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Reactive oxygen species (ROS) are byproducts of a defective electron transport chain (ETC). The redox couples, GSH/GSSG and
NAD+/NADH, play an essential role in physiology as internal defenses against excessive ROS generation by facilitating
intracellular/mitochondrial (mt) redox homeostasis. Anoxia alone and anoxia/reoxygenation (A/R) are dissimilar pathological
processes. In this study, we measured the impact of capsaicin (Cap) on these pathological processes using a primary cultured
neonatal rat cardiomyocyte in vitro model. The results showed that overproduction of ROS was tightly associated with disturbed
GSH/GSSG and NAD+/NADH suppressed mt complex I and III activities, decreased oxygen consumption rates, and elevated
extracellular acidification rates. During anoxia or A/R period, these indices interact with each other causing the mitochondrial
function to worsen. Cap protected cardiomyocytes against the different stages of A/R injury by rescuing NAD+/NADH,
GSH/GSSG, and mt complex I/III activities and cellular energy metabolism. Importantly, Cap-mediated upregulation of 14-3-3η,
a protective phosphoserine-binding protein in cardiomyocytes, ameliorated mt function caused by a disruptive redox status and
an impaired ETC. In conclusion, redox pair, mt complex I/III, and metabolic equilibrium were significantly different in anoxia
alone and A/R injury; Cap through upregulating 14-3-3η plays a protection against the above injury in cardiomyocyte.

1. Introduction

Aging, hypoxia, ischemia, and ischemia/reperfusion (I/R) are
the primary causes of cardiovascular disease [1, 2]. Ischemia
(anoxia) and I/R (anoxia/reoxygenation, A/R) injury can be
generally divided into two stages: anoxia alone and A/R [3].
Reactive oxygen species (ROS) participate in several patho-
physiologic processes (e.g., cellular damage, aging, and apo-
ptosis) during the above injury [4–6]. This injury causes
excessive ROS generation, resulting in severe myocardial
damage [3–9]. However, ignoring the close relationship
between redox balance and ROS in cellular pathological con-

ditions often prevents clinical trials from recognizing the sig-
nificance of decreasing disease risk and progression.

Glutathione (GSH) converts into glutathione disulfide
(GSSG) under oxidative stress. GSH/GSSG ratio sustains
the redox homeostasis in cardiomyocyte by decreasing
elevated ROS generation [10–12]. An equilibrium between
nicotine adenine dinucleotide (NAD+, oxidized) and NADH
(reduced) is also an essential regulator of the redox system
under the pathologic condition of anoxia or A/R; however,
the imbalance of NAD+ and NADH can also influence
oxygen radical levels at the site of complex I on the mito-
chondrial (mt) electron transport chain (ETC) [13–15]. mt
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complexes I and III are a major source of ROS in cardiomyo-
cytes [4, 16, 17]. Previous studies documented that decreased
complex I/III activities result in excessive ROS accumulation
and influence energy metabolism [18–21]. Ametabolic disor-
der is closely associated with the mitochondrial dysfunction
of cardiomyocytes during A/R injury [22, 23]. During anoxia,
insufficient oxygen supply decreases in oxygen consumption
rates (OCR) and adenosine triphosphate (ATP) production
inhibiting the ability to meet the demands of energy metabo-
lism and ultimately inducing an irreversible injury on cardi-
omyocytes [24]. Although oxygen restoration is necessary for
salvaging anoxic cell death, it also induces cellular injury due
to excessive ROS generation and Ca2+ overload [25].

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide,
C18H27NO, Cap) is the main active ingredient in plants of
the genus Capsicum. Cap has been widely studied as a poten-
tial therapeutic agent in diseases such as conjunctivitis,
cancer, obesity, and cardiovascular disease [26–29]. Cap is
known to have antimicrobial, analgesic, and antioxidant,
among other effects [30]. Our recent studies showed that
Cap upregulated 14-3-3η (a dimeric phospho-serine-
binding protein involved in cardiac protection) and SIRT1
(NAD+-dependent proteins that act as gatekeepers against
oxidative stress and cardiovascular injury) expression in car-
diomyocytes in response to A/R injury [7, 8]. The pathologic
process of A/R remains unexplored. Cap could have differen-
tial modulatory effects on the anoxia and A/R stage.

We performed Cap pretreatments prior to anoxia or A/R
injury to test the following: (1) impact of A/R injury on
NAD+/NADH, GSH/GSSG, mt complexes I/III, and energy
metabolism and (2) Cap-mediated effects on redox couples,
complex I/III, and energy metabolism.

