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The present study was directed to investigate the effect of precotreatment with (E)-N′-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl)
ethylidene) benzohydrazide (7-hyd.HC), a novel potent synthesized coumarin, on isoproterenol- (ISO-) induced myocardial
infarction (MI) in rats. The hydrazone compound was characterized by IR, 1D, and 2D NMR analyses. Experimental induction
of MI in rats was established by ISO (85mg/kg/day, s.c) for two consecutive days (6th and 7th days). 7-hyd.HC or sintrom was
given for 7 days prior and simultaneous to ISO injection. 7-hyd.HC offered a cardiopreventive effect by preventing heart injury
marker leakage (LDH, ALT, AST, CK-MB, and cTn-I) from cardiomyocytes and normalizing cardiac function and ECG pattern,
as well as improving lipid profile (TC, TG, LDL-C, and HDL-C), which were altered by ISO administration. Moreover,
7-hyd.HC precotreatment significantly mitigated the oxidative stress biomarkers, as evidenced by the decrease of lipid
peroxidation and the increased level of the myocardial GSH level together with the SOD, GSH-Px, and catalase activities.
7-hyd.HC inhibited the cardiac apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of
Bax and caspase-3 genes. In addition, 7-hyd.HC reduced the elevated fibrinogen rate and better prevented the myocardial
necrosis and improved the interstitial edema and neutrophil infiltration than sintrom. Overall, 7-hyd.HC ameliorated the severity
of ISO-induced myocardial infarction through improving the oxidative status, attenuating apoptosis, and reducing fibrinogen
production. The 7-hyd.HC actions could be mediated by its antioxidant, antiapoptotic, and anti-inflammatory capacities.
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1. Introduction

Cardiovascular disease (CVD) is one of the global health
emergencies of the 21st century, which caused 17.9 million
dead people in 2015 and this may rise up to 23.6 million by
the year 2030 [1]. Myocardial infarction (MI) is the common-
est form of this disease which is characterized by insufficient
supply of myocardial oxygen compared to demand leading
to myocardial hypoxia and necrosis [2]. More insights into
the mechanism of myocardial infarction through various
researches have revealed the role of oxidative stress in promot-
ing lipid peroxidation, inflammation, and apoptosis in the
myocardium by excessive production of free radicals [3, 4].

Recognizing the gravity of CVD will require genuine
consideration, particularly for MI [5]. Clinical and experimen-
tal searches have reported that synthetic drug therapy such as
statins can mitigate or prevent myocardial damage and heart
failure through inhibition of inflammation and enhancement
of endothelial function [6, 7, 8]. However, it has been revealed
that statin treatment could reduce the endogenous antioxi-
dants resulting in the decreases of the body’s resistance to oxi-
dative stress [9]. Hence, many researchers have focused for the
identification of new therapeutic approaches to treat myocar-
dial infarction with minimal side effects [10]. Recent reports
have demonstrated that plant-based phytoconstituents has
been used for the counteracting effect and treatment of cardiac
dysfunction [11]. Nowadays, several attempts have focused on
coumarins, as an abundant secondary metabolite, considered
an effective bioactive molecule that present a promising thera-
peutic option. Coumarins are found in several plant families
and essential oils and are used as fragrant additives in food
and cosmetics [12]. Many reports have suggested that the cou-
marins possess a huge array of biological roles, such as anti-
thrombotic, neuroprotective, antidiabetic, anticoagulant,
anti-inflammatory, antioxidant, and antiplasmodial activities
[13–19]. Due to technical advancement, the coumarins and
its derivatives are becoming a potential source for new drug
discovery [20].

