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Acute myeloid leukemia (AML) is a hematological malignancy with a poor prognosis attributed to elevated reactive oxygen species
(ROS) levels. Thus, agents that inhibit ROS generation in AML should be exploited. Azelaic acid (AZA), a small molecular
compound, can scavenge ROS and other free radicals, exerting antitumor effects on various tumor cells. Herein, this study
evaluated the antileukemic activity of AZA against AML via regulation of the ROS signaling pathway. We found that AZA
reduced intracellular ROS levels and increased total antioxidant capacity in AML cell lines and AML patient cells. AZA
suppressed the proliferation of AML cell lines and AML patient cells, expending minimal cytotoxicity on healthy cells. Laser
confocal microscopy showed that AZA-treated AML cells surged and ruptured gradually on microfluidic chips. Additionally,
AZA promoted AML cell apoptosis and arrested the cell cycle at the G1 phase. Further analysis demonstrated that
peroxiredoxin (Prdx) 2 and Prdx3 were upregulated in AZA-treated AML cells. In vivo, AZA prolonged survival and attenuated
AML by decreasing CD33+ immunophenotyping in the bone marrow of a patient-derived xenograft AML model. Furthermore,
mice in the AZA-treated group had an increased antioxidant capacity and Prdx2/Prdx3 upregulation. The findings indicate that
AZA may be a potential agent against AML by regulating the Prdxs/ROS signaling pathway.

1. Introduction

Acute myeloid leukemia (AML) is one of the most common
hematological malignancies with a rapidly progressive and
poor prognosis. Larger numbers of blasts accumulate in the
bone marrow and infiltrate other tissues, thus inhibiting
hematopoietic functions and inducing subsequent hemor-
rhage and severe infection. The annual mortality rate is 2.2
per 100,000 [1]. High-dose induction chemotherapy for inhi-
biting leukemic blast proliferation in the acute stage and con-
solidation chemotherapy during the remission stage remain
the main methods of treating AML; the curative treatment
for AML is successful allogeneic stem cell transplantation

after achieving complete remission. However, some patients
cannot tolerate the toxic adverse effects of chemotherapeutic
drugs and experience chemotherapeutic resistance and
severe adverse reactions, such as severe infection, that can
lead to treatment failure and result in death.

Reactive oxygen species (ROS) are small short-lived
oxygen-containing molecules that regulated many processes,
such as cell growth and death, inflammation, stem cell
renewal, tumorigenesis, oxygen sensing, angiogenesis, and
immune responses [2, 3]. Elevated ROS levels are a major
cause of DNA damage and mutation, triggering malignant
cell transformation and promoting cancer initiation [4],
including the initiation and progression of inherited and

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2020, Article ID 1295984, 16 pages
https://doi.org/10.1155/2020/1295984

https://orcid.org/0000-0001-7611-3114
https://orcid.org/0000-0003-1884-1484
https://orcid.org/0000-0002-4777-2548
https://orcid.org/0000-0002-3758-1465
https://orcid.org/0000-0003-4557-9362
https://orcid.org/0000-0001-7205-4663
https://orcid.org/0000-0003-0982-0382
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1295984


sporadic human leukemias [5]. ROS are frequently elevated
in cancer cells [6]. Likewise, AML patients have significantly
increased ROS levels and a lower total antioxidant capacity
(T-AOC) [7]. Overproduction of NADPH oxidase-derived
ROS and Ras-induced ROS can promote the proliferation of
AML blasts [8, 9], thus accelerating AML progression [10].
In addition, increased intracellular ROS levels are concomitant
with thioredoxin (Trx) and 8-hydroxydeoxyguanosine overex-
pression, which is associated with AML relapse [7]. Excessive
ROS trigger activation of the oncogene, c-Jun activation
domain-binding protein 1 (Jab1), in AML patient relapse,
and the upregulated Jab1 can regulate Trx by binding to
Trx1, which contributes to the poor survival [11]. Addition-
ally, increased ROS levels have been correlated with pheno-
typic change in hematopoietic stem cells (HSCs) and loss of
HSC quiescence, and excessive oxygen limits the lifespan of
HSCs by regulating the ROS-p38 MAPK pathway [12].