2. Materials and Methods

2.1. Reagents. Cap (purity ≥ 98%) was purchased from the
National Institutes for Food and Drug Control (Beijing,
China). Adenovirus pAD/14-3-3η-shRNA was obtained
from GeneChem Co., Ltd (Shanghai, China). Antibodies
directed against 14-3-3η, cytochrome c (cyt C), cleaved
caspase-3, Cox4, and β-actin were obtained from Cell
Signaling Technology (Beverly, MA, USA). Antibodies
against NADH dehydrogenase [ubiquinone] 1 beta subcom-
plex subunit 8 (NDUFB8) and cytochrome b-c1 complex
subunit 2 (UQCRC2) were obtained from Abcam (Cam-
bridge, UK). Horseradish peroxidase-conjugated IgG sec-
ondary antibody was purchased from Zsbio (Beijing, China).

2.2. Primary Cardiomyocyte Culture and Anoxia Alone or
Anoxia/Reoxygenation Injury. All experimental protocols
were conducted according to the Guide for the Care and
Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication no. 85-23, revised
1996) and approved by the Ethics Committee of Nanchang
University (no. 2019-0036). Cardiomyocytes from 0-3 days
old Sprague-Dawley rats (the Animal Center of Nanchang
University, Nanchang, China) were prepared as published
[7]. Briefly, hearts from neonatal rats were removed and
placed in precooling D-Hank’s balanced salt solution. The

ventricles were digested with 0.1% trypsin and then harvested
repeatedly by centrifugation at 600 × g for 5min. The cells
were resuspended in plating medium (80% Dulbecco’s Min-
imal Essential Medium (DMEM), 20% Fetal Bovine Serum
(FBS), and 100U/ml of penicillin and streptomycin) and
plated in culture dishes that were incubated 37°C for 30min
to remove nonmyocytes. The suspended cells were plated
on 60mm gelatin-coated culture dishes at 1 × 106 cells per
dish and incubated at 37°C in a standard humidity incubator
with 95% O2 and 5% CO2. After 18 hours, cardiomyocytes
were washed and plates in fresh medium and incubated for
an additional 3 days at 37°C in a standard humidity incubator
with 95% O2 and 5% CO2 before the experiment.

Cardiomyocytes were exposed to three hours of anoxia
alone or three hours of anoxia followed by two hours of reox-
ygenation. Anoxic conditions were generated by incubating
the culture plates in an air-tight anoxic chamber placed in a
humidified 37°C incubator and passing a mixture of 95%
N2 and 5% CO2. Reoxygenation was provided by placing
the cultured plates in a standard humidified 37°C incubator
and passing a mixture of 95% O2 and 5% CO2 [31].

2.3. Experimental Grouping and Reagent Treatment. The
experimental groups were as follows: during anoxia stage:
(1) control group: incubation under normal growth condi-
tions; (2) anoxia group: exposure to anoxic injury; (3) Cap
+anoxia group: pretreatment with 10μM Cap for 36 hours
prior to anoxic injury; and (d) pAD/14-3-3η-shRNA+Cap
+anoxia group: pretreatment with adenovirus pAD/14-3-
3η-shRNA for 5 hours prior to preconditioning with Cap
(36 hours) and anoxic injury.

During the A/R stage, cardiomyocytes were distributed
into experimental groups as follows: (a) control group; (b)
A/R group: exposure to A/R injury; (c) Cap+A/R group: pre-
treatment with 10μM Cap for 36 hours before A/R; and (d)
pAD/14-3-3η-shRNA+Cap+A/R group: pretreatment with
pAD/14-3-3η-shRNA for 5 hours prior to preconditioning
with Cap (36 hours) and A/R injury.

2.4. Measurement of Cell Viability and Biochemical
Parameters. Cell viability was measured using a colorimetric
assay using the tetrazolium salt WST-8 (TransGen Biotech,
Beijing, China). Cardiomyocytes were seeded in 96-well
plates at a density of 4 × 103 cells/well. Cells were incubated
with 20μl WST-8 (5mg/ml) per 100μl medium for 2 hours
at 37°C, and absorbance was measured at 490 nm using a
microplate reader (Bio-Rad 680, Hercules, CA, USA). Data
was expressed as the ratio between experimental and control
groups.

Culture medium after anoxia or A/R treatment was col-
lected to evaluate the activities of lactate dehydrogenase
(LDH) and creatine phosphate kinase (CK) using commer-
cially available assay kits (Jiancheng, Nanjing, China) accord-
ing to the manufacturer’s instructions [7].