Thus, due to the side effects of the synthetic drugs from
one hand and the beneficial role of coumarins and derivatives
from the other hand, the present study was designed to
investigate, for the first time, the potential preventive
capacity of a novel derivative of coumarin, (E)-N′-(1-(7-
hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydra-
zide, against isoproterenol-induced MI in male Wistar rats.
The synthesized compound (7-hyd.HC) was checked for
quality by 1H and 13C NMR spectroscopy, and IR. In order
to explore the mechanism of the cardioprotection of the
newly synthesized hydrazone coumarin, the ECG pattern,
the heart rate, the plasmatic cardiac biomarkers, the status
of pro- and antioxidants, myocardial proapoptotic and anti-
apoptotic factors, measurement of myocardial infarction size,
and cardiac histopathology were elucidated by comparison to
an acenocoumarol (sintrom) drug.

2. Materials and Methods

2.1. Drugs and Chemicals. Benzohydrazide, 2,4-dihydroxy-
benzaldehyde, silica gel, piperidine, methyl 3-oxobutanoate,

acetic acid, ethyl acetate, hexane, ethanol, and isoproterenol
hydrochloride powder were obtained from Sigma-Aldrich,
St. Louis, USA. Sintrom (4mg tablets) was obtained from
the laboratory of Novartis Pharma, Tunisia. The remaining
chemicals used were of analytical grade.

2.2. Apparatus for Chemistry Analysis. The melting point
(mp) was determined with Kofler bench. The TF-IR spec-
trum was recorded on a Perkin Elmer spectrum 100 FTIR
Spectrometer. 1H NMR (400MHz) and 13C NMR
(100MHz) spectra were recorded with a Bruker 400MHz
spectrometer. Chemical shifts (δ) are expressed in parts per
million (ppm) using TMS as an internal standard. Spin mul-
tiplicities are given as s (singlet), d (doublet), and t (triplet).

2.3. Synthesis of (E)-N′-(1-(7-Hydroxy-2-Oxo-2H-Chromen-
3-Yl) Ethylidene) Benzohydrazide (7-hyd.HC). The synthetic
strategy adopted to obtain the target compound was depicted
in Scheme 1. The starting reactive, 3-acetyl-7-hydroxy-2H-
chromen-2-one (3), was prepared by 2,4-dihydroxybenzalde-
hyde (1) (3.6mmol), ethyl acetoacetate (2) (3.6mmol), and a
catalytic amount of piperidine in 15ml ethanol by Knoevena-
gel reaction. The condensation of the 3-acetyl coumarin (3)
(1 eq) with benzohydrazide (4) (1 eq) in 15mL ethanol using
acetic acid as a catalyst under reflux condition for 8 h
afforded a solid isolated by filtration. The progress of the
reaction in all cases was monitored by thin-layer chroma-
tography (TLC) examination using ethyl acetate and hex-
ane (1 : 4 v/v). The resulting crude product was purified
by passing through a column of silica gel (60-120 mesh)
with ethyl acetate and hexane (1 : 4 v/v) as eluent and dried
under vacuum at 50°C to obtain target molecule (E)-N′
-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) ben-
zohydrazide (7-hyd.HC) in 46% yield as pale white solid:
mp > 264°C.

2.4. Mechanism. As shown in Scheme 2, the addition of
benzohydrazide (4) through the free electron pair of the
NH2 group after the protonation of the ketonic oxygen of
3-acetyl coumarin (3) will result in the formation unstable
intermediate. The second step of this mechanism results in
deprotonation, and elimination of a molecule of water gives
the new 7-hyd.HC.