The roles of ROS depend on their intracellular levels. Low
ROS levels are required to initiate and promote tumor growth;
moderate ROS levels are involved in the inflammatory
response, while high ROS levels contribute to apoptosis and
autophagy [13]. Both ROS-elevating and ROS-eliminating
strategies have been developed to treat cancer [14]. Over the
past several years, ROS-elevating strategies have been predom-
inantly used in clinics, including agents targeting the Prdx2
and Prdx3 to treat AML [15–17]. However, overproduction
of ROS induced by chemotherapeutic drugs increases oxida-
tive stress, which can lead to therapeutic resistance and there-
fore help to drive tumor recurrence [18, 19]. AML patients
with FMS-like tyrosine kinase 3 (FLT3) mutations have high
relapse rates because FLT3 induces elevated ROS levels [20,
21]. In addition, increased ROS levels accompanied by Trx1
and Jab1 overexpression are correlated with recurrence and
poor survival in AML patients [11]. Furthermore, elevated
ROS levels greatly contribute to immunosuppression in the
tumor microenvironment [19]. Overproduction of ROS trig-
gers the dysfunction of natural killer and T-cells and inhibits
the cytotoxicity of effector cells [22, 23]. Therefore, ROS-
eliminating strategies have emerged as a promising approach
to treating AML.

Azelaic acid (AZA) is a natural, nontoxic, saturated, nine-
carbon dicarboxylic acid that was first recognized as a second-
ary metabolite in fungal infections withMalassezia [24]. AZA,
as a competitive inhibitor of tyrosinase [25] and other oxido-
reductases, has hypopigmentation and anti-infective proper-
ties and is commonly used to treat skin disorders such as
melasma and acne [26]. Prior studies demonstrated that
AZA can scavenge ROS and inhibit the generation and action
of oxygen radicals [27, 28]. AZA can also reversibly inhibit
cytochrome-P450 reductase and respiratory chain enzymes
[29]. Furthermore, AZA exhibits antitumor effects on several
tumor cells, such as lentigo maligna [30], malignant mela-
noma [31], lymphoma [32], and human T lymphotropic virus
1- (HLTV-1-) infected T-cell leukemia [33], by inhibiting Trx
reductase activity, ROS generation, and DNA synthesis in
tumor cells [28, 31, 33]. A previous study showed that AZA
could suppress AML cell proliferation and sensitize AML cells
to chemotherapy [34]. However, the exact mechanism of AZA
on AML cells remains unknown. Therefore, in the present

study, we examined the antileukemia activity of AZA and
further explored its molecular basis.

2. Materials and Methods

2.1. Materials. DMSO (Cat# D2650) and AZA (Cat# 95054)
were purchased from Sigma (USA). PrimeScript™ RT reagent
kit with gDNA Eraser was from Takara (Cat# RR047A).
Annexin V-FITC Apoptosis Detection Kit was from KeyGEN
Biotech (Cat# KGA105-KGA108, China). Cell Cycle Staining
Kit was from MultiSciences Biotech (Cat# CCS012, China).
Antibodies to the following proteins were used: Prdx3 was
from CUSABIO (Cat# CSB-PA003861, China); β-actin
(Cat# 14395-1) and Prdx2 (Cat# 10545-2) were from Protein-
Tech (USA).

2.2. Cell Culture. AML cell lines U937, HL60, THP-1, and
Molm-13 cells were grown in RPMI-1640 medium supple-
mented with 10% fetal bovine serum and penicillin/streptomy-
cin at 37°C. Different types of AML patient primary cells
(AML-PC) according to the FAB classification and healthy
peripheral mononuclear cells (PBMCs) were isolated by
Ficoll-Hypaque gradient centrifugation followed by the manu-
facturer’s recommendation (TBD sciences, Cat# HY2015,
China); the detailed AML patient information can be found
in Table S1. Importantly, all subjects were given written
informed consent in accordance with the recommendations
of the Ethics and Scientific Committee of Zhongnan Hospital
of Wuhan University and the Declaration of Helsinki; the
Ethics Committee of Wuhan University approval number is
2018278.