2.5. Preparation of Mitochondrial Fractions and Assessment
of NAD+/NADH and GSH/GSSG Level. Mitochondrial
fractions of cardiomyocytes were prepared using the
mitochondria isolation kit (Thermo Fisher, USA). Cells were
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harvested and centrifuged at 700 × g for 5min, with the addi-
tion of 800μl ice-cold reagent A and 10μl precooling reagent
B, and incubated for 5min on ice. Following this, 800μl of
reagent C was added and incubated for 10min at 4°C. The
sample was then centrifuged at 700 × g for 10min to remove
the undissolved protein and debris. The supernatant was col-
lected and centrifuged at 12000 × g for 15min at 4°C. Then,
removed the supernatant and washed the pellet (mitochon-
dria) in 500μl of reagent C and centrifuged at 12000 × g
for 5min at 4°C. The final pellet was resuspended in lysis
buffer containing a protease inhibitor, and the homogenate
was designated as the mitochondrial fraction.

NAD+, NADH, and NAD+/NADH ratios of the mito-
chondrial fraction were measured using the NAD+/NADH
Quantification Kit (Sigma-Aldrich, St. Louis, MO, USA).
GSH, GSSG, and GSH/GSSG ratios were examined using
the GSH and GSSG Assay Kit (Beyotime, Shanghai, China)
consistent with the manufacturer’s instructions.

2.6. Measurement of OCR and ECAR. OCR and extracellular
acidification rate (ECAR) were assayed using commercially
available assay kits by the Seahorse XFe24 Extracellular Flux
analyzer (Agilent Technologies, Santa Clara, CA, USA)
[32]. Cardiomyocytes were seeded in Seahorse XF Cell Cul-
ture Microplate at a density of 4 × 103 cells/well in DMEM
supplemented with 10% (v/v) FBS. A sensor cartridge was
added to Seahorse XF Calibrant solution and incubated at
37°C in a non-CO2 incubator overnight. Cells were incubated
with XF Base Medium (Agilent Technologies) at 37°C in a
non-CO2 incubator for 45min prior to the assay. OCR values
were assayed under basal/resting conditions and after adding
oligomycin, FCCP, rotenone, and antimycin A. Meanwhile,
ECAR was measured under basal conditions and with glu-
cose, oligomycin, and 2-DG. The results of OCR and ECAR
were calculated from Wave.

2.7. Flow Cytometry Assay. ROS levels were assessed with
oxidation-sensitive fluorescent probe DCFH-DA (Beyotime,
Shanghai, China) [7]. Cells were harvested after treatment
as described in Section 2.3 and incubated with DCFH-DA
at 37°C for 30min in darkness. The cells were then centri-
fuged, washed with ice-cold 1x phosphate-buffered saline
(PBS), and detected (excitation ðExÞ = 488nm, emission
ðEmÞ = 525nm) immediately using Cytomics FC500 flow
cytometer (Beckman Coulter, Brea, CA, USA).

Mitochondrial Membrane Potential (MMP) was mea-
sured using the fluorescent dye JC-1 (BestBio, Shanghai,
China) [7]. In brief, cardiomyocytes were incubated with
JC-1 for 30min at 37°C in darkness, centrifuged, and washed
to remove the excess reagents. Fluorescence was assessed
using Cytomics FC500 flow cytometer at wavelengths of
530/580 nm (red) and 485/530 nm (green). The ratio of the
red to green fluorescence intensity of the cells reflected the
level of MMP.

Mitochondrial permeability transition pores (mPTP)
were assessed utilizing the fluorescent probe BbcellProbe™
M61 (BestBio, Shanghai, China) [33]. Cells were co-
incubated with BbcellProbe™ M61 and quenching agent at
37°C for 15min in darkness and centrifuged at 600 × g for

5min followed by washing with Hank’s balanced salt solu-
tion (HBSS). The fluorescence intensity of the dissociated
cells was analyzed by a Cytomics FC500 flow cytometer
(Ex = 488nm; Em = 558nm).

Cells apoptosis was measured according to a method
described previously [7]. Cells were collected and resus-
pended in 1x Annexin V binding buffer. Cell suspension
was incubated with 5μl Annexin V-FITC and 10μl PI and
detected (Ex = 488nm, Em = 578nm) directly using
Cytomics FC500 flow cytometer.