2.5. Characterization of Compound and Their
Conformational Studies. The synthesized compound was
confirmed by IR, 1D, and 2D NMR. The IR spectrum of the
new compound Figure 1 displayed N-H amide (3305 cm-1),
hydroxyl group (3225 cm-1), lactone (1726 cm-1), carbonyl
hydrazone (1706 cm-1), and imine (1620 cm-1) absorptions.
The NMR data of the compound 7-hyd.HC is summarized
in Table 1. In 1HNMR Figure 2, the appearance of one singlet
for only one NH group and only one OH proton in the
low-field region at 10.87 ppm confirmed the structure of
the new compound. Morever, in the 13C NMR Figure 3,
the signals were observed at the regions δC 154.4, 160.1,
and 164.5 ppm due to the presence of C=N (imine), C=O
(coumarin), and C=O (hydrazone) groups, respectively, thus
confirming the formation of hydrazone coumarin. In addition,
the exhibited typical signals in the aromatic region associated
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with H4 at δH 8.15 (s, 1H), H5 at δH 7.57 (d, J = 8:4Hz, 1H),
H6 at δH 6.83 (d, J = 8:4Hz, 1H), and H8 at δH 6.76 (s, 1H) of
a coumarin moieties. All the protons correlated with carbon
signals at δC 142.7, 131.1, 114.1, and 102.3ppm in the HSQC
spectrum (Figure 4, Pact 1), respectively. Finally, the HMBC
(Figure 4, Pact 2) from correlations of NH (δH10.78) to C3′
(δC154.4) and H4 (δH 8.15) to C3′ (δC154.4) confirmed the
expected final structure 7-hyd.HC.

2.6. Animals. Thirty-two 10- to 12-week-old male Wistar rats
(270 ± 10 g) were used to study the cardioprotective
activity of 7-hyd.HC. The animals were purchased from the
Central Pharmacy of Tunisia and kept in cages under stan-
dard condition (temperature: 20 ± 2°C; humidity: 60 ± 5%;
12 h dark/light cycle) for one-week acclimatization period.

The rats were fed with standard chow diet (Table 2) with free
access to food and water (ad libitum) for 1 week before and
during the experiments. The Animal Ethics Committee, Uni-
versity Gafsa, has approved the animal study for this project.

2.7. Preparation of Isoproterenol Dose Treatments. The pow-
der of isoproterenol was freshly prepared in distilled water at
the time of induction of MI. Isoproterenol suspension
(85mg/kg) was injected via a subcutaneously (s.c) route in
rats at 6th and 7th days with an interval of 24 h to induce
MI [21].

2.8. Rat Groupings and Treatments. The animals were
divided into 4 groups (n = 8). The pretreated normal control
(Control) group received orally 1mL of NaCl (0.9%) daily,
during 7 days. The induced group (ISO) was pretreated
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orally with saline water and subcutaneously injected with
isoproterenol (85mg/Kg bw) for two consecutive days
(6th and 7th days). The positive control group (ISO+Sin)
was given sintrom at the dose of 150μg/Kg bw by gastric
gavages, respectively, for 7 days, and in the 6th day and 24
hours later, they were subcutaneously injected with isopro-
terenol (85mg/Kg bw). The last group (ISO+7-hyd.HC)
was pretreated with the synthesized coumarin 7-hyd.HC at
the dose of 150μg/Kg bw by gastric gavages, respectively,
for 7 days, and in the 6th day and 24 hours later, they were
injected with isoproterenol (85mg/Kg bw. s.c) [21]. All rats
were euthanized after 48 hours after isoproterenol-induced
cardiotoxicity.

2.9. Acute Toxicity Study. The control group received distilled
water orally while the other groups received different doses of
7-hyd.HC (10, 50, 100, and 150μg/kg bw) and observed for
toxic symptoms and death rate within 12 and 24 h.

2.10. Electrocardiography. At the end of the experimental
period, needle electrodes were inserted under the skin of
the rats in lead II position after anesthesia with ketamine
hydrochloride (100mg/kg body weight) [20]. ECG pattern
was made using veterinary electrocardiograph (BIOPAC,
Santa Barbara, California), and changes in ECG recordings
were considered.
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Figure 1: FT-IR spectrum of compound 7-hyd.HC.

Table 1: 1D and 2D NMR data of compound 7-hyd.HC in DMSO-d6.