2.3. Measurement of ROS. Intracellular ROS levels were
measured using the Reactive Oxygen Species Assay Kit
(Beyotime, Cat# S0033, China). Briefly, HL60, U937, THP-
1, and AML-PC cells were treated with AZA for 24h, and
the collected cells were then washed with serum-free RPMI-
1640 and incubated with 2,7-dichlorodihydrofluorescein
diacetate (DCF-DA) at the concentration of 5μM for 20
minutes at 37°C to assess ROS-mediated oxidation of the
fluorescence compound DCF-DA. ROS levels were deter-
mined by detecting the fluorescence intensity of the oxidized
DCF cytometer, and the flow cytometry analysis results were
quantified by using CytExpert2.0 software.

2.4. ROS-Related Index Analysis. HL60, U937, and Molm-13
cells were pretreated with 5mM AZA for 24 h; cells were col-
lected and washed twice by PBS. Cells were lysed by using the
ultrasonic wave breaking, and cell homogenate was centri-
fuged for 15 minutes at 12,000 rpm at 4°C. Thereafter, super-
natant was harvested and stored at -20°C. In vivo experiment,
peripheral blood of mice was centrifuged for 15 minutes at
12,000 rpm at 4°C in an anticoagulant tube and the serum
was collected from liquid supernatant. The harvested cell
supernatant and serum were prepared for the following
study. The total antioxidant capacity (T-AOC, Cat# A105),
superoxide dismutase (SOD, Cat# A001) activity, glutathione
peroxidase (GSH-Px, Cat# A006) content, and malondialde-
hyde (MDA, Cat# A003) levels were assayed according to the
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manufacturer’s protocol as described previously (Nanjing
Jiancheng Bioengineering Institute, China) [11].

2.5. Analysis of Cell Viability. Cell viability was measured by
using a Cell Counting Kit-8 (Dojindo, Cat# JE603, Japan).
HL60, THP-1, Molm-13, and different types of AML-PC cells
were seeded in a 96-well plate and treated with different con-
centrations of AZA for 24 h. Thereafter, 10μL CCK8 was
added to each plate and incubated for additional 2 h. The cell
viability was measured by reading the absorbance at 450nm.

2.6. Cytotoxicity Assays at the Single-Cell Level. To observe the
AML cell viability after AZA treatment, THP-1 cells trans-
fected with GFP were used in our study and a DAPI stain
was used as a control for indicating all cell numbers in the
field. When the GFP+-THP-1 cell was dead, the green fluores-
cence disappeared. The cell viability can be assayed by com-
paring the green fluorescence intensity between two groups.

To detect the cytotoxic effect of AZA on AML cells, a
microfluidic chip was designed to capture the cells and allow-
ing the injection of AZA. The clip size was designed accord-
ing to the cell size as described previously [35, 36]. Briefly,
HL60 cells were injected into the chip and fixed in one inlet,
and 5mM AZA was slowly injected from another inlet. The
dynamic changes in the cell morphology after AZA treat-
ment at different time points and fields were observed under
microscopy (Nikon).

2.7. Measurement of Mitochondrial Membrane (MMP). Early
apoptosis analysis was measured by using the Mitochondrial
Membrane Potential Assay Kit with JC-1 (Beyotime, Cat#
C2006, China). JC-1 aggregates in the matrix of mitochondria
to form a polymer (J-aggregates) and can emit red fluores-
cence at normal MMP but gets converted to monomer when
MMP decreased and then can emit green fluorescence. HL60
cells were treated with 5mMAZA for 24h; cells were collected
and stained with JC-1 dye. The change inmitochondrial mem-
brane potential was analyzed by flow cytometry.

2.8. Cell Apoptosis and Cell Cycle Assays. The apoptotic rate
of U937 cells was detected with the Annexin V/FITC Apo-
ptosis Detection Kit. U937 cells were seeded in 6-well plates
and treated with 5mMAZA for 24 h. The collected cells were
washed twice by PBS and stained with 5μL Annexin V-FITC
and 5μL propidium iodide and then incubated for 5 minutes
at 25°C. The apoptotic rate was measured by calculating the
percentage of FITC and PI-positive cells with flow cytometry.

Cell cycle was measured by using a Cell Cycle Staining
Kit. U937 cells were pretreated and collected as above
described. Cells were then fixed by 1mL staining buffer and
incubated with 10μL propidium iodide for 30 minutes. The
number of cells in different phases of the cell cycle was
analyzed by flow cytometry. Data were analyzed by using
CytExpert2.0 software.