2.8. Western Blot Analysis. Cardiomyocytes were harvested
and lysed with RIPA lysis buffer supplemented with a prote-
ase inhibitor (phenylmethanesulfonyl fluoride (PMSF)) and
incubated for 30min at 4°C. Protein extracts were centri-
fuged at 4°C for 15min to remove insoluble substances. The
protein concentration was measured using a bicinchoninic
acid (BCA) protein assay kit (Thermo Fisher, USA). Equal
amounts of protein (30μg) were separated by denaturing
sodium dodecyl sulfonate polyacrylamide gel electrophoresis
(SDS-PAGE) using a gel apparatus and later transferred to a
polyvinylidene fluoride (PVDF) membrane. The membrane
was blocked with 5% bull serum albumin, washed, and satu-
rated with primary antibodies (14-3-3η, 1 : 1000; cleaved cas-
pase-3, 1 : 1000; cyt C, 1 : 1000; NDUFB8, 1 : 500; UQCRC2,
1 : 500; Cox4, 1 : 1000; and β-actin, 1 : 1000) overnight at
4°C and then blotted with horseradish peroxidase- (HRP-)
conjugated secondary antibody. Subsequently, the mem-
brane was incubated with an enhanced chemiluminescence
substrate for 1min, and protein bands were visualized and
analyzed with the Quantity One software (Bio-Rad, USA).

2.9. Terminal Deoxynucleotidyl Transferase-Mediated Nick-
End Labeling (TUNEL) Assay. Apoptosis was determined
using the DeadEnd™ Colorimetric TUNEL System (Pro-
mega, USA) and visualized using a fluorescence microscope
(Olympus, Tokyo, Japan). Cardiomyocytes were added to
microscope slides and fixed with 4% methanol-free formal-
dehyde at 25°C for 25min, washed twice with PBS, and
permeabilized with 0.2% Triton X-100 at 25°C for 5min.
After washing with PBS, incubation buffer (equilibration
buffer, biotinylated nucleotide mix, and recombinant termi-
nal deoxynucleotidyl transferase) was added, and the sample
was covered with a plastic coverslip and incubated at 37°C for
1 hour. Subsequently, the slides were immersed in 2x SSC,
blocked with 0.3% H2O2 for 5min, and incubated with
100μl HRP for 30min. Finally, 100μl of a diaminobenzidine
(DAB) solution was added, and the sample was incubated for
5min in the dark. Next, the sample was rinsed with deionized
water and stained with hematoxylin for 1min. Microscopic
analysis was performed as described [7].

2.10. Statistical Analysis. Values were represented as
mean ± standard error of mean (SEM) from at least six
independent experiments. The significance of biochemical
data across each group was tested by one-way ANOVA,
and the individual differences were tested by least significant
difference (LSD) testing. The results were considered statisti-
cally significant at a value of P < 0:05.
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3. Results

3.1. Cap Protects Cardiomyocytes against Anoxia Alone or
A/R Injury. Cell viability, LDH, and CK activities served as
the indicators of cytotoxicity [7]. Following anoxia alone, cell
viability decreased, LDH and CK activities increased as com-
pared with the control group (P < 0:01), while pretreatment
with 10μM Cap improved cell viability and LDH and CK
activities (P < 0:05, Figures 1(a) and 1(c)).

Compared with anoxia alone, reoxygenation following
anoxia further decreased cell viability (from 61:2 ± 3:2%
to 54:1 ± 2:8%, P < 0:01, Figures 1(a) and 1(b)) and
increased LDH and CK activities (P < 0:01, Figures 1(c)
and 1(d)), suggesting that reoxygenation stage is an exac-
erbation period in cardiomyocytes. After treatment with
10μM Cap, cell viability was similar to the Cap+anoxia
group (69:2 ± 3:7% to 71:8 ± 3:6%, P > 0:05, Figures 1(a)
and 1(b)), and LDH and CK activities were also similar
(P > 0:05, Figures 1(c) and 1(d)). This could indicate that
Cap is able to alleviate cardiomyocyte deterioration. How-
ever, the protection of Cap on cardiomyocyte was abro-
gated by the addition of pAD/14-3-3η-shRNA under
conditions of anoxia alone or A/R injury (P < 0:01,
Figure 1).

3.2. Cap Upregulates 14-3-3η Expression in Cardiomyocytes
following Anoxia or A/R Injury. 14-3-3η expression was

downregulated by anoxia alone or A/R injury (P < 0:01,
Figure 2). Following anoxia alone, Cap-pretreated cardiomyo-
cytes slightly increased 14-3-3η level (P < 0:05, Figure 2(a)),
whereas Cap significantly upregulated 14-3-3η expression
after undergoing AR injury (P < 0:01, Figure 2(b)).

