and fruits. Because of
structural similarity to cholesterol, PS has a good effect on
lowering cholesterol concentrations by competing with cho-
lesterol for intestinal absorption [13]. Daily intake of 2 g PS
is in the recommendations of the national cholesterol educa-
tion program (NCEP) in decreasing total cholesterol (TC)
and low-density lipoprotein cholesterol (LDL-C) level [14].
However, plant sterol was shown to have a limited effect on
lowering circulating triglyceride (TG) levels [15]. It has been
well established that α-linolenic acid (ALA), a plant-based n-
3 polyunsaturated fatty acid (PUFA), has a potent effect in
lowering TG, increasing FA catabolism, and inhibiting
inflammation [16, 17]. Accordingly, plant sterol has been
recently esterified by ALA to obtain a final product, plant ste-
rol ester of α-linolenic acid (PS-ALA), which would simulta-
neously reduce TC as well as TG and thus may improve ER
homeostasis and protects against NAFLD.

However, the effect of PS-ALA on NAFLD and the exact
molecular mechanism are still poorly understood. Therefore,
the relationship between PS-ALA intake and chronic high fat
and high cholesterol diet- (HFD-) induced NAFLD in mice
was explored in this work. Furthermore, the potential molec-
ular mechanism underlying the action of PS-ALA was deeply
investigated mainly focusing on ER homeostasis and mito-
chondrial biogenesis. Understanding the mechanisms by
which PS-ALA improves NAFLD may provide additional
details on the potential impact of PS-ALA onmetabolic func-
tion and NAFLD management.

2. Materials and Methods

2.1. Materials. α-Linolenic acid (α-linolenic acid 80.67%) was
purchased from Henan Linuo Biochemistry Co., Ltd.
(Anyang, Henan, China). Plant sterol (β-sitosterol 85.04%,
campesterol 7.83%, brassicasterol 1.15%, and stigmasterol
1.02%) was purchased from Xian Bluesky Biological Engi-
neering Co., Ltd. (Xian, Shanxi, China). The plant sterol ester

of α-linolenic acid was synthesized by the Oil Crops Research
Institute, Chinese Academy of Agricultural Sciences
(Wuhan, China) [18].

2.2. Animals and Treatments. 50 male C57BL/6J mice were
purchased from Beijing Vital River Laboratory Animal Tech-
nology Co., Ltd. (Beijing, China) and transferred to the labo-
ratory animal facilities. The experimental protocol was
approved by the Research Ethics Committee of Shanxi Med-
ical University, China. After acclimatization for one week,
the animals were randomly and equally allocated to five
experimental groups. These were the control group (control),
high fat and high cholesterol diet (HFD) group, plant sterol
(PS) group, α-linolenic acid (ALA) group, and plant sterol
ester of α-linolenic acid (PS-ALA) group. The control group
was given a normal diet with 10 kcal% fat. The HFD group
was given a high fat and high cholesterol diet with 45 kcal%
fat, 20 kcal% protein, 35 kcal% carbohydrate, and 2% choles-
terol (w/w). The PS-ALA group was given the same HFD
containing 3.3% PS-ALA. The PS group and the ALA group
were given the same HFD containing 2% PS and 1.3% ALA,
respectively (equivalent dose of ALA and PS to PS-ALA).
The composition of the experimental diets of each group
was shown in Table 1.

After 16 weeks, all the mice were fasted for 12h and then
sacrificed. Liver tissue and blood samples were collected for
further analysis.

2.3. Histology Examination. Paraffin-embedded fixed liver
tissue was cut in 5μm and stained with hematoxylin and
eosin (H/E) for histopathological examination. Fresh-frozen
liver cross-sections (5μm) were incubated with Oil Red O
solution for lipid staining. The images were captured with
an optical microscope (CKX53, Olympus) and analyzed
using Image-Pro Plus (IPP) software.

