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Objective. Type 2 diabetes mellitus (T2DM) is a metabolic disease with high incidence, which has seriously affected human life and
health. MicroRNA, a short-chain noncoding RNA, plays an important role in T2DM. Identification of meaningful microRNA
modules and the role of microRNAs provide a basis for searching potential biomarkers of T2DM. Materials and Methods. In
this study, three newly diagnosed patients with T2DM and three controls were selected for Whole Peripheral Blood RNA
Sequencing to establish a microRNA library. Weighted gene coexpression network analysis (WGCNA) was applied to construct
coexpression modules and to detect the trait-related microRNA modules; then, KEGG enrichment analysis was performed to
predict the biological function of the interest modules, and candidate hub microRNAs were screened out by the value of module
membership (MM) and protein-protein interaction (PPI) network. Result. Four microRNA modules (blue, brown, magenta, and
turquoise) were highly associated with the T2DM; the number of miRNAs in these modules ranged from 41 to 469. The Fc
gamma R-mediated phagocytosis pathway, Rap1 signaling pathway, MAPK signaling pathway, and Lysosome pathway were
common pathways in three of the four modules. RPS27A, UBC, and RAC1 were the top three proteins in our study; their
corresponding RNAs were miR-1271-5p, miR-130a-3p, miR-130b-3p, and miR-574-3p. Conclusion. In summary, this study
identified blood miRNAs in human T2DM using RNA sequencing. The findings may be the foundation for understanding the
potential role of miRNAs in T2DM.

1. Introduction

Diabetes mellitus, characterized by hyperglycemia, is one of
the most prevalent metabolic disorders. It is estimated by
the International Diabetes Federation’s Diabetes Atlas eighth
edition that there are about 1 in 11 adults worldwide now
with diabetes mellitus, 90% of whom have type 2 diabetes
mellitus (T2DM) [1]. The pathogenesis of T2DM has been
extensively studied for many years; it is a complex disorder
resulting from the interplay of genetic and environmental
factors [2]. In recent years, studies on T2DM tend to explore
the biological markers of early diagnosis and intervention

from the gene level; the role of microRNAs has attracted wide
attention.

MicroRNAs are a class of endogenous short noncoding
RNAs, which bind to the 3′terminal noncoding region of tar-
get gene at the transcriptional level in the form of complete
complementation or incomplete complementation to regu-
late gene expression and exert biological effects in both health
and disease [3–4]. Relevant studies have shown that some
microRNAs can regulate the synthesis and secretion of insu-
lin and play an important role in blood glucose balance, such
as miR-375 and miR-124a [5–6]. Differential expression
analysis was used to screen significant genes for most genetic
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studies. However, this method only focuses on the effect of
the single gene, which cannot find the genetic relationships
and build the relationships between genes and disease [7].
Fortunately, this problem can be solved by weighted gene
coexpression network analysis (WGCNA).

WGCNA identifies interest gene clusters (which we
called gene modules) using information from thousands of
genes with the greatest changes, or all of them, and makes
significant association analysis with traits [8]. Instead of
focusing on differentially expressed genes, it not only makes
full use of data information but also converts thousands of
gene-trait associations into several gene clusters and trait
associations, eliminating the problem of multiple hypothesis
test corrections. On the basis of its wide application in cancer
research [9–11], WGCNA has a good prospect in T2DM.

The aim of this study was to utilize the WGCNA method
to construct coexpression modules for the expression data of
miRNAs in human biological specimens and to obtain the
correlation between different modules and the trait of
T2DM. It provided an effective way to explore the role of
microRNAs from different perspectives and provided a basis
for searching potential biomarkers of T2DM.

2. Materials and Methods

2.1. Participants. Three patients who were newly diagnosed
with T2DM and three controls without T2DM were
recruited at the Second Hospital of Jilin University from
April to June 2018. All participants were Han Chinese,
and all of them were males aged 40-60 years (Table S1).
Patients were diagnosed according to the China Guideline
for T2DM: fasting blood glucose ðFBGÞ > 7:0 mmol/L, oral
glucose tolerance test (OGTT) two-hour blood glucose >
11:1 mmol/L. Nondiabetic volunteers were from the
health examination center of the second affiliated hospital
of Jilin University. The inclusion criteria for nondiabetic
volunteers were fasting blood glucose ðFBGÞ < 6:1 mmol/L,
oral glucose tolerance test (OGTT) two-hour blood glucose
< 7:8 mmol/L. All of them had no family history of
diabetes and no history of using antiplatelet or antidiabetic
agents. All patients with the history of coronary artery
disease (CAD), hypertension, atrial fibrillation, myocardial
infarction, tumor, acute infectious disease, immune disease,
and hematological disease were excluded from the study.