3.3. Cap Decreases ROS Generation by Maintaining the Redox
Balance and Changing Electron Transport in Cardiomyocytes
following Anoxia or A/R Injury. As shown in Figures 3(a) and
3(b), ROS generation increased overall during anoxia or A/R
injury when compared with the control group. A/R injury
significantly increased ROS generation compared with
anoxia alone (from 2.05 (anoxia) to 3.88 (A/R) times, vs.
the control group, P < 0:01). However, Cap significantly
inhibited ROS generation caused by the two treatments
(0.61 (anoxia); 0.41 (A/R), vs. the respective injury group,
P > 0:01). NAD+, GSSG, and NAD+/NADH increased
significantly, while NADH, GSH, and GSH/GSSG decreased
significantly after anoxia alone or A/R injury (Figures 3(c)–3(f),
P > 0:01). The NAD+/NADH ratio increased from 5.22
(anoxia) to 9.07 (A/R) (vs. the control group, P < 0:01), and
the GSH/GSSG ratio decreased from 0.31 (anoxia) to 0.24
(A/R) (vs. the control group, P < 0:01). Cap reversed the
effects, especially in NAD+/NADH and GSH/GSSG ratio
(NAD+/NADH ratio: 0.28 (anoxia) to 0.18 (A/R), vs. the
respective injury group, P < 0:01; GSH/GSSG ratio: 1.89
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Figure 1: Cap protects cardiomyocytes against anoxia or A/R injury. (a, b) Cell viability of cardiomyocytes. (c, d) LDH and CK activity in
culture media. Data are presented as mean ± SEM (n = 6). A: P < 0:01 vs. control group (anoxia); B: P < 0:01 vs. anoxia group; C: P < 0:01
vs. Cap+anoxia group; D: P < 0:01 vs. control group (A/R); E: P < 0:01 vs. A/R group; F: P < 0:01 vs. Cap+A/R group.
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(anoxia) to 2.74 (A/R), vs. the respective injury group, P <
0:01). The results showed that A/R injury could activate
ROS generation and redox status more than anoxia alone
and Cap could rescue the related cellular deterioration.

The levels of NDUFB8 (a subunit of mt complex I) and
UQCRC2 (a subunit of mt complex III) were determined
by Western blot. NDUFB8 and UQCRC2 levels decreased
during the anoxia or A/R exposure (P < 0:01, Figures 4(a)
and 4(b)), indicating an inhibition of the mitochondrial
respiratory chain of cardiomyocyte. This result could par-
tially explain the measured ROS burst and perturbation of
mitochondrial redox status including changes in NAD+/-
NADH and GSH/GSSG ratios. The Cap pretreatment signif-
icantly increased the mitochondrial complexes of ETC
(P < 0:01).

Furthermore, OCR measurements showed a significant
decrease in basal oxygen consumption, ATP-linked OCR,
and spare respiratory capacity over the normoxic control
cells (P < 0:01, Figures 4(c) and 4(d)). Collectively, these
observations indicated that mitochondrial vitality was sig-
nificantly inhibited following anoxia or A/R injury. ECAR
measurements indicated that glycolysis increased signifi-
cantly after anoxia or A/R injury resulting in lactate accu-
mulation and increased extracellular acidification (P < 0:01,
Figures 4(e) and 4(f)). As expected, Cap increased OCR
and decreased the concentration of extracellular H+ in car-
diomyocytes during the different types of injury (P < 0:01)
with a prominent effect in the context of A/R injury.
These results corroborate in the data on ROS generation,
GSH/GSSG and NAD+/NADH ratio, and mt complex
I/III activities. The Cap-mediated beneficial effects were
abrogated by coincubating with pAD/14-3-3η-shRNA
(P < 0:01).

3.4. Cap Improves Mitochondrial Function in Cardiomyocytes
Exposed to Anoxia or A/R Injury. A major characteristic of

early apoptotic cells is loss of plasma membrane potential
[34]. In living cells, the fluorescent dye JC-1 accumulates in
the mitochondrial matrix and emits a red fluorescence. How-
ever, in apoptotic and dead cells, JC-1 exists as a monomer
and emits a green fluorescence. We utilized the red/green
fluorescence ratio to express the loss of MMP potential [7].
Both anoxia and A/R exposure induced a loss of MMP
(P < 0:01) that was rescued by treatment with Cap (P < 0:01,
Figures 5(a) and 5(b)).

