SUPPORTING INFORMATION

to

Products of sulfide/selenite interaction possess antioxidant properties, scavenge superoxide-derived radicals, react with DNA, modulate blood pressure and tension of isolated thoracic aorta

Marian Grman^{1,*}, Anton Misak^{1,*}, Lucia Kurakova², Vlasta Brezova³, Sona Cacanyiova⁴, Andrea Berenyiova⁴, Peter Balis⁴, Lenka Tomasova¹, Ammar Kharma¹, Enrique Domínguez-Álvarez⁵, Miroslav Chovanec^{6,†}, Karol Ondrias^{1,†}

- ¹ Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
- ² Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovak Republic
- ³ Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovak Republic
- ⁴ Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic
- ⁵ Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), 28006 Madrid, Spain
- ⁶ Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic

^{*}Authors contributed equally to this work.

[†]Shared senior authorship.

Correspondence should be addressed to Karol Ondrias; <u>karol.ondrias@savba.sk</u> and Miroslav Chovanec; <u>miroslav.chovanec@savba.sk</u>

Supplementary Figure 1: Time-resolved UV-VIS spectra of Na₂SeO₄, H₂S and their mixture with [•]cPTIO. UV-VIS spectra of 100 μ mol L⁻¹ Na₂SeO₄ (repeated 3 x 30 s, black), subsequent addition of 100 μ mol L⁻¹ H₂S (30 x 30 s, blue) followed by 100 μ mol L⁻¹ •cPTIO (30 x 30 s, red). Upper insert: Kinetic trace of ABS at 232 nm (corresponding to HS⁻) in the mixture of 100 μ mol L⁻¹ Na₂SeO₄ + 100 μ mol L⁻¹ H₂S (blue). Lower insert: Kinetic trace of 100 μ mol L⁻¹ •cPTIO reduction in the mixture of 100 μ mol L⁻¹ Na₂SeO₄ + 100 μ mol L⁻¹ H₂S (blue). Lower insert: Kinetic trace of ABS at 560 nm. Buffer: 100 mmol L⁻¹ sodium phosphate buffer, 100 μ mol L⁻¹ DTPA, pH 7.4 at 37 °C.

Supplementary Figure 2: Time resolved UV-VIS spectra of studied compounds.

(a) Time resolved UV-VIS spectra of $^{\circ}$ CPTIO, SeCl₄ and their mixture with H₂S. UV-VIS spectra of 100 µmol L⁻¹ $^{\circ}$ CPTIO with 100 µmol L⁻¹ SeCl₄ (repeated 3 times every 30 s, black). Subsequent addition of 100 µmol L⁻¹ H₂S measured every 30 s for 15 min. Inset represents detail of ABS at 440-710 nm. The arrow indicates the increase of absorbance at around 420 nm.

(b)Time resolved UV-VIS spectra of the interaction of ${}^{\circ}$ CPTIO/SeO₃²⁻ with H₂S in argon de-aerated solutions. UV-VIS spectra of 100 µmol L⁻¹ ${}^{\circ}$ CPTIO with 100 µmol L⁻¹ SeO₃²⁻ (black) and subsequent addition of 100 µmol L⁻¹ H₂S (spectra were collected every 30 s for 30 min, the first spectrum, indicated by the red line, was measured in 15th second after addition of H₂S). Inset: The reduction of the ${}^{\circ}$ CPTIO radical was detected as the decrease of ABS at 560 nm. Red lines: 110 µmol L⁻¹ H₂S was added to ${}^{\circ}$ CPTIO/SeO₃²⁻ (110/110 in µmol L⁻¹); Blue lines: 100 µmol L⁻¹ H₂S was added to ${}^{\circ}$ CPTIO/SeO₃²⁻ (100/100 in µmol L⁻¹) and green lines: 60 µmol L⁻¹ H₂S was added to ${}^{\circ}$ CPTIO/SeO₃²⁻ (100/100 in µmol L⁻¹). Arrow marks H₂S addition.

The solid red line of UV-VIS spectra indicates the first spectrum after addition of H_2S into $SeCl_4$ or SeO_3^{2-} , which is followed each 30 s by: long dash red, medium dash red, short dash red, dotted red, solid blue line, long dash blue, medium dash blue, *etc*. Buffer: 100 mmol L⁻¹ sodium phosphate, 100 µmol L⁻¹ DTPA, pH 7.4, 37 °C.

Supplementary Figure 3: Effect of pH on the kinetics of $^{\circ}$ cPTIO reduction induced by H₂S in the presence of SeO₃²⁻.