2.2. Ethical Approval and Informed Consent. All participants
provided written informed consent; the study was approved
by the Institutional Review Board of the Jilin University of
Public Health, and it always follows the privacy of the
participants.

2.3. Blood Sample Collection and RNA Sequencing. The blood
samples were collected immediately after admission in the
DM group, and the control group blood sample collection
was performed the next morning after the participants had
fasted for ten hours or overnight by tubes containing EDTA.
Total RNA was isolated and purified using RNAiso Plus
(total RNA extraction reagent) (TAKARA BIO INC., CA,
Japan) according to the manual. RNA purity was checked

using the NanoPhotometer® spectrophotometer (IMPLEN,
CA, USA). RNA concentration was measured using the
Qubit® RNA Assay Kit in a Qubit® 2.0 Fluorometer (Life
Technologies, CA, USA). RNA integrity was further assessed
using the RNA Nano 6000 Assay Kit of the Agilent Bioanaly-
zer 2100 system (Agilent Technologies, CA, USA).

2.4. Quality Control of Raw Sequencing Data. For micro-
RNAs, raw data (raw reads) of fastq format were firstly proc-
essed through custom perl and python scripts. In this step,
clean data (clean reads) were obtained by removing reads
containing ploy-N, with 5′ adapter contaminants, without
3′ adapter or the insert tag, containing ploy A or T or G or
C and low-quality reads from raw data. At the same time,
Q20, Q30, and GC content of the raw data were calculated.
Taken together, all the downstream analyses were based on
the clean data.

2.5. Weighted Gene Coexpression Network Analysis.
Weighted gene coexpression network analysis was a scale-
free network analysis method proposed by Peter Langfelder
and Steve Horvath in 2008 [7]. In this method, highly corre-
lated genes are clustered to form modules, module eigen-
genes (MEs) are used to represent the overall expression
level of modules, and modules are correlated with external
phenotypes for analysis. This method is widely used in data
mining of tumor genes and has obvious advantages over tra-
ditional differential gene screening.

2.5.1. Data Pretreatment. The data needs to be processed
before the WGCNA analysis. The gene and sample data were
transformed into the gene×sample matrix. Fewer than five
genes with nonzero expression levels were cleared [12].

2.5.2. Weighted Gene Coexpression Network Analysis and
Modules. Bioconductor package in the R programming lan-
guage was used for WGCNA and goodSamplesGenes func-
tion to check whether microRNA data met the
requirements of network analysis. Pearson correlation coeffi-
cient was calculated for all the genes, and an appropriate soft
threshold β was automatically selected through the pickSoft-
Threshold function in the WGCNA package. The function of
β parameter was to amplify the correlation between genes
[13]. Pearson correlation coefficient was exponentially
weighted with β, and the weighted results were converted
into an adjacency matrix [14]. Subsequently, we transformed
the adjacency matrix into topological overlap matrix and
used topological overlap (TOM) to describe the similarity
of gene expression, and 1-Tom to represent the heterogeneity
between genes. Finally, dynamic tree was used to divide the
modules of hierarchical clustering results, and merging the
modules with the number of microRNAs < 30 and cutting
height < 0:25 [15].

2.5.3. Key Modules and Hub Genes. Above all, the first prin-
cipal component module eigengenes (MEs) were calculated
to express the expression level of the gene module. Then,
the strongly correlated modules were determined by Pearson
correlation coefficient between the modules and the pheno-
type of T2DM. The hub gene was determined by calculating
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the module membership (MM) and gene significance (GS) of
the genes in the key modules. Hub microRNAs were selected
according to the top 10% MM value in each module.

2.6. Functional Interpretation of Gene Modules. The hub
genes’ information of interest modules was mapped to the
DAVID (Database for Annotation, Visualization, and
Integrated Discovery) dataset (https://david.ncifcrf.gov/
summary.jsp). Then, the functional enrichment analysis
was performed by KOBAS3.0 (http://kobas.cbi.pku.edu.cn/
index.php) to interpret the biological function of each inter-
est module.