2.4. Biochemical Assays. Serum lipid profiles (TC, TG,
LDL-C, and HDL-C) and liver lipid content (TC, TG)
were examined by enzymatic colorimetric assays using
commercially available detection kits (Biosino Biotechnol-
ogy Co., Ltd., Beijing, China). The level of aspartate ami-
notransferase (AST) and alanine aminotransferase (ALT)
was measured by a Mindray BS-200 automatic biochemis-
try analyzer (Shenzhen, China) with matching kits.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA). Serum
interleukin-1β (IL-1β) and interleukin-18 (IL-18) were
assayed by ELISA under the guidance of the instruction of
the commercially available detection kit (R&D Systems, Min-
neapolis, MN, USA).

2.6. ROS Detection. Frozen liver cross-sections (5μm) were
incubated with dihydroethidium (5mol/L) for 15min. Then,
the fluorescence level was visualized and captured with a
fluorescence microscope and quantified using IPP.

2.7. Gene Expression Profiling. Total RNA of liver samples
was extracted using the TRIzol reagent (Invitrogen, USA)
and reverse transcribed to cDNA according to the manufac-
turer’s instructions (TaKaRa Biotechnology Co., Ltd., Dalian,
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China). The mRNA expression in liver tissue was quantified
using the SYBR Green detection system in 7900HT instru-
ment (Applied Biosystems, Forster, CA, USA). The primer
sequences are listed in Table 2.

2.8. Western Blotting Analysis. Total protein of liver samples
was extracted, and the protein concentrations were measured
according to the instruction of a BCA Protein Assay Kit
(Applygen, Beijing, China). Equal amounts of protein were
heated at 98°C with sodium dodecyl sulfate loading buffer
and separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE). The proteins were trans-
ferred to the polyvinylidene fluoride (PVDF) membrane
and blocked with 5% skimmed milk for 2 h. After incubating
with specific primary antibodies overnight at 4°C, the blots
were incubated with the horseradish peroxidase- (HRP-)

conjugated species-specific second antibodies. Then, the
immunoreactive bands were detected by the ECL Detection
System (Syngene, Cambridge, UK). Quantitative analysis of
the density of the bands was performed with ImageJ software.

2.9. Statistical Analysis. The data were analyzed using one-
way (ANOVA) with SPSS 20.0 software package and shown
as the mean ± standard error of mean ðSEMÞ. P < 0:05 was
considered a statistically significant difference between groups.

3. Results

3.1. PS-ALA Decreased Liver Wet Weight and Body Weight of
Mice. As shown in Table 3, at the end of the experiment, the
mice given HFD had greater liver wet weight and body
weight than normal mice (P < 0:05). PS-ALA treatment

Table 1: Composition of the experimental diets (g).

Ingredient Control group HFD group PS group ALA group PS-ALA group

Casein 200 200 200 200 200

L-Cystine 3 3 3 3 3

Corn starch 315 72.8 72.8 72.8 72.8

Maltodextrin 10 35 100 100 100 100

Sucrose 350 172.8 172.8 172.8 172.8

Cellulose, BW200 50 50 50 50 50

Soybean oil 25 25 25 25 25

Lard 20 177.5 159.9 166.1 148.5

Mineral mix S0026 10 10 10 10 10

Dicalcium phosphate 13 13 13 13 13

Calcium carbonate 5.5 5.5 5.5 5.5 5.5

Potassium citrate, 1 H2O 16.5 16.5 16.5 16.5 16.5

Vitamin mix V 10001 10 10 10 10 10

Choline bitartrate 2 2 2 2 2

Cholesterol 0 20 20 20 20

PS (g) 0 0 17.6 0 0

ALA (g) 0 0 0 11.4 0

PS-ALA (g) 0 0 0 0 29.0

Total (g) 1055 878.1 878.1 878.1 878.1

Energy (kcal) 4057 4057 4057 4057 4057

Table 2: Primer sequences used for real-time PCR.