Position δH ppm (mult, J(Hz)) δC ppm HMBC correlations

2 — 160.1 H4 (8.15)

3 — 122.4 CH3 (2.32); H4 (8.15)

3’ — 154.4 CH3 (2.32); H4 (8.15); NH(10.78)

4 8.15 (s, 1H, H4) 142.7 H5 (7.57)

4a — 111.6 H4 (8.15); H5 (7.57); H6 (6.83); H8 (6.76)

5 7.57 (d, J = 8:4Hz, 1H, H5) 131.1 H4 (8.15); H6 (6.83)

6 6.83 (d, J = 8:4Hz, 1H, H6) 114.1 H5 (7.57); H8 (6.76)

7 10.78 (s, 1H, OH) 162.4 H5 (7.57); H6 (6.83); H8 (6.76)

8 6.76 (s, 1H, H8) 102.3 H6 (6.83)

8a — 156.0 H4 (8.15); H5 (7.57); H8 (6.76)

9 — 164.5 H11 (7.88); NH(10.78)

10 — 134.4 H11 (7.88); H12(7.51)

11 7.88 (d, J = 6:8Hz, 2H, H11) 128.4 H12 (7.51); H13 (7.68)

12 7.51 (t, J = 6:8Hz, 2H, H12) 128.7 H11 (7.88); H13 (7.68)

13 7.68 (t, J = 6:8Hz, 1H, H13) 132.0 H11 (7.65); H12 (7.51)

CH3 2.32 (s, 3H, CH3) 16.8 —

NH 10.78 (s, 1H,NH) — —

4 Oxidative Medicine and Cellular Longevity



2.11. Evaluation of Heart Weight Index. At the end of ECG
recordings, the rats were sacrificed, and the heart tissues were
excised, washed with NaCl solution, and weighed after blot-
ting with filter paper. The heart weight index (HWI) was cal-
culated as HWI = heart weight ðHWÞ/body weight ðBWÞ:

2.12. Biochemical Determinations. The rats of each group
were scarified; the blood was collected and centrifuged at
2000 g for 15 minutes to separate the plasma. The obtained
plasma was kept at 4°C for analysis of several biochemical
parameters, including creatine phosphokinase-MB (CK-
MB), lactate dehydrogenase (LDH), alanine aminotransfer-
ase (ALT), and aspartate amino-transferase (AST). All the
analyses were performed using Hitachi 902 Automatic Ana-
lyzer using the adapted reagents from Biolabo, France, at
the clinic pathological laboratory of the Hospital of Gafsa.
The levels of total cholesterol (TC), triglycerides (TG), low-
density lipoprotein cholesterol (LDL-C), and high-density
lipoprotein cholesterol (HDL-C) were determined using the
corresponding commercial kits (Biolabo Reagents, Maizy,
France) on an automatic biochemistry analyzer (Kenza,
Maizy, France). The concentration of plasma cardiac tropo-
nin T was measured using a standard kit by electrochemilu-
minescence immunoassay (Roche Diagnostics GmbH,
Mannheim, Germany). The plasma fibrinogen amount was
measured using spectrophotometry-based methods and
according to the manufacturer’s instructions of the commer-
cial reagent kits purchased from Biomaghreb (Tunisia).

2.13. Estimation of Oxidative Stress Markers in the Heart
Tissues. The heart tissues of the rats were harvested on the
ice, washed with normal saline, and homogenized in aqueous
potassium buffer (0.1M, pH7.4). The mixture was centri-
fuged at 12,000 rpm (4°C) for 15min, and the supernatant
was recuperated. The lipid peroxidation was evaluated by
the quantification of thiobarbituric acid-reactive substances
(TBARS) using the method described by Buege and Aust
[22]. Enzymatic antioxidant (SOD, CAT, and GPx) activities
were investigated by the methods of Marklund and Mark-
lund [23], Aebi [24], and Flohe and Gunzler [25], respec-
tively. The nonenzymatic antioxidants such as GSH and
the protein contents in the heart tissue homogenate were
performed by the method of Ellman [26] and Bradford
[27], respectively.