2.7. Selection of HubMicroRNAs and Construction of Protein-
Protein Interaction. Module membership (MM) was defined
as the correlation of expression profile and MEs. The hub
microRNAs were determined by calculating the module
membership (MM), and the first 10% according to the value
of MM in each module was selected. Subsequently, we used
the target genes of hub microRNAs to construct protein-
protein interaction (PPI) network by STRING database
(https://string-db.org/) to find potential functional proteins
and important microRNAs in this study.

2.8. Cross Validation. GSE21321 is an independent cohort
which include both microRNA and mRNA database [16].
In order to validate the hub RNAs in our study, we only
downloaded the microRNA dataset, and excluding seven
impaired fasting glucose cases, leaving nine T2DM cases
and ten normal controls for follow-up analysis. All 19 partic-
ipants were Singaporean and males. They were without past
history of T2DM and with desirable cholesterol and blood
pressure profiles, only classified according to fasting glucose
levels to have T2DM (fasting glucose ≥ 7:0 mmol/L) and
healthy controls (fasting glucose < 6:1 mmol/L). Data for
GSE21321 were obtained by using GPL10322 (v.11.0-hsa,
mmu, and rno (probe-level)) miRCURY LNA microRNA
array. The background correction, normalization, and
summarization were performed using the robust multichip
average algorithm. After that, we used the log2 transforma-
tion to process the intensities of microRNAs that extracted
from the GSE21321. Differential expression analysis was
performed by using the t-test; the individual P values and
|Log2FoldChange| were obtained to validate the significance
of RNAs we have found.

3. Result

3.1. Overview of the Transcriptome Profiling. Three T2DM
patients and three healthy controls were involved in this
study. Blood samples from 6 individuals were extracted for
RNA sequencing and analysis; then, a small RNA library
was established. In order to ensure the quality of information
analysis, low-quality reads with joints were removed; clean
reads obtained by sequencing were processed. The clean
reads in the T2DM group were 12507829, 12817714, and
11412993, respectively, while those in the control group were
12097060, 11718875, and 13818644, respectively (Table 1).
Subsequently, the reads were standardized and transformed
into TPM values for subsequent analysis.

3.2. Determination of Soft Threshold. According to the
WGCNA software package in R, the correlation analysis
was carried out. There were 1344 primitive microRNAs,
and 958 were left after excluding the nonconforming data.
The results show that the coexpression network conform to
scale-free network, that is, the logarithmic log (k) of the node
with K connectivity is negatively correlated with the logarith-
mic log(p(k)) of the probability of the node’s occurrence, and
the absolute value of the correlation coefficient is greater than
0.8. In this study, the correlation coefficient was 0.85, and the
soft threshold was 7 (Figure 1). The adjacency matrix and the
topological overlap measure (TOM) were further constructed
by weighing coefficient. The hierarchical clustering analysis
of microRNAs was carried out according to the difference
of nodes (1-TOM).

3.3. Identifying Coexpression Module and Module
Preservation Analysis. Figure 2 is a hierarchical clustering
tree constructed according to the weight of microRNAs.
Modules were classified by dynamic tree cut, and merging
the modules with the number of microRNAs was less than
30 and the cutting heights < 0:25. Finally, grey, blue, green,
magenta, red, yellow, black, brown, pink, and turquoise (dif-
ferent colors represent different modules) 10 modules were
obtained; the number of microRNAs in different modules is
displayed in Table 2. The RNAs were contained in the grey
module implying that it was not assigned to any module.

The most representative gene set in each module repre-
sented the overall level of gene expression in the module as
the first principal component of the module eigengene
(ME). Figure 3 represents the correlation between micro-
RNAs. The correlation between modules not only showed

Table 1: Summary of data cleaning from RNA sequencing.