Increased mPTP opening causes the early functional
changes of apoptosis [35] with a release of cyt C from
mitochondria into the cytosol [36]. As illustrated in
Figures 5(c)–5(f), cyt C levels in the cytosol were higher in
the A/R group than these in the anoxia alone group
(P < 0:01), indicating an aggravated mitochondrial malfunc-
tion caused by A/R injury. Cap rescue of this effect was signif-
icantly stronger in A/R injury stage compared with anoxia
alone. As demonstrated in other results, the inhibition of
14-3-3η using pAD/14-3-3η-shRNA could reverse the effects
of Cap (P < 0:01).

3.5. Cap Decreases Apoptosis of Cardiomyocyte Induced by
Anoxia Alone or A/R Injury. Cleaved caspase-3 is an acti-
vated form of caspase-3 [7]. Cleaved caspase-3 expression
increased significantly following anoxia or A/R injury
(P < 0:01, Figures 6(c) and 6(d)). The addition of Cap signif-
icantly decreased cleaved caspase-3 expression following
injury with anoxia or A/R (P < 0:01).

Furthermore, apoptosis was measured by flow cytometry
[7]. Apoptotic ratio in the anoxia and A/R groups compared
with the control group (P < 0:01, Figures 6(a) and 6(b)). Cap
treatment decreased the apoptotic ratio induced by anoxia or
A/R injury (P < 0:01). The results of TUNEL staining corrob-
orated the above findings. Varying degrees of accumulation
of TUNEL positive cells were identified in anoxia or A/R
injury and this was decreased following Cap treatment
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Figure 2: Cap upregulates 14-3-3η on cardiomyocytes exposed to anoxia or A/R injury. (a) Western blot and graphic of 14-3-3η expression
during anoxia treatment. (b)Western blot and graphic of 14-3-3η expression during A/R treatment. Data are presented asmean ± SEM (n = 6).
A: P < 0:01 vs. control group (anoxia); B: P < 0:01 vs. anoxia group; C: P < 0:01 vs. Cap+anoxia group; D: P < 0:01 vs. control group
(A/R); E: P < 0:01 vs. A/R group; F: P < 0:01 vs. Cap+A/R group.
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Figure 3: Continued.
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(Figure 7). Treatment with pAD/14-3-3η-shRNA reversed
the Cap-mediated rescue of apoptosis (P < 0:01).

4. Discussion

Anoxia leads to the disorder of energy metabolism in cells,
induces oxidative stress, and interferes with the synthesis
and function of a large number of proteins [3]. After reoxy-
genation, cellular function further deteriorates as well studied
in cardiomyocyte [24, 25]. In the current study, decreased cell
viability and increased LDH and CK activity, cleaved
caspase-3 expression, and apoptotic ratio in cardiomyocytes
following anoxia or A/R stage (Figures 1, 6, and 7) indicated
damage in cardiomyocytes. The impact of A/R injury was
stronger compared with anoxia alone in keeping with previ-
ously published work [3–9, 24, 25]. Interestingly, Cap signif-
icantly blocked the inhibitory effects of anoxia or A/R injury
(Figures 1, 6, and 7), suggesting a protective effect on cardio-
myocytes following injury, supporting previously published
work [7, 8].

As a phytochemical compound with multiple targets and
mechanisms of action, Cap regulates the expression and
activity of a variety of proteins, further affecting downstream
signaling pathways resulting in a biological effect [26, 30].
Cap significantly upregulated 14-3-3η and SIRT1 expression,
thus promoting translocation of Bcl-2 to mitochondria in
cardiomyocytes in response to A/R injury [7, 8]. In this
study, we identified that Cap-mediated rescue of cardiomyo-
cytes was linked to 14-3-3η expression. This was corrobo-
rated by the shRNA-mediated downregulation of 14-3-3η

expression, which reversed the protective effects of Cap
(Figures 1–7).

There are seven known isoforms (β, γ, ε, η, ζ, σ, and τ/θ)
of 14-3-3 family proteins in mammals. Functionally, together
with partner proteins, 14-3-3 regulates phosphorylation and
dephosphorylation, kinase activity, and cellular location of
proteins that may participate in cell proliferation, differenti-
ation, survival, transformation, and apoptosis [37, 38]. Our
previous study demonstrated that 14-3-3η is activated in
ischemia/hypoxia injury while 14-3-3γ activation is linked
to infectious/inflammatory lesions [7–9, 39]. 14-3-3 is the
molecular target of many active ingredients of plants. We
have confirmed that 14-3-3 assists PKCε, Bcl-2, and other
functional proteins to locate to mitochondria and protect
cardiomyocytes and vascular endothelial cells against multi-
ple injuries [7, 9, 40–43]. Further studies are needed to define
specific mechanism(s) of action for Cap-activated 14-3-3η in
anoxia and A/R injured cardiomyocytes.