2.9. Protein Mass Spectrometry Analysis (LC-MS). THP-1
cells were treated with 5mMAZA for 24 h, and total proteins
were extracted by RIPA buffer. Then, the peptides from the
AZA-treated group and the control group were labeled with
isotopomeric dimethyl label. The labeled samples were ana-

lyzed by using a hybrid Quadrupole-TOF Mass Spectrometer
as described previously [37] (TripleTOF 5600, AB Sciex
Instruments). The raw LC-MS data was accessible on Pepti-
deAtlas, and the direct URL is http://www.peptideatlas.org/
PASS/PASS01499.

2.10. RNA Isolation, cDNA Preparation, and Quantitative
PCR. THP-1 and Molm-13 cells were treated with 5mM
AZA for 24h. The total RNA was isolated, and the reverse
transcription for cDNA was performed by using the Prime-
Script™ RT reagent kit with gDNA Eraser. SYBR-GREEN
qPCR was performed to measure the peroxiredoxin 2 (Prdx2)
and peroxiredoxin 3 (Prdx3) expression using the SYBR
GREEN MIXTURE kit according to the manufacturer’s
recommendations. The expression level was analyzed using
the 2-ΔΔCT approach. The primers are listed as follows:
GAPDH, sense, 5′-TGATGACATCAAGAAGGTGGTGAA-
3′, antisense, 5′-TCCTTGGAGGCCATG TGGGCCAT-3′;
Prdx3, sense, 5′-GCCGCTCTGTGGATGAGACT-3′, anti-
sense, 5′-CCAGCTGGGCACACTTCC-3′; Prdx2, sense, 5-
GTGTCCTTCGCCAGATCACT-3′, antisense, 5-ACAAAC
TTCCCCATGCTCGT-3′.

2.11. Western Blotting Analysis.Molm-13, THP-1, and AML-
PC cells were seeded in 6-well plates and treated with 5mM
AZA for 24 h. Total proteins were extracted by RIPA and
10mM PMSF. Thereafter, protein concentration was deter-
mined by the BCA protein assay kit (ThermoFisher, USA).
The proteins (20μg) were resolved by SDS gel electrophoresis
and transferred to PVDF membranes. The membranes were
blocked by 5% nonfat milk followed by probing with primary
and secondary antibodies.

2.12. Animal Experiment. The B-NSG mice (female, 16-18 g,
5 weeks) were obtained from the Animal Research Center of
Wuhan University. AML-PC cells were used to construct the
model which were isolated from a hyperleukocytic AML
patient sample after undergoing leukapheresis by using a Fre-
senius COM.TEC machine. Mice were given 1.5Gy X-ray
and injected with 1:0 × 107 human AML cells/per mouse
intravenously within 24h for the development of leukemic
disease. The patient-derived xenograft (PDX) AML model
was successfully established when AML-PC cells could be
observed on the peripheral blood (PB) and bone marrow
(BM) smears. Then, mice were randomly divided into two
groups with 6 mice in each group. The mice in the AZA
group were treated with 10mg/kg AZA by intraperitoneal
injection (200μL, every three days, n = 8), while the control
group (n = 8) received saline with the same volume and fre-
quency. At the end of experiments, mice were sacrificed
and the tissues were harvested for further study. Importantly,
all animal studies were approved by the Institutional Animal
Care and Use Committee of Wuhan University (2017048).

2.13. Smear Analysis and Immunohistochemistry. After
injecting mice with AML-PC cells for one week, we randomly
selected one mouse which was humanly killed, and its PB and
BM were harvested. PB and BM smears were stained with
Wright’s stain and observed microscopically to measure the
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Figure 1: Continued.
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proportion of leukemia cells and determine whether the PDX
model was constructed successfully [38].

Tissues collected from the mice were fixed, trimmed, proc-
essed, dewaxed, and rehydrated, then under pretreated for
antigen retrieval in citrate buffer at pH6.0 at 100°C for 30
minutes. Thereafter, tissues were blocked with primary anti-
bodies (Prdx2 and Prdx3 antibodies, 1 : 100) overnight, then
probed with secondary antibodies. Images were photographed
using a Nikon microscope at the Hematology Department,
Wuhan University, Zhongnan Hospital, Wuhan, China.