Sample Total reads N% > 10% Low quality
5 adapter
contamine

3 adapter null or
insert null

With ployA/T/G/C Clean reads

B1 12778191 (100.00%) (0.00%) 122139 (0.96%) 266 (0.00%) 358460 (2.94%) 2474 (0.02%) 11832483 (96.94%)

B2 13107612 (100.00%) (0.00%) 137294 (1.05%) 308 (0.00%) 318292 (2.70%) 2307 (0.02%) 11434838 (97.18%)

B3 11677326 (100.00%) (0.00%) 126144 (1.08%) 172 (0.00%) 326354 (2.62%) 3502 (0.03%) 12107635 (97.21%)

D1 12476427 (100.00%) (0.00%) 23555 (0.19%) 128 (0.00%) 295178 (2.37%) 2492 (0.02%) 12155074 (97.42%)

D2 12165981 (100.00%) 6 (0.00%) 19821 (0.16%) 270 (0.00%) 354952 (2.92%) 2703 (0.02%) 11788229 (96.90%)

D3 14285486 (100.00%) 113 (0.00%) 17783 (0.12%) 208 (0.00%) 359335 (2.52%) 3962 (0.03%) 13904085 (97.33%)
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the specificity but also showed the biological significance of
the miRNA module in this study.

3.4. Module-Clinical Trait Relationships. Identifying genes
associated with a certain clinical trait is of great value to
explore the molecular mechanisms behind that trait. In the
present study, the parameters of six samples included BMI,
age, smoking, alcohol, and T2DM. Since this study explored
the mechanism of T2DM, we mainly focused on modules
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Figure 1: The network topology under different soft thresholds. (a) The chart showed the correlation coefficients of log(k) and log(p(k))
corresponding to different soft thresholds; (b) the chart showed the mean values of gene adjacency coefficients corresponding to different
soft thresholds, reflecting the average connectivity level of the network.
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Figure 2: Hierarchical clustering tree and coexpression module of microRNAs. At the top of the graph was a clustering tree of microRNAs,
and at the bottom are different modules cut from the dynamic cutting tree (different colors represent different modules).

Table 2: Number of microRNAs contained in different modules.

Module Blue Green Magenta Red Yellow

Number 103 53 41 48 72

Module Black Brown Pink Turquoise Grey

Number 48 76 45 469 3
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highly related to it. Pearson correlation coefficients between
ME and the clinical trait of each microRNAmodule were cal-
culated, and significance module (P < 0:05) was obtained to
further screen coexpression modules. As shown in Figure 4,
we found four modules were significantly associated with
T2DM (blue module, brown module, turquoise module,
and magenta module). MEblue correlation coefficient was
-0.87; P value was 0.02. MEgreen module correlation coeffi-
cient was -0.18; P value was 0.7. MEmagenta module correla-
tion coefficient was -0.93; P value was 0.0017. MEturquoise

module correlation coefficient was -0.96; P value was 0.003.
Except for these four modules, there was no statistical signif-
icance in other modules.

3.5. Pathway Enrichment Analysis of MicroRNAs. To explore
the biological functions of four modules, we performed path-
way analysis to the target genes corresponding to each mod-
ule’s microRNAs. In Figure 5(a), four bubble charts
represented the top 20 pathways of each module and com-
prehensive analysis of rich factor; count and P value found
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Figure 3: Module preservation analysis. (a) Represented the gene network by using a heat map plot. The heat map depicted the topological
overlap matrix (TOM) among all genes in the analysis. Light color represents low overlap, and progressively darker red color represents
higher overlap. (b) Represented the heat map plot of the adjacencies of modules. Red represented high adjacency (positive correlation),
while blue color represented low adjacency (negative correlation).
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significant pathways. Among four modules, the Rap1 signal-
ing pathway and MAPK signaling pathway were both
enriched in magenta, brown, and turquoise modules; the
lysosome pathway was enriched in blue, brown, and tur-
quoise modules, while blue, brown, and magenta common
pathways were Fc gamma R-mediated phagocytosis
(Figure 5(b)). These four pathways might have potential roles
in T2DM.