2.14. Myocardial Expression of Proapoptotic and
Antiapoptotic Genes by RT-PCR Analysis. The RT-PCR
analysis was performed to validate the differential expression
of myocardial genes (caspases-3, B-cell lymphoma 2 (Bcl-2),
and B-cell lymphoma-2-associated x (Bax)) as previously
described by Prince and Hemalatha [28]. The total RNA
sample from the heart tissue of control and experimental rats
was extracted by an Easy spin column kit (170-8898, Bio-
Rad) according to the manufacturer’s protocol. Reverse tran-
scription was performed by 2μg of the total RNA using
superscript reverse transcriptase (Invitrogen, France).
Amplification was carried out by the Medox PCR Master
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Figure 2: 1HNMR spectrum (DMDO-d6, 400MHz) of compound7-hyd.HC.
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Mix in a volume of 25μl. The real-time cycler conditions
were as follows: first denatured at 95°C for 5min and then
amplified with 26 cycles (each cycle was denatured at 94°C
for 2min followed by annealing at 55°C and extension at
72°C for 1min). The rat sense and antissense primers used
in RT-PCR are mentioned in Table 3. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as a control
for this protocol. The RT-PCR products were separated by
electrophoresis in 3% agarose gel and visualized by staining
with ethidium bromide. The amplicons were quantified by
Image J (NIH, MD, USA). Gene expression was quantified
relative to the values of the control group after adjusting for
GAPDH.

2.15. Measurement of Myocardial Infarction Size. The myo-
cardial infarct size was determined as previously described
by al-Taweel et al. [29]. Briefly, samples of the heart tissue
were incubated in 1% 2,3,5-triphenyltetrazolium chloride
(TTC) dissolved in PBS at 37°C for 20min. The viable heart
tissue sections appeared red, while the ischemic region
appeared white.

2.16. Histopathological Observations. The heart samples of
the rats were fixed in 10% buffered formalin. After fixation,
the cardiac tissues were dehydrated in a graded series of alco-
hol, cleared in xylene, and embedded in paraffin. Multiple
5μm sections from each block were mounted on slides, then

stained with hematoxylin and eosin (H&E). The sections
were examined under a light microscope and then photo-
graphed for histopathological changes.

2.17. Statistical Analysis. Results were expressed as mean ±
standard deviation (mean ± SD). All analyses were carried
out with GraphPad Prism 4.02 forWindows (GraphPad Soft-
ware, San Diego, CA). Significant differences between treat-
ment effects were determined by one-way analysis of
variance (ANOVA), followed by Tukey’s test to correct for
multiple comparisons with an acceptable statistical level of
significance set to 0.05.

3. Results

3.1. Acute Toxicity. Animals did not show any clinical signs
of toxicity up to a dose of 150μg/kg bw. At this selected dose
of 7-hyd.HC, all animals survived and no mortality was
observed until the end of the experiment.

3.2. Evaluation of Body Weight and Relative Heart Weight.
Table 4 shows that the average body weights of the experi-
mental rats were not affected by isoproterenol, sintrom, and
7-hyd.HC. Isoproterenol significantly increased the heart
weight/body weight ratio by 19.29% compared to the nega-
tive control group. Precotreatment with 7-hyd.HC or sin-
trom at dose of 150μg/kg bw significantly reduced the
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Figure 3: 13C NMR spectrum (DMDO-d6, 100MHz) of compound 7-hyd.HC.
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increased relative heart weight by 7.51% and 14.6%, respec-
tively, as compared to untreated MI rats.

3.3. Impact of 7-hyd.HC on ECG Pattern. The ECG pattern of
normal and experimental rats is shown in Figure 5. As the
ECG profile from the same group is totally similar, we have

selected from each group one ECG. Control animals revealed
a normal electrocardiographic pattern as evidence by a regu-
lar sinus rhythm and normal heart rate (375 ± 13:92 bpm).
The ECG of infarcted animals exhibited irregular rhythm
with increase in heart rate (430± 11.65 bpm), significant ele-
vation of ST-segment and unidentifiable P wave as compared
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Table 2: Energy resources (kJ/g) and ratio (%) of the diets.