2.14. Bioinformatics and Statistical Analysis. Differentially
expressed proteins were identified via LC-MS, annotated by
WEGO analysis (http://wego.genomics.org.cn/), and ana-
lyzed with R code by creating a heat map. The protein-
protein interaction networks were analyzed using STRING
v11.0 (https://string-db.org/cgi/network). Data are presented
as the means ± standard deviations and were analyzed via
Student’s t-test and one-way analysis of variance using
GraphPad Prism 7 and IBM SPSS. P < 0:05 was considered
statistically significant.

3. Results

3.1. AZA Decreased Intracellular ROS Levels and Increased
Antioxidant Capacity. Prior studies demonstrated that
AML patients had elevated intracellular ROS levels and
AZA could scavenge the ROS [28]. We detected the ROS
levels and ROS-related indices in HL60, THP-1, and U937
cells and human AML cells after treatment with AZA. As
expected, AZA markedly decreased the intracellular ROS
levels in the AML cell lines and AML patient cells
(Figures 1(a) and 1(b)). Furthermore, in the AZA-treated cell
homogenate, the oxidative injury indexes, such as the MDA
content (Figure 1(c)), were decreased, while the antioxidant
injury indexes, such as the SOD and GSH activity and the
total antioxidant capacity, were significantly increased
(Figures 1(d)–1(f)).

3.2. AZA Exhibited Cytotoxicity against AML Cells. In our pre-
vious study, we have identified that AZA had an antiprolifera-
tive effect on different AML cell lines, the IC50 value of AZA
for 24h was ranged from 3.4 to 7.2mM, and the median
IC50 value was approximately 5mM [34], so we chose the
concentration of 2.5, 5.0, and 10.0mM for our present cytotox-
icity assay. AZA markedly suppressed AML cell lines and
different types of AML patient cell proliferation dose-
independently as described in our previous study (Fig. S1).
Additionally, GFP+ Molm-13 cells revealed hypofluorescence
after treatment with 5mM AZA for 24h compared to the con-
trol group; this result also indicated AZA could inhibit AML
cell viability (Figure 2(a)). However, the same concentration
of AZA had little toxicity on PBMC and other healthy cell lines
such as 293T, hFOB 1.19, MC3T3-E1, and AML 12 cells
(Figure 2(b)). Even so, we believe that more experiments would
be required to show that AZA is really more toxic to AML cells
compared to hematopoietic stem and progenitor cells.

To observe the cytotoxicity of AZA on AML cells at the
single-cell level, we designed a microfluidic chip that can trap
cells and injected AZA into the chip from two opposite direc-
tions (Figure 2(c)). The HL60 cell morphology became swol-
len, apoptotic bodies were detected, and the cells ultimately
showed lysis after continuous AZA treatment on the micro-
fluidic chips (Figure 2(d)).

3.3. AZA Promoted AML Cell Apoptosis. Loss of MMP is
common in the early stages of apoptosis. AZA induced a sig-
nificant loss of MMP as measured by the percentage of JC-1
monomer cells (Figure 3(a)). AZA markedly increased the
percentage of Annexin-V/FITC-positive cells (Figure 3(b)).
Furthermore, the cell cycle was arrested at the G1/G0 phase
after AZA treatment (Figure 3(c)). However, the same AZA
concentration had no toxicity on PBMC isolated from
healthy people (Figures 3(d) and S2).

3.4. AZA Upregulated Prdx2 and Prdx3 in AML Cells. To
understand the molecular basis for the antileukemic activity
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of AZA, we performed LC-MS analysis. Differentially
expressed proteins (DEPs) were identified after AZA treat-
ment. The DEPs were then annotated by WEGO analysis as
described previously [38]. Five hundred and twenty-eight
DEPs were annotated into three areas: cellular components,
molecular functions, and biological processes. The potential
DEPs involved in antioxidant activity and immune response
were analyzed by a heat map (Figure 4(a)). LC-MS data
showed that AZA upregulated Prdx2 and Prdx3 with approx-
imately 2.0-fold higher Prdx3 expression in AZA-treated
THP-1 cells than in the control group. The Prdx system
played a crucial role in decreasing intracellular ROS levels

and maintaining the redox balance [39]. Prdx2 and Prdx3
were the main ROS-scavenging antioxidant enzymes in the
Prdx system. Thus, Prdx3 was selected for further analysis.