Mitochondrial dysfunction, a major hallmark of anoxia
injury in cardiomyocyte, is exacerbated through reoxygena-
tion to severely affect ROS production and impede cardio-
myocyte survival [44, 45]. In this study, we found that ROS
generation increased following anoxia alone but was exces-
sive following A/R injury (Figures 3(a) and 3(b)). Mitochon-
dria are furnished with endogenous defense mechanisms
against excessive ROS generation [46]. The mechanism of
internal defense mainly contains several antioxidant defense
systems, among them, GSH/GSSG and NAD+/NADH play
an important role in maintaining the cellular redox status
[47, 48]. Additionally, the balance of ROS and redox states
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Figure 3: Cap reduces ROS generation by maintaining the redox balance following anoxia or A/R injury. (a, b) Fluorescent probe DCFH-DA
indicating ROS level was detected by flow cytometry and column chart of average fluorescence intensity values during A/R exposure. (c, d)
Mitochondrial NAD levels in cardiomyocytes after different treatments. Left: histogram of mitochondrial NAD+ levels; middle: histogram of
mitochondrial NADH levels; right: histogram of mitochondrial NAD+/NADH ratio. (e, f) Intracellular glutathione levels of cardiomyocyte
after different treatments. Left: histogram of intracellular GSH levels; middle: histogram of intracellular GSSG levels; right: histogram of
intracellular GSH/GSSG ratio. Data are presented as mean ± SEM (n = 6). A: P < 0:01 vs. control group (anoxia); B: P < 0:01 vs. anoxia
group; C: P < 0:01 vs. Cap+anoxia group; D: P < 0:01 vs. control group (A/R); E: P < 0:01 vs. A/R group; F: P < 0:01 vs. Cap+A/R group.
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Figure 4: Continued.
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could maintain cellular homeostasis by modulating ion chan-
nels, conditioning transports, and regulating enzyme activity
[49, 50]. Compared with anoxia alone, GSH/GSSG ratio was
dramatically decreased and NAD+/NADH ratio was signifi-
cantly increased by A/R injury. The disruption of antioxidant
homeostasis therefore could explain the excessive production
of ROS (Figures 3(c)–3(f)).

It is well known that inhibition of activities of mt com-
plexes I and III can result in inducing ROS overproduction
and perturbation of the NAD+/NADH ratio [51–53]. In the
present study, the expression of NDUFB8 and UQCRC2
were decreased in cardiomyocytes after undergoing anoxia
or A/R injury (Figures 4(a) and 4(b)). Complexes I/III are
inhibited by rotenone and antimycin A, respectively, which
leads to the inhibition of the flow of electrons along the
respiratory chain and the formation of ATP [54, 55]. Accu-
mulating evidence indicated that the anoxic cardiomyocyte

mainly produces ATP by the anaerobic glycolytic pathways
[56, 57]. However, accelerated glycolysis of cardiomyocyte
in response to impaired pyruvate oxidation could lead to
lactate accumulation during anoxia stage [58, 59]. In anoxia
or A/R injury, ATP suppression and damaged mitochon-
drial respiration result from a metabolic flux in cardiomyo-
cytes under pathological conditions (Figures 4(c) and 4(d)).
Accordingly, the cardiomyocyte accounted for higher index
of glycolytic reserves thus indicating towards mitochondrial
malfunction was aggravated during the pathological process
(Figures 4(e) and 4(f)). Remarkably, these findings were in
keeping with the changes in the redox couples mentioned
above, likely because inhibition of mt complexes I/III activ-
ity could disturb the redox balance and the homeostasis of
cellular energy metabolism during A/R injury.