Protein Carbohydrate Fat Total

Ratio (%) of normal chow diet 21.6 65.6 12.8 —

Energy resources (kJ/g) 3.31 10.04 1.95 15.3

Table 3: Primers used in RT-PCR study.

Gene Primers

Caspase-3
Sense primer: CAG AGC TGG ACT GCG GTA TTG A
Antisense primer: AGC ATG GCG CAA AGT GAC TG

Bax
Sense primer: TTC ATC CAG GAT CGA GCA GA
Antisense primer: GCA AAG TAG AAG GCA ACG

Bcl-2
Sense primer: CTG GTG GAC AAC ATC GCT CTG

Antisense primer: GGT CTG CTG ACC TCA CTT GTG
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to the negative control group. Oral precotreatment of
isoproterenol-induced rats with 7-hyd.HC or sintrom at dose
of 150μg/kg bw exhibited slow-down in heart rate (370
± 12.34 bpm), decrease in ST segment elevation with identifi-
able P wave as compared to untreated MI rats.

3.4. Impact of 7-hyd.HC on Plasma Cardiac Biomarkers. The
effect of 7-hyd.HC on heart marker enzymes (CK-MB, LDH,
AST, ALT and troponin-T) is displayed in Table 5. The data
revealed that the negative control group demonstrated a nor-
mal range of theses biomarkers levels. Isoproterenol injection
increased the plasma CK-MB, ALT, AST, LDH and
troponin-T by 28%, 32%, 25%, 29% and 31%, respectively,
as compared to normal animals. However, precotreatment
with 7-hyd.HC followed by isoproterenol-induced MI in rats
significantly decreased the amount of plasma CK-MB, ALT,

AST, LDH and troponin-T by 12%, 12%, 7%, 11% and
40%, respectively, as compared to infarcted rats.

3.5. Impact of 7-hyd.HC on Fibrinogen Level. The levels of
plasmatic fibrinogen in the normal and treated groups are
shown in Figure 6. ISO-treated rats showed significant
(p < 0:05) elevated amount of fibrinogen in plasma by 128%
compared to the normal group. Precotreatment with sintrom
in infracted rats revealed marked (p < 0:05) decrease in the
levels of plasmatic fibrinogen by 26% as compared to
untreated MI rats. Moreover, prior administration of synthe-
sized hydrazone coumarin followed by ISO-induced MI in
rats was more effective in reducing the level fibrinogen (by
34%) as compared to the ISO+Sin-treated group.

3.6. Lipid Profile Analysis. The lipid profiles obtained are
shown in Figure 7. It was observed that the isoproterenol

Control

ISO

ISO + Sin

ISO+7-hyd-HC

Figure 5: Impact of 7-hyd.HC precotreatment on the electrocardiogram (ECG) patterns of control and experimental groups of rats. The ECG
pattern of the negative control group revealed normal electrocardiogram. The ECG pattern of the untreated MI group (ISO) showing
pathological changes including a ST-segment elevation and decrease in the R wave amplitude. The ECG pattern of the positive reference
group of rats (ISO+Sin) showing a discrete ST-elevation (Pardee wave). The ECG pattern of the ISO+7-hyd.HC group of rats revealed an
almost normal sinusal rhythm of the heart.

Table 4: Energy intakes and heart weight index (HWI) in control and experimental rats.

Control ISO ISO+ sin ISO+ 7-hyd.HC

Daily energy intakes (kJ/day/rat) 344:6 ± 1:38 341:9 ± 1:6 343:4 ± 2:3 342:2 ± 0:81
Body weight (g) 310:3 ± 1:9 313:3 ± 2:13 312:7 ± 3:28 314:2 ± 1:92
Heart weight (g) 1:37 ± 0:01 1:65 ± 0:02∗ 1:52 ± 0:06¥ 1:41 ± 0:01¥