We performed quantitative real-time PCR and western
blotting to confirm this finding. Consistent with our MS
results, AZA induced higher Prdx2 and Prdx3 RNA and
protein expressions (Figures 4(b) and 4(d)). Finally, we used
STRING to analyze the proteins that interacted with Prdx3
and found that Prdx3 interacted with many antioxidant
enzymes, including catalase (CAT) and SOD2 (Figure 4(c)),
which were also upregulated after AZA treatment as shown
in Figure 4(a). This result was also validated by further
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analysis by using RT-PCR and WB in Fig. S3. This unex-
pected finding indicated that the upregulation of SOD2 and
CAT caused by AZA may have a synergetic effect with Prdx3
on decreasing intracellular ROS levels. Many nutraceuticals
and antioxidants, such as vitamin C, selenium, and lycopene,
have been developed for cancer prevention and treatment as
they can scavenge ROS [14]; likewise, AZA can exert antileu-
kemic effects by decreasing ROS levels via upregulation of
Prdx2 and Prdx3.

3.5. AZA Repressed the Leukemic Growth In Vivo. To test
whether AZA could repress leukemia in vivo, we constructed
a PDX AML model as per a previous report [40]. Briefly, B-
NSG mice were intravenously injected with 1:0 × 107 CD33+
AML patient primary cells after 1.5Gy irradiation. When PB
and BM smears indicated illness, mice were randomly divided
into two groups (n = 8). AZA was administered every three
days for 2 weeks; saline was administered as a negative control.
The PDX AML models progressed rapidly, and most mice
died within 18-27 days; thus, all mice were sacrificed on day
21, and their tissues were harvested for further study
(Figure 5(a)). AML patient cells could be observed on the PB
and BM smears one week after the injection, and the leukemic
blasts could be observed on the BM and spleen by hematoxylin
and eosin stain, which indicated the development of leukemia
disease (Figures 5(b) and S4). Mice in the AZA group lost
weight more slowly and survive longer than did mice in the
saline group (Figures 5(c) and 5(d)). Additionally, the percent-
age of CD33+ AML cells in the BMwas significantly decreased
in the AZA group compared with the saline group, suggesting
disease remission (Figure 5(e)). Importantly, compared with
the saline group, the MDA levels were decreased, while the
T-AOC, GSH levels, and SOD activity were increased in the
AZA group in the mouse blood plasma (Figure 5(f)). More-
over, higher Prdx2 and Prdx3 expressions occurred in the
AZA group than in the saline group on BM biopsies detected
via immunohistochemical staining in the PDX AML model

(Figure 5(g)). These results were consistent with the in vitro
experimental results.

These results suggest that AZA decreases intracellular
ROS levels and increases the antioxidant capacity by upregu-
lating Prdx2 and Prdx3, thus maintaining the redox balance
and further suppressing AML in vitro and in vivo.

4. Discussion

AML has a high incidence of relapse and poor prognosis, one
of the main reasons is therapeutic resistance. Although emerg-
ing targeted drugs and immunotherapies may benefit some
patients, they are limited in their applications. Tyrosine kinase
inhibitors (TKI) can be used only in patients with FLT-3
mutations and patients who develop resistance [41]. Immune
checkpoint inhibitors (ICIs) are effective in malignancies with
high mutational burden, but ICIs have little effect on AML
because AML patients have the lowest mutational burden
[42]. Chimeric antigen receptor T-cell (CAR-T) therapy also
has a modest effect on AML because of the lack of leukemia-
specific cell surface antigens [43, 44]. Therefore, novel agents
and therapeutic approaches should be exploited.