3.6. Identification of Hub MicroRNAs and Construction of
Protein-Protein Interaction (PPI) Network.Module member-
ship (MM) represented each microRNA’s Pearson correla-
tion coefficient with corresponding module eigengene.
Since RNA of the same module had the same biological func-
tion, hub microRNAs according to the top 10% MM value in
each module were utilized to represent the biological func-
tion of the whole module (Table S2). Then, the target genes
of hub microRNAs were used for protein-protein
interaction (PPI) analysis. It could throw light on the study
of molecular mechanism of disease from a systematic
perspective, finding new drug targets. In PPI network, the
top three proteins were RPS27A, UBC, and RAC1, and
their degrees were 88, 77, and 41, respectively (Figure 6).
For RAC1, we combined the KEGG pathway analysis and
found that RAC1 could be involved in 15 signaling
pathways. It was worth noting that these 15 pathways were
distributed in all four important modules (Table S3). The
corresponding microRNAs of RPS27A were miR-1271-5p,
UBC was miR-130b-3p and miR-130a-3p, and RAC1 was
miR-574-3p. The four RNAs were key microRNAs which
were screened out.

3.7. Validation in the GEO Dataset. The expression pattern of
69 hub RNAs was verified using the GSE21321 dataset. RNA
sequencing is superior to microarray for characterizing tran-
scriptomes. The hub RNAs of T2DM in this study were
obtained by RNA sequencing performed on an Illumina plat-
form. However, GSE21321 data were obtained from
GPL10322 miRCURY LNA microRNA array, and the chips
used in GSE21321 are of an early age; the microRNA in this
array was not enough to detect all microRNAs in this study.
40 hub microRNAs were detected in GSE21321; nine hub
RNAs met the differential expression criteria of P < 0:1 and
∣Log2FoldChange∣ > 1 (Table 3). Four key RNAs that were
screened by PPI network could also be validated by
GSE21321 dataset. Among them, the P value of miR-574-
3p was 0.011 and Log2FoldChange was 1.205. Although the
expressions of miR-1271-5p, miR-130a-3p, and miR-130b-
3p in GSE21321 had no statistical significance, it cannot be
denied that these three microRNAs may play an important
role in the development of T2DM.

4. Discussion

In this study, ten modules were obtained by WGCNA analy-
sis, out of which four of them were highly related to T2DM.
Blue, magenta, and turquoise modules were negatively corre-
lated with the T2DM, while brown module was positively
correlated with the T2DM.

In the top 20 KEGG pathways of the four modules, it was
worth noting that Fc gamma R-mediated phagocytosis, lyso-
some, MAPK signaling pathway, and Rap1 signaling path-
way were common pathways.

Module−trait relationships
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Figure 5: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of four significant modules. (a) Four figures represented the
first 20 pathways in four modules, respectively. The abscissa was the rich factor; the ordinate was the pathway term. (b) Represented the
overlapping parts of the first 20 pathways of the four modules.
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Figure 6: Continued.
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MAPK signaling pathway contains 257 genes. The
mitogen-activated protein kinase (MAPK) pathway is sensi-
tive to a variety of inflammatory cytokines. In insulin resis-
tance, there is usually a chronic inflammatory response,

which makes the MAPK pathway play an important role in
accompanying the inflammatory response of type 2 diabetes,
such as diabetic nephropathy and liver lesions. However, the
functional role of MAPKs in insulin resistance has not been
clarified; the specific mechanism of the MAPK pathway in
type 2 diabetes needs to be further studied [17–21].

The Rap1 signaling pathway contains 211 genes. Rap1 is
a small GTPase that controls a variety of processes, including
cell adhesion and connection formation. Previous studies
have shown that the circulating microRNAs of type 1 diabe-
tes mellitus are enriched by the Rap1 signaling pathway [22].
By inhibiting VEGF signal transduction, Rap1B can prevent
excessive vascular leakage in early diabetes mellitus. By con-
trolling telomere length, Rap1 can prevent the occurrence
and development of diabetes-related cardiovascular disease
[23]. Inhibition of Rap1B to reduce VEGF signal transduc-
tion can prevent excessive vascular leakage in early diabetes
mellitus [24]. At the same time, Rap1 also regulates MAP
kinase (MAPK) activity in a manner highly dependent on
the context of cell types [25]. Although numerous studies
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Figure 6: (a) The protein-protein interaction (PPI) analysis of target gene of hub microRNAs. Edge stood for the interaction between two
genes. A degree was used for describing the importance of protein nodes (red represented high degree and blue represented low degree);
(b) represented the highest degree of PPI in (a); (c) represented the degree of the first 25 proteins.

Table 3: Hub microRNAs validated in the GSE21321.