Heart weight index (HWI) 0:44 ± 0:01 0:52 ± 0:01∗ 0:48 ± 0:01¥ 0:44 ± 0:02¥

Values are expressed asmean ± SD of eight rats in each group. ∗p < 0:05 significant differences compared to controls; ¥p < 0:05 significant differences compared
to the ISO group of rats.
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induced significant elevation of the total cholesterol (TC), tri-
glycerides (TG) and LDL-cholesterol (LDL-C) levels by 76%,
51% and 81%, respectively, and significant diminution of
HDL-cholesterol (HDL-C) level by 32%, compared with the
normal group. Rats precotreated with 7-hyd.HC showed
marked decrease of TC, TG and LDL-C by 19%, 21% and
30%, respectively, with an increase of HDL-C by 38% as com-
pared to isoproterenol-induced infarcted rats. Similar, the

administration of sintrom significantly restored the levels of
these plasmatic lipid profiles as compared to the isoprotere-
nol group.

3.7. Effect of 7-hyd.HC on Oxidative Stress Markers in ISO-
Induced MI in Rats. The levels of oxidative stress indicator
(TBARS) and the activities of SOD, CAT, GSH-Px, and
GSH in the heart of the different experimental groups are

Table 5: Impact of 7-hyd.HC precotreatment on the creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase
(AST), alanine aminotransferase (ALT), and troponin-T (Tn-T) levels in the plasma of control and experimental groups of rats.

Parameters Control ISO ISO+Sin ISO+7-hyd.HC

CK-MB (U/L) 182:7 ± 2:76 235:0 ± 2:51 229:1 ± 1:53∗ 205:7 ± 2:67¥

LDH (U/L) 160:9 ± 1:18 212:0 ± 1:31 195:4 ± 0:80∗ 188:5 ± 2:14¥

AST (U/L) 137:0 ± 1:17 196:9 ± 1:39 188:5 ± 1:30∗ 184:3 ± 1:4¥

ALT (U/L) 83:05 ± 1:50 104:4 ± 1:64 86:78 ± 1:62∗ 91:52 ± 1:42¥

Tn-T (ng/mL) 0:15 ± 0:1 1:6 ± 0:21 1:22 ± 0:22∗ 0:96 ± 0:23¥

Values are expressed asmean ± SD of eight rats in each group. ∗p < 0:05 significant differences compared to controls; ¥p < 0:05 significant differences compared
to the ISO group of rats.
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Figure 6: Impact of 7-hyd.HC precotreatment on the fibrinogen level in the plasma of control and experimental groups of rats. Values are
expressed as mean ± SD of eight rats in each group. ∗p < 0:05 significant differences compared to controls; ¥p < 0:05 significant differences
compared to the ISO group of rats.
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Figure 7: Impact of 7-hyd.HC precotreatment on lipid markers (total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol
(LDL-C), and high-density lipoprotein cholesterol (HDL-C) in the plasma of control and experimental groups of rats. Values are expressed as
mean ± SD of eight rats in each group. ∗p < 0:05 significant differences compared to controls; ¥p < 0:05 significant differences compared to the
ISO group of rats.
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shown in Table 6. The ISO-treated group revealed significant
increase in myocardial oxidative stress markers (TBARS) by
138% compared to the negative control group (p < 0:05). Pre-
cotreatment either with 7-hyd.HC or sintrom in isoproterenol
infarcted rats significantly decreased the TBARS content by
40% and 30%, respectively, compared to the ISO-treated
group. Concerning endogenous antioxidants, ISO-treated rats
significantly reducedmyocardial GSH contents by 34%, as well
as SOD, GSH-Px, and catalase activities by 41%, 58%, and
49%, respectively, compared to the negative control group.
On the contrary, precotreatment either with 7-hyd.HC or sin-
trom normalized myocardial GSH levels, and SOD, GSH-Px
and catalase activities, compared to untreated MI rats.