ROS are generated from multiple sources. The main
source of intracellular ROS is the mitochondria. Healthy cells
control the intracellular ROS balance via the scavenging
system [45]. One major scavenging system by which mito-
chondria neutralize excess ROS is through a dedicated Prdx
system comprising Prdx3. Prdx3 is exclusively located in
the mitochondria. Prdx3 is the most abundant and efficient
H2O2-eliminating enzyme involved in detoxifying 90% of
H2O2 [8]. Deleting of Prdx3 results in H2O2 accumulation
and elevated ROS levels in the mitochondria [46]. Prdx2 is
a cytoplasmic Cys-dependent peroxidase with the highest
affinity of H2O2 [45]. Early studies showed that Prdx2 inhib-
ited the myeloid cell proliferation by reducing ROS levels and
acted as an epigenetically silenced tumor suppressor in AML
[47]. In addition, activation of Prdx2 by depletion of cyclin-
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dependent kinase 2 (CDK2) can drive the therapeutic
differentiation of AML [48]. Moreover, Prdx3 and Prdx2
have been associated with cancer aggressiveness and patient
survival, and higher Prdx2 and Prdx3 expressions were asso-
ciated with less aggressiveness and longer survival [47, 49]. In
our study, we identified that AZA increased Prdx2 and Prdx3
expressions, thus regulating the redox state by decreasing
ROS levels to suppress AML growth.

Identifying agents that can decrease intracellular ROS levels
is a potential method of treating cancer. Lycopene can suppress
the progression of prostate carcinoma by decreasing oxidative
DNA damage and scavenging ROS [50, 51]. Some clinical trials
showed selenium and vitamin C supplementation could
decrease the incidence and mortality of gastric and lung cancer
[52, 53]. One study demonstrated selenium exerted antileuke-
mia effect by increasing antioxidant capacity [54]. A previous

study showed that AZA exhibited antitumor effects against
melanoma by inhibiting ROS generation and reducing oxida-
tive tissue injury [28]. In the present study, AZA inhibited
AML proliferation by decreasing intracellular ROS levels and
increasing the antioxidant capacity. Further analysis of the
mechanisms by quantitative proteomics, qPCR, western blot,
and immunohistochemistry identified that antioxidative Prdx2
and Prdx3were upregulated after AZA treatment. Accordingly,
we concluded that AZA exerts antileukemic effects by regulat-
ing the Prdxs/ROS signaling pathway.

AZA exerts antitumor effects at micromole concentra-
tion, it was usually topical application in the form of water-
miscible or gel for the treatment of skin disorder with only
mild additional side effects; however, when it was adminis-
trated orally or intraperitoneal injection in the form of
solution, it could cause noticeable weight loss and acid-base
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Figure 4: AZA upregulated Prdx2 and Prdx3 expression. (a) Differentially expressed proteins (DEPs) were identified by LC-MS/MS after
AZA treatment. Then, DEPs were annotated by WEGO analysis; the changes of DEPs involved in antioxidant activity and immune
response were shown on a heat map. (b) The RNA expression levels of Prdx2 and Prdx3 in Molm-13 and THP-1 cells after AZA
treatment and their detection by qPCR. (c) The interaction between Prdx3 and other proteins was analyzed by STRING. (d) The protein
expression levels of Prdx2 and Prdx3 in Molm-13, THP-1, and AML patient primary cells (AML-PC) after AZA treatment and their
detection by western blot.
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imbalance [55, 56]. Therefore, further research work is still
needed to decrease the required concentration so as to mini-
mize side effects.

Our MS detection results showed that AZA upregulated
other antioxidant enzymes such as CAT and SOD2. These
antioxidant enzymes interact with Prdx3 and Prdx2, but
how they act in synergy with Prdxs to maintain intracellular
redox equilibrium is being studied. Several immune-related
signaling pathways were active after AZA treatment as
shown on the heat map; the most obvious was Notch. Notch
can maintain low ROS levels to promote cell development
and survival [57]. In addition, Notch is an important regula-
tor of immune cell development and function [58]. Our
previous study had identified that AZA could activate the
Notch signaling pathway and enhance the cytotoxicity of
immune effector cells against AML [59]. However, whether
AZA can alleviate immunosuppression in the tumor micro-
environment via the regulation of Prdxs and Notch requires
further study.

In summary, we provided a potential novel agent and
therapeutic approach to treating AML by regulating the
Prdxs/ROS signaling pathway, which may provide insight
into ROS-eliminating strategies.

5. Conclusion

AZA decreased intracellular ROS levels and increased antiox-
idant capacity by upregulating Prdx2 and Prdx3, which
maintained the intracellular redox balance and further sup-
pressed AML in vitro and in vivo. AZA is a potential agent

for treating AML; ROS-eliminating strategies may be prom-
ising strategies for treating AML.
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