We found that Cap treatment could increase NADH,
GSH, and GSH/GSSG ratio and inhibit NAD+, GSSG, and
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Figure 4: Effects of Cap treatment on mitochondrial bioenergetics and glycolytic activity of cardiomyocytes during A/R injury. (a, b)Western
blot and graphic of 14-3-3η, NDUFB8, and UQCRC2. (c, d) Effects of Cap on OCR. Cap pretreatment increased mitochondrial respiration
following injury. (e, f) Effects of Cap on ECAR. Cap pretreatment decreased lactate accumulation and extracellular acidification. Data are
presented as mean ± SEM (n = 6). A: P < 0:01 vs. control group (anoxia); B: P < 0:01 vs. anoxia group; C: P < 0:01 vs. Cap+anoxia group;
D: P < 0:01 vs. control group (A/R); E: P < 0:01 vs. A/R group; F: P < 0:01 vs. Cap+A/R group.
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Figure 5: Continued.
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NAD+/NADH ratio after anoxia or A/R injury in cardiomyo-
cytes. Contrasted with the results caused by anoxia alone, the
doubling ratio of NAD+/NADH and GSH/GSSG implied
that the ability of Cap to protect cardiomyocyte against
external injury was more effective during the A/R period
(Figures 3(c)–3(f)). Moreover, Cap treatment could elevate
complex I/III expression on cardiomyocyte (Figures 4(a) and
4(b)), increase ATP production-associated mitochondrial res-
piration, and reduce lactate accumulation (Figures 4(c)–4(f)),
while cotreatment with pAD/14-3-3η-shRNA could invert
effects mentioned above. Therefore, it is difficult to explain
the effects as mentioned earlier of Cap just by its antioxidant
capacity; the role of Cap upregulating 14-3-3η expression and
its effects on downstream related pathways are more impor-
tant. Furthermore, myocardial mitochondrial dysfunction

was worse caused by A/R injury than that by anoxia alone.
On the contrary, Cap showed a benign protective effect dur-
ing the gradual deterioration of pathology, which was
reflected in redox balance, complexes of ETC, OCR, and
ECAR.

Mitochondria are the primary organelle that generates
ROS in cardiomyocyte [60]. The excessive ROS generation
stimulated MMP and further caused mPTP openness in the
inner mitochondrial membrane leading to severe mitochon-
drial swelling, rupture, and the release of apoptogenic factors
[61, 62]. Consistently, pretreatment with Cap stabilized
MMP (Figures 5(a) and 5(b)), closed mPTP (Figures 5(c)
and 5(d)), and decreased the release of cyt C into the cyto-
plasm in cardiomyocytes during A/R injury (Figures 5(e)
and 5(f)). These responses increased cell viability (Figure 1),
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Figure 5: Cap improves mitochondrial function in cardiomyocytes exposed to anoxia or A/R injury. (a, b) Fluorescent dye JC-1 indicating
MMP level was detected by flow cytometry, and the ratio of red/green fluorescence is represented. (c, d) Fluorescent probe BBcellProbe
M61 indicating mPTP opening was detected by flow cytometry, and column chart of average fluorescence intensity values is shown. (e, f)
Western blot and graphic of cyt C level in the cytosol/mitochondria. Data are presented as mean ± SEM (n = 6). A: P < 0:01 vs. control
group (anoxia); B: P < 0:01 vs. anoxia group; C: P < 0:01 vs. Cap+anoxia group; D: P < 0:01 vs. control group (A/R); E: P < 0:01 vs. A/R
group; F: P < 0:01 vs. Cap+A/R group.
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decreased cleaved caspase 3 expression (Figures 6(a) and 6(b)),
and inhibited apoptosis (Figures 6 and 7).

5. Conclusions

Taken together, by comparing the damage from anoxia or
reoxygenation, we found that reoxygenation following

anoxia could further abrogate the tolerance and adaptability
of cardiomyocytes as evidenced by increased ROS generation,
inhibited complex I/III activities, and disturbed redox status
and homeostasis of cellular energy metabolism. Cap rescued
these effects in cardiomyocytes likely through the upregulation
of 14-3-3η. Cap-treated cardiomyocytes showed improved
mitochondrial functioning resulting in apoptosis inhibition.
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Figure 6: Cap decreases the apoptosis of cardiomyocyte induced by anoxia or A/R. (a, b) Dot plots of Annexin V-FITC/PI detected by flow
cytometry and the apoptosis analyzed with the CXP analysis software. (c, d) Western blot and graphic of cleaved caspase-3 levels
in cardiomyocytes. Data are presented as mean ± SEM (n = 6). A: P < 0:01 vs. control group (anoxia); B: P < 0:01 vs. anoxia group;
C: P < 0:01 vs. Cap+anoxia group; D: P < 0:01 vs. control group (A/R); E: P < 0:01 vs. A/R group; F: P < 0:01 vs. Cap+A/R group.

12 Oxidative Medicine and Cellular Longevity



Abbreviations

ANOVA: Analysis of variance
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ATP: Adenosine triphosphate
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LDH: Lactate dehydrogenase
LSD: Least significant difference
mPTP: Mitochondrial permeability transition pore
MMP: Mitochondrial membrane potential
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OCR: Oxygen consumption rate

PBS: Phosphate-buffered saline
PI: Propidium iodide
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Figure 7: TUNEL assay for apoptotic cells induced by anoxia or A/R injury. Red arrows indicate TUNEL-positive (apoptotic)
cardiomyocytes.
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