3.8. Assessment of 7-hyd.HC Effect on Caspase-3, Bcl-2, and
Bax Expressions. The impact of 7-hyd.HC on the expression
of Bax, Bcl-2, and Caspase-3 in the myocardial tissues of
normal and experimental rats by RT-PCR are shown in
Figure 8(a). Densitometric analysis of these pro-apoptotic
and antiapoptotic markers is shown in Figure 8(b). It
was observed that the myocardial expression of Caspase-
3 and Bax was significantly enhanced and the expression
of Bcl-2 decreased in the isoproterenol-induced myocardial
infarcted rats (ISO), when compared to the myocardium

of control rats. Oral precotreatment of isoproterenol-
induced rats with 7-hyd.HC (ISO+7-hyd.HC) or sintrom
(ISO+Sin) downregulated the expression of Caspase-3
and Bax genes and upregulated the expression of Bcl-2
gene as compared to untreated MI rats.

3.9. Determination of Myocardial Infarction Size. The analy-
ses of myocardial infarction size in control and experimental
rats by TTC method are shown in Figure 9(a). The myocar-
dial tissue of control rats appeared normal and red. However,
in the isoproterenol-induced myocardial infarcted rats (ISO),
a large white region (necrotic patches) was revealed, as
compared to the control group. Precotreatment either with
7-hyd.HC or sintrom revealed only less necrotic patches,
compared with untreated MI rats. Figure 9(b) shows the
enhanced infarction area in isoproterenol infarcted rats,
which was significant (p < 0:001) compared with the control
group. Rats precotreated with 7-hyd.HC or sintrom showed a
marked decrease (p < 0:01) in the infarction area as com-
pared to isoproterenol-induced infarcted rats.

3.10. Effect of 7-hyd.HC Precotreatment on Histological
Changes in ISO-Induced MI in Rats. The myocardial
tissues of the all treated rats were histopathologically
examined using hematoxylin-eosin staining (Figure 10).

Table 6: Impact of 7-hyd.HC precotreatment on lipid peroxidation products and endogenous antioxidants in the heart tissues of the control
and experimental groups of rats.

Parameters Control ISO ISO+Sin ISO+7-hyd.HC

TBARS (nmoles MDA/g tissue) 6:87 ± 0:56 16:34 ± 0:63 9:81 ± 0:44∗ 11:49 ± 0:51¥

GSH (μmoles/g tissue) 8:87 ± 0:46 5:78 ± 0:43 6:97 ± 0:24∗ 7:43 ± 0:27¥

CAT (μmol of H2O2 destroyed/min per mg protein) 4:12 ± 0:54 2:12 ± 0:23 3:01 ± 0:12∗ 3:74 ± 0:09¥

SOD (U/mg protein) 6:53 ± 0:45 3:85 ± 0:33 5:92 ± 0:1∗ 6:15 ± 0:18¥

GPx (nmol of NADPH oxidized/min per mg protein) 4:75 ± 0:17 1:99 ± 0:07 2:94 ± 0:1∗ 3:52 ± 0:09¥

Values are expressed asmean ± SD of eight rats in each group. ∗p < 0:05 significant differences compared to controls; ¥p < 0:05 significant differences compared
to the ISO group of rats.
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Figure 8: Myocardial expression of proapoptotic and antiapoptotic genes (Caspase-3, Bax, and Bcl2) by RT-PCR (a) and quantification of
these genes (b). Values are expressed as mean ± SD of eight rats in each group. ∗p < 0:05; ∗∗p < 0:01 significant differences compared to
controls; ¥p < 0:05 significant differences compared to the ISO group of rats.
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Analysis of heart sections from control treated rats showed
normal myocardium architecture and regular cell distribu-
tion. While, as compared to the normal group, the histological
examination of the heart from ISO-intoxicated rats showed a
significant loss of myofibrils, extensive inflammation, areas
of edema, degenerated vacuolated myocytes, and leucocyte
infiltration, on the contrary, precotreatment either with 7-
hyd.HC or sintrom revealed only few occasional inflammatory
cells and focal vacuolization in the myocytes, which demon-
strated the protective efficiency of 7-hyd.HC or sintrom
against the cardiotoxic effect of ISO.

4. Discussion

Oxidative stress has been considered a conjoint pathological
mechanism, and it contributes