The reduction of the [•]cPTIO radical was detected as decrease of ABS at 358 nm minus ABS at 420 nm (a) or as a decrese of the absorbance at 560 nm (b). Buffer: 100 mmol L^{-1} sodium phosphate, 100 µmol L^{-1} DTPA, pH 6.5, 7.0, 7.4, 8.0, and 9.0 at 37 °C. Arrow indicates addition of H₂S (100 µmol L^{-1}) into [•]cPTIO/SeO₃²⁻ (100/50 in µmol L^{-1}) solution. In the case of experiments at pH 6.5 and 7.0, UV-VIS spectra of H₂S/SeO₃²⁻ were subtracted from the [•]cPTIO/H₂S/SeO₃²⁻ spectra. Values are the means ± S.E.M., n = 2-3.

Supplementary Figure 4: EPR spectra of *BMPO in the presence of $O_2^{\bullet-}$ and modulated by H_2S/SeO_3^{2-} .

Representative EPR spectra of the *BMPO-adducts monitored in 10% v/v saturated KO₂/DMSO solution in 50 mmol L⁻¹ sodium phosphate buffer, 0.1 mmol L⁻¹ DTPA, pH 7.4, 37 °C in the presence of studied compounds and 20 mmol L⁻¹ BMPO. The sets of individual EPR spectra of the *BMPO-adducts monitored upon 15 sequential scans, each 42 s (a1-d1), starting acquisition 2 min after sample preparation in: control 10% v/v KO₂/DMSO in the buffer (a1), KO₂/DMSO in the presence of 50 µmol L⁻¹ SeO₃²⁻ (b1), 50/50 in µmol L⁻¹ H₂S/SeO₃²⁻ (c1) and 50/50 in µmol L⁻¹ H₂S/SeO₃²⁻ preincubated 5 min before KO₂/DMSO addition (d1). The details of accumulated 15 spectra (a2-d2). The intensities of the time-resolved EPR spectra (a1-d1) and detailed spectra (a2-d2) are comparable, as they were measured at the identical EPR settings. EPR 0.1 mT modulation amplitude was used. (a3-d3) comparison of integral EPR spectra intensities of the individual components of simulated BMPO + O₂⁻⁻ without (control) and with chalcogen species showed in a1-d1. The first five EPR spectra were accumulated and used for simulation. The data represent the means of n = 2, standard error was ≤ 10 % of the mean value. The *BMPO-OOH and *BMPO-OH were simulated based on two conformers. The means of used hyperfine coupling constants were: *BMPO-OOH1 *a*_N = 13.30±0.03 G; *a*_H = 11.7±0.1 G; *BMPO-OOH2 *a*_N = 13.24±0.03 G; *a*_H = 9.4±0.1 G; *BMPO-OH1 *a*_N = 13.5±0.1 G.

Supplementary Figure 5: EPR spectra of [•]BMPO in the presence of O₂^{•-} modulated by H₂S/SeCl₄.

Representative EPR spectra of the [•]BMPO-adducts monitored in 10% v/v saturated KO₂/DMSO solution in 50 mmol L⁻¹ sodium phosphate buffer, 0.1 mmol L⁻¹ DTPA, pH 7.4, 37 °C in the presence of studied compounds and 20 mmol L⁻¹ BMPO. The sets of individual EPR spectra of the [•]BMPO-adducts monitored upon 15 sequential scans, each 42 s (a1-d1), starting acquisition 2 min after sample preparation in: control 10% v/v KO₂/DMSO in the buffer (a1), KO₂/DMSO in the presence of 25/25 in μ mol L⁻¹ H₂S/SeCl₄ (b1), 50/25 in μ mol L⁻¹ H₂S/SeCl₄ (c1) and 100/25 in μ mol L⁻¹ H₂S/SeCl₄ (d1). The detail of accumulated 15 spectra (a2-d2). The intensities of the time-resolved EPR spectra (a1-d1) and detailed spectra (a2-d2) are comparable, as they were measured at the identical EPR settings. EPR modulation amplitude was 0.1 mT.

Supplementary Figure 6: VIS spectra of H₂S, SeO₃²⁻ and their mixture. H₂S (100 μ mol L⁻¹; black full), SeO₃²⁻ (50 μ mol L⁻¹; dotted black) and their mixture (100/50 in μ mol L⁻¹) prepared in 0.9 % NaCl pH ~ 11 (blue) and in phosphate buffer of pH ~ 7.4 (red). Sample with phosphate buffer was prepared as follows: 123.5 μ L of 100 mmol L⁻¹ phosphate buffer, 100 μ mol L⁻¹ DTPA, pH 7.4, 37°C; + 14 μ L of 1 mol L⁻¹ HCl; + 62.5 μ L of 40 mmol L⁻¹ SeO₃²⁻ prepared in 0.9 % NaCl and + 50 μ L of 100 mol L⁻¹ H₂S in H₂O. Final concentrations in the stock mixture of 250 μ L volume were 20 mmol L⁻¹ Na₂S and 10 mmol L⁻¹ SeO₃²⁻. pH was measured by paper pH indicator.