Gene Forward primer Reverse primer

Grp78 5′-CCTGCGTCGGTGTGTTCAA-3′ 5′-ATCGCCAATCAGACGCTCC-3′
Chop 5′-GCCTTTCACCTTGGAGACGG-3′ 5′-GGACGCAGGGTCAAGAGTAGTG-3′
Ire1α 5′-ACACTGCCTGAGACCTTGTTG-3′ 5′-GGAGCCCGTCCTCTTGCTA-3′
Xbp1s 5′-CTGAGTCCGAATCAGGTGCAG-3′ 5′-GTCCATGGGAAGATGTTCTGG-3′
Pgc-1α 5′-TATGGAGTGACATAGAGTGTGCT-3′ 5′-CCACTTCAATCCACCCAGAAAG-3′
Nrf1 5′-GACCTTGCCACAGGCAGGTAA-3′ 5′-CGCCTGCTCCATGAACACTC-3′
Tfam 5′-TCAGGAGCAGCAGGCACTACA-3′ 5′-CTGAGCTCCGAGTCCTTGAACAC-3′
β-Actin 5′CATCCGTAAAGACCTCTATGCCAAC-3′ 5′-ATGGAGCCACCGATCCACA-3′
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significantly decreased the liver wet weight and body weight
of HFD-fed mice (P < 0:05). However, there was no differ-
ence in food intake between each group (P > 0:05).

3.2. PS-ALA Attenuated Lipid Accumulation in the Liver.
Histological evaluation of H/E and Oil Red O staining
revealed that HFD led to a large quantity of fat accumulation.
PS-ALA treatment markedly improved fat degeneration
(Figures 1(a) and 1(b)). Quantitative analysis of the extent
of adipose infiltration demonstrated a significantly smaller
size in PS-ALA-treated animals than that in HFD-treated
mice (P < 0:05) (Figure 1(c)).

3.3. PS-ALA Suppressed HFD-Induced ER Stress. To investi-
gate the possible molecular mechanism underlying the bene-
ficial effect of PS-ALA on NAFLD, gene and protein
expressions of glucose-regulated protein 78 (Grp78) and
C/EBP homologous protein (Chop), two markers of ER
stress, were assayed. As the results shown in Figure 2, com-
pared with the control, the protein and mRNA expressions
of Grp78 and Chop were statistically increased in HFD-fed
mice, and the high levels were markedly inhibited by PS-
ALA treatment (P < 0:05).

3.4. PS-ALA Inhibited Sterol Regulatory Element-Binding
Protein (Srebp) Pathway Activation during ER Stress and
Improved Lipid Metabolism. In the present study, HFD
caused lipid disorder as shown by increased serum levels of

TG, TC, and LDL-C and decreased HDL-C (P < 0:05). Both
interventions of ALA and PS-ALA have an effect in alleviat-
ing the rise of TG and TC in serum and liver while a much
lower level of TC was observed in the PS-ALA group
(P < 0:05). Although PS treatment decreased serum TC and
LDL-C, as well as, TC in the liver (P < 0:05), it had no effect
on TG and HDL-C (P > 0:05). PS-ALA treatment overall
improved lipid profiles (P < 0:05). These results implied that
PS-ALA had a much better effect on ameliorating HFD-
induced lipid disorder than ALA and PS (Figure 3).

To further explore the underlying mechanism by
which PS-ALA modulated lipid metabolism, the protein
expression of the crucial genes involved in TG and choles-
terol synthesis during ER stress was detected. Results
showed that PS-ALA supplement but not PS prominently
lowered HFD-induced high protein expression of sterol
regulatory element-binding protein-1c (Srebp-1c) and fatty
acid synthase (Fas), which regulated de novo fat synthesis
(P < 0:05) (Figure 4). Dietary PS significantly downregu-
lated sterol regulatory element-binding protein-2 (Srebp-2)
and 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(Hmgcr), which took charge of cholesterol synthesis in
the liver, while a more pronounced effect was achieved
by PS-ALA treatment (P < 0:05) (Figure 5). The results
suggested the ameliorating effect of PS-ALA on lipid
metabolism at least partly through inhibiting Srebps activa-
tion during ER stress.

Table 3: Effect of PS-ALA on food intake, body weight, and liver weight/body weight in mice throughout the feeding period.

Parameters
Groups

Control HFD PS ALA PS-ALA

Food intake (g/d) 4:04 ± 0:06 4:07 ± 0:10 3:97 ± 0:09 4:00 ± 0:13 4:01 ± 0:11
Energy consumption (kcal/d) 15:57 ± 0:24 19:26 ± 0:47a 18:82 ± 0:40a 18:94 ± 0:61a 18:97 ± 0:50a

Initial body weight (g) 21:91 ± 0:47 22:12 ± 0:64 22:11 ± 0:59 22:20 ± 0:46 21:44 ± 0:47
Final body weight (g) 29:07 ± 0:76 39:54 ± 1:43a 36:95 ± 1:71a 37:25 ± 0:84a 35:08 ± 1:71ab

Liver weight (g/100 g body weight) 3:37 ± 0:11 4:72 ± 0:09a 4:65 ± 0:09a 4:58 ± 0:10a 3:73 ± 0:15ab

Values are given as means ± standard error of themean (n = 10). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group.
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Figure 1: PS-ALA ameliorates hepatic steatosis in mice. (a) H/E and (b) Oil Red O staining of lipid droplets in the livers of mice in each group
(magnification ×200). (c) Quantitative analysis of hepatic fat accumulation. Data represents as means ± standard error of themean and is
normalized to % of field area (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group.

4 Oxidative Medicine and Cellular Longevity



3.5. PS-ALA Reduced Inflammatory Cytokines and
Transaminase. Long-time HFD resulted in serious liver dam-
age marked by high levels of serum IL-1β, IL-18, ALT, and
AST (P < 0:05), while PS-ALA but not ALA or PS interven-
tion significantly lowered all the inflammatory cytokines
and transaminase mentioned above (P < 0:05), which suggest
a synergistic effect. These results suggested that PS-ALA was
capable of inhibiting HFD-induced inflammation and atten-
uating liver injury (Figure 6).

3.6. PS-ALA Weakened Inositol-Requiring 1α (Ire1α)/x-Box-
Binding protein1s (Xbp1s) Pathway and Inflammasome
Activation Induced by ER Stress. Compared with the control
group, the protein expression of NOD-like receptor family
pyrin domain-containing 3 (Nlrp3), Il-1β, and Il-18 in the
liver was higher in the HFD group, but the changes were
diminished by PS-ALA treatment (P < 0:05) (Figure 7).

To further explore the cause for inflammation during ER
stress and the protective action displayed by PS-ALA, gene
and protein expressions of Ire1α/Xbp1s pathway that acti-
vated Nlrp3 during ER stress were assessed. The result
showed that mice feeding on HFD exhibited dramatically
increased mRNA and protein levels of Ire1α and Xbp1s as
compared with the control (P < 0:05), while the significant
lower effect was achieved by PS-ALA treatment (P < 0:05).
Moreover, the data clearly showed that PS-ALA treatment
reversed the augmented phosphorylation activation of Ire1α
and protein expression of Xbp1s (P < 0:05) (Figure 8). These

data indicate that anti-inflammatory effect of PS-ALA may
partly through inhibiting Ire1α/Xbp1s signal pathway and
NLRP3 activation.

3.7. PS-ALA Attenuated ER Stress-Induced Oxidative Stress
and Mitochondrial Dysfunction. It has been reported that
ER stress caused excessive production of ROS, which contrib-
uted to mitochondrial dysfunction and FA β-oxidation
impairment. As the result illustrated in Figure 9, excessive
ROS production in the liver was dramatically reduced after
exposure to PS-ALA (P < 0:05). Also, PS-ALA intervention
significantly improved mitochondrial biogenesis as exhibited
by the higher mRNA and protein expression of peroxisome
proliferator-activated receptor coactivator-1α (Pgc-1α),
nuclear respiratory factor-1 (Nrf1), and transcription factor
A mitochondria (Tfam) compared with HFD treatment
(P < 0:05) (Figure 10). To further evaluate the mitochondrial
oxidative capacity and explore the explanation of lower TG
level in PS-ALA-treated mice, peroxisome proliferator-
activated receptor alpha (Pparα) and carnitine palmitoyl-
transferase 1A (Cpt1a), the key genes involved in mitochon-
drial β-oxidation of FA, were assayed. Results showed that
PS-ALA was more valid than ALA in increased mRNA and
protein expression of Pparα and Cpt1a inhibited by HFD
(P < 0:05) (Figure 11). These data indicated that PS-ALA
reduced ROS production and protected the mitochondrion
against oxidative injury, which in turn promoted FA β-oxi-
dation and diminished TG accumulation.
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Figure 2: PS-ALA alters protein expression of gene involved in ER stress. Effect of PS-ALA on mRNA expression of (a) Grp78 and (b) Chop
was assayed with quantitative real-time RT-PCR. Relative mRNA expression is shown as a ratio relative to β-actin and reported as means
± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group. (c) The effect of PS-ALA on
protein expression of Grp78 and Chop in the liver was assayed by western blotting, with β-actin as a loading control. Representative
images of at least three independent experiments are shown. Protein expression of (d) Grp78 and (e) Chop is presented as fold change
relative to the control. Each bar denotes the mean ± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus
the HFD group.
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Figure 3: PS-ALA improves lipid profiles in mice. (a) Serum TG, (b) serum TC, (c) serum LDL-C, (d) serum HDL-C, (e) liver TG, and (f)
liver TC. Each bar or point denotes the mean ± standard error of themean (n = 10). aP < 0:05 versus the control group; bP < 0:05 versus the
HFD group; cP < 0:05 versus the PS group.
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Figure 4: PS-ALA reduces protein expression of gene involved in de novo fat synthesis. (a) The effect of PS-ALA on protein expression of
Srebp-1c and Fas in the liver was assayed by western blotting, with β-actin as a loading control. Representative images of at least three
independent experiments are shown. Protein expression of (b) Srebp-1c and (c) Fas is presented as fold change relative to the control.
Each bar denotes the mean ± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group;
cP < 0:05 versus the ALA group.
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4. Discussion

NAFLD is considered to be the clinical feature of metabolic
syndrome and is associated with an increased risk of both
prevalent and incident cardiovascular diseases, diabetes,
and mellitus chronic kidney disease (CKD) [19]. Currently,
no pharmacology is identified for NAFLD treatment, and a
healthy diet and regular physical exercise represent the
recommended treatment [20]. In recent years, numerous

researches have focused on natural products or plant
chemicals with lipid modulation, antioxidation, and anti-
inflammation effects. This study demonstrated that PS-ALA
was capable of ameliorating hepatic steatosis as well as opti-
mizing lipid profiles, weakening inflammation, mitigating
liver damage, and inhibiting oxidative stress induced by
chronic lard-based HFD, which implied that PS attaching
ALA had a good effect on protecting against NAFLD. Our
results were supported by existing evidence showing that
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Figure 5: PS-ALA decreases protein expression of gene involved in cholesterol synthesis. (a) The effect of PS-ALA on protein expression of
Srebp-2 and Hmgcr in the liver was assayed by western blotting, with β-actin as a loading control. Representative images of at least three
independent experiments are shown. Protein expression of (b) Srebp-2 and (c) Hmgcr is presented as fold change relative to the control.
Each bar denotes the mean ± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group;
cP < 0:05 versus the PS group.
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Figure 6: PS-ALA alleviates serum inflammatory cytokines and transaminases in mice: (a) serum IL-1β, (b) serum IL-18, (c) serum ALT, and
(d) serum AST. Each bar denotes the mean ± standard error of themean (n = 10). aP < 0:05 versus the control group; bP < 0:05 versus the
HFD group.
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ALA prevented hepatic steatosis in HFD-feeding mice [21]
and intake of β-sitosterol and stigmasterol alleviated NAFLD
in western-style HFD-feeding mice [22].

It has been published that ER dysfunction was related to
lipid disorder, inflammation, and oxidative stress during the
development of NAFLD [23]. Also, a line of evidence
announced the links between ER stress and NAFLD [24,
25]. Thus, in this work, we explored the underlying mech-
anism by which PS-ALA exerted NAFLD protection effect
focusing on ER stress. ER stress was demonstrated to involve
in the development of NAFLD, as evidenced by the findings
that the patients with NASH generally expressed a high level
of ER stress indicators, including GRP78 and CHOP [26]. A
vitriol study conducted in primary rat hepatocytes showed
that cotreatment with ALA reversed the increased levels of
Grp78 and Chop [27]. Consistently, in this study, the
increased mRNA and protein expression of Grp78 and Chop
induced by HFD was remarkably lowered by PS-ALA treat-
ment. Thus, the protecting effect of PS-ALA on NAFLD
may be partly through attenuating ER stress.

In parallel with liver steatosis induced by increased de
novo lipogenesis (DNL), decreased FA β-oxidation, and
reduced VLDL secretion, and increased uptake of circulating
FA derived from the or diet, hepatic lipids accumulate can
also as a result of ER stress [28]. Human studies revealed that
DNL contributes to about a quarter of liver lipids in NAFLD
patients [29]. Besides secreting membrane proteins, ER is

also the major site of lipid synthesis in hepatocyte. In fact,
DNL is mainly regulated by ER membrane-localized tran-
scription factors, Srebp-1c for FA synthesis and Srebp-2 for
cholesterol synthesis [30]. A great deal of evidence has shown
that chronic ER stress upregulated Srebps directly or indi-
rectly, promoting TG and cholesterol synthesis and stor-
age, which contributed to hepatic steatosis development
[31, 32]. A previous study showed that ALA downregu-
lated TG and cholesterol biosynthesis pathway by suppress-
ing Srebp-1c and Srebp-2 protein expression [33]. We found
similar results with existing evidence that PS-ALA treatment
lowered protein expression of Srebp-1c and Fas regulating de
novo fat synthesis, as well as Srebp-2 and Hmgcr taking
charge of cholesterol synthesis. These data suggested the
ameliorating effects of PS-ALA on lipid metabolism at least
partly through inhibiting Srebps activation during ER stress.

When ER stress was induced by excessive SFAs, choles-
terol, and misfolded proteins, UPR was triggered through
activation of 3 pathways, controlled by IRE1a, PRK-like ER
kinase (PERK), and transcription factor-6 (ATF6), to initiate
an adaptive program [34]. However, if ER homeostasis is not
restored by activating UPR recovery pathways, improper
responses to ER stress will result in lipid disorder, inflamma-
tion, oxidative stress, and apoptosis, which may create a lipo-
toxic environment upon NAFLD [35–37]. It has been well
known that chronic ER stress led to inflammation via activat-
ing the IRE1a signal pathway. Unfolded proteins in the ER
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Figure 7: PS-ALA ameliorates inflammasome activation and proinflammatory cytokines in mice. (a) The effect of PS-ALA on protein
expression of Nlrp3, Il-1β, and Il-18 in the liver was assayed by western blotting, with β-actin as a loading control. Representative images
of at least three independent experiments are shown. Protein expression of (b) Nlrp3, (c) Il-1β, and (d) Il-18 is presented as fold change
relative to the control. Each bar denotes the mean ± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus
the HFD group.
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lumen induced the endoribonuclease activity of IRE1a, which
in turn spliced XBP1 mRNA to its mature form for transla-
tion into the transcription factor XBP1s. As a result, NLRP3
inflammasome was activated to cleave procaspase-1 to its
active form, which causes maturation and secretion of IL-
1β and IL-18 and induces metabolic inflammation [38]. A
study worked by Lebeaupin et al. showed the prolonged
and irremediable ER stress-induced immoderate Ire1a acti-
vation in livers of obese mice, which, in turn, activated the
Nlrp3 and subsequently initiated liver injury [39]. Also,
plenty of studies suggest that NLRP3 is harmful to hepatic
steatosis and NASH pathogenesis. Indeed, evidence from
the clinical study showed that NAFLD patients had elevated
protein expression of NLRP3, IL-1β, and IL-18 [40]. In the
animal module, NLRP3 deficiency protects against HFD-
induced liver steatosis in mice [41]. These findings raise the
possibility that suppression of NLRP3 inflammasome activa-

tion induced by IRE1a may be beneficial to the treatment of
NAFLD. Recently, it has been published that metabolites of
ALA mediated anti-inflammatory effects by inactivating
Nlrp3 inflammasome [42]. Meanwhile, dietary ALA supple-
mentation was demonstrated to be effective in preventing
hepatic steatosis, which is associated with inflammation and
ER stress [21]. Flaxseed oil rich in ALA intervention appar-
ently decreased the serum level of inflammatory cytokines
(IL-6, IL-1β, MCP-1, and TNF-α) and attenuated hepatic
steatosis by regulating ER stress [43]. Currently, Javanmardi
et al. demonstrated that intake of 1.6 g/d PS efficiently not
only lowered LDL-C but also decreased TNF-α, AST, and
ALT in patients with NAFLD [44]. It was also reported that
the liver sitosterol ratio to cholesterol negatively associated
with hepatic steatosis and inflammation in obese individuals
with NAFLD [45]. In accordance with these results, in this
NAFLD model, serum concentrates and protein expressions
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Figure 8: PS-ALA inhibits mRNA and protein expression of phosphorylated Ire1α, total Ire1α, and Xbp1s in mice. Effect of PS-ALA on
mRNA expression of (a) Ire1α and (b) Xbp1s was assayed with quantitative real-time RT-PCR. Relative mRNA expression is shown as a
ratio relative to β-actin and reported as means ± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus
the HFD group. (c) The effect of PS-ALA on protein expression of phosphorylated Ire1α, total Ire1α, and Xbp1s was assayed by western
blotting, with β-actin as a loading control. Representative images of at least three independent experiments are shown. Protein expression
of (d) phosphorylated Ire1α, (e) total Ire1α, and (f) Xbp1s is presented as fold change relative to the control. Each bar denotes the mean ±
standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group.
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of the Nlrp3 inflammasome, Il-1β, and Il-18 were elevated by
HFD, along with phosphorylation activation of Ire1a and
increased mRNA and protein expression of Xbp1s. PS-ALA
prevented those responses, which indicated that the anti-
inflammatory effect of PS-ALA may link to inhibiting
Ire1a/Xbp1s pathway and Nlrp3 inflammasome activation.

It has been well documented that chronic ER stress initi-
ated oxidative stress via augmenting ER Ca2+ release and
oxidoreductin-1 activity, both of which resulted in mito-
chondrial damage [46]. β-Oxidation mainly proceeding in
mitochondria is the primary pathway for FA decomposition.
Mitochondrial dysfunction is concurrent with suboptimal or
incomplete fat oxidation, causing accumulation of TG, which
can bring about hepatic steatosis [47]. In human and rodent
models with NAFLD, mitochondrial impairment is a central
feature of SFL to NASH transition [48]. Hence, improving

mitochondrial function may be a potential therapeutic target
for NAFLD. It has been well established that the upregulation
of proteins took charge in mitochondrial biogenesis could
enhance oxidative metabolic capacity. Nrf1 is a transcription
factor that regulates nuclear gene coding for mitochondrial
respiratory chain proteins and can be activated by PGC-1α,
which accelerates the transcription of genes involved in oxi-
dative phosphorylation. PGC-1α and Nrf1 coactivate Tfam
maintaining and regulating mtDNA transcription and repli-
cation [49]. In the present work, our data show that HFD
resulted in overproduction of ROS, which impaired mito-
chondrial function marked by lower gene and protein expres-
sions of Pgc-1α, Nrf1, and Tfam. PS-ALA treatment not only
remarkably reduced ROS production but also notably
enhanced transcripts and expressions of Pgc-1α, Nrf1, and
Tfam. Moreover, dysfunctional mitochondria that led to
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Figure 9: PS-ALA reduces hepatic ROS production of mice. (a) ROS in the liver of the mice was detected by using DHE which reacts with
ROS and forms ETH that binds to DNA and produces a red fluorescence signal, visualized with a fluorescence microscope (×200) and
quantified. (b) Fluorescence intensities in randomly selected areas of the images were quantified by using the IPP image analysis software.
Each bar denotes the mean ± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group;
cP < 0:05 versus the PS group.
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reduction of protein expression of Pparα and Cpt1a, two
important regulators administering FA β-oxidation, was pre-
vented by PS-ALA supplementation. Others suggested that
beta-sitosterol repressed acute hepatic injury by inhibiting

oxidative stress in mice [50]. Evidence from a clinical study
showed that dietary 0.945 g/d n-3 PUFA (21% eicosapentae-
noic (EPA), 16% docosahexaenoic (DHA) acids, and 64%
ALA) for 6 months significantly improved hepatic
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Figure 10: PS-ALA decreases mRNA and protein expression of Pgc-1α,Nrf1, and Tfam in mice. Effect of PS-ALA onmRNA expression of (a)
Pgc-1α, (b) Nrf1, and (c) Tfam was assayed with quantitative real-time RT-PCR. Relative mRNA expression is shown as a ratio relative to β-
actin and reported asmeans ± standard error of themean (n = 6). P < 0:05 versus the control group; bP < 0:05 versus the HFD group. (d) The
effect of PS-ALA on protein expression of Pgc-1α, Nrf1, and Tfam was assayed by western blotting, with β-actin as a loading control.
Representative images of at least three independent experiments are shown. Protein expression of (e) Pgc-1α, (f) Nrf1, and (g) Tfam is
presented as fold change relative to the control. Each bar denotes the mean ± standard error of themean (n = 6). aP < 0:05 versus the
control group; bP < 0:05 versus the HFD group.
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Figure 11: PS-ALA increases protein expression of genes involved in β-oxidation of fatty acids. (a) The effect of PS-ALA on protein
expression of Pparα and Cpt1a was assayed by western blotting, with β-actin as a loading control. Representative images of at least three
independent experiments are shown. Protein expression of (b) Pparα and (c) Cpt1a is presented as fold change relative to the control.
Each bar denotes the mean ± standard error of themean (n = 6). aP < 0:05 versus the control group; bP < 0:05 versus the HFD group;
cP < 0:05 versus the ALA group.
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lipogenesis, ER stress, and mitochondrial function in patients
with NASH [51]. Our previous study proved that treatment
with ALA rich in flaxseed oil significantly increased gene
and protein expressions of Pparα and key enzymes in FA
β-oxidation (Cpt1a and Acox1), which in turn reduced TG
accumulation in the liver [52]. Our findings together with
these others suggest that PS-ALA may inhibit ROS produc-
tion and improve mitochondrial biogenesis, thus promoting
FA β-oxidation and substantially reducing fat accumulation
in the liver.

5. Conclusions

PS-ALA has a good effect in suppressing hepatic steatosis,
attenuating inflammatory response, and inhibiting oxidative
stress in an HFD-induced NAFLD mouse model. The under-
lying mechanism may be that PS-ALA blocks Srebps activa-
tion, Ire1a/Xbp1s signal pathway sensitization, and ROS
overproduction by rescuing the adaption to ER stress, leading
to decreased lipid accumulation, wakened Nlrp3 activity, and
improved mitochondrial biogenesis. The results suggest that
PS-ALA may be a novel candidate for NAFLD prevention
and treatment.
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