ID MicroRNA P value Log2FoldChange

4610 miR-126-5p 0.075 5.196

42640 miR-20b-5p 0.094 1.375

31026 miR-101-3p 0.056 3.986

30687 miR-93-5p 0.092 4.723

17280 miR-15b-3p 0.054 9.758

10998 miR-19b-3p 0.099 2.422

17565 miR-30b-5p 0.091 6.295

28966 miR-574-3p 0.011 1.205

11039 miR-29a-3p 0.092 5.211
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have been conducted on the mechanism of the Rap1 signal-
ing pathway in diabetes, there are no studies on related
microRNAs.

The lysosome pathway contains 122 genes. Lysosomes
are membrane-delimited organelles in animal cells serving
as the cell’s main digestive compartment. Their functions
include endocytosis, phagocytosis, and autophagy. Many
studies had pointed out that lysosomes play a key role in
T2DM and its complications through autophagy and phago-
cytosis. Autophagy dysfunction was an important factor in
triggering T2DM. Autophagy can maintain the normal cell
structure of islet B cells, while excessive autophagy can lead
to a decrease in number of islet B cells [26–28]. Therefore,
the regulation of autophagy function might become a new
target for the treatment and prevention of diabetes, and the
related microRNAs might become the key to the regulation
of autophagy function.

Fc gamma R-mediated phagocytosis contains 91 genes Fc
γ receptors (FcγRs) are receptors for IgG that classically reg-
ulate processes in immune response [29]. Experiments in
mice showed that c-reactive protein activated the endothelial
cells Fc RIIB which might have a negative effect on the
glucose balance. Blocking Fc R can reduce the occurrence
of type 2 diabetes [29, 30]. Therefore, Fc R may be the key
to the prevention and treatment of type 2 diabetes. Due to
the lack of relevant studies, the mechanism of Fc R’s partici-
pation in type 2 diabetes remains to be further studied [31].

In addition to KEGG enrichment analysis of key mod-
ules, STRING database was used to conduct protein-protein
interaction (PPI) network of some hub genes in key modules.
By PPI network analysis, RPS27A, UBC, and RAC1 have the
highest degree value in network. An exploratory study had
demonstrated that RPS27Amay be a potential target for mes-
enchymal stem cells in the treatment of T2DM [32]. Some
studies had shown that miR-130a-3p andmiR-130b-3p could
affect the occurrence and development of T2DM by reducing
the ATP level in pancreatic islet cells [33], and UBC was reg-
ulated by these two microRNAs. Despite the lack of studies
on the role of RPS27A and UBC in T2DM, ubiquitin proteins
play an important role in the occurrence and development of
T2DM [34]. In future studies, the pathways and mechanisms
of these two proteins and the microRNA affecting their
expression can be further studied.

In order to explore the role of RAC1, we tried to find out
the correlation between RAC1 and the KEGG enrichment
pathway of the module. RAC1 was involved in 15 of these
pathways. Among them, the MAPK signaling pathway and
Rap1 signaling pathway were also important common path-
ways in KEGG enrichment analysis of the modules. Notably,
many previous studies had attempted to elucidate the associ-
ation between RAC1 and diabetes and the molecular mecha-
nisms involved [35–37]. RAC1 was a small guanosine
triphosphate- (GTP-) bound protein belonging to the Rho
family. Numerous studies had demonstrated the important
role of RAC1 in various stages of T2DM [38, 39]. In this
study, miR-574-3p was the hub gene in the turquoise module
[40]. Therefore, we believed that miR-574-3p and RAC1
might be potential biomarkers or new therapeutic targets
for diabetes.

5. Limitation

Due to the small sample size used in this study, the results of
this study might be limited when extrapolated. At the same
time, this study was an exploratory study, comprising of only
a small number of T2DM patients and nondiabetic partici-
pants; the results need to be verified by experiments for the
next step.

6. Conclusion

In this study, four microRNAmodules related to T2DMwere
identified through WGCNA. In-depth analysis of the four
modules, four microRNAs: miR-1271-5p, miR-130a-3p,
miR-130b-3p, and miR-574-3p and three proteins: RPS27A,
UBC, and RAC1, was identified by KEGG enrichment analy-
sis and PPI network. RAC1 and miR-574-3p were most likely
to be biomarkers of T2DM by combining KEGG enrichment
analysis and PPI network. The findings may be the founda-
tion for understanding the potential role of miRNAs in
T2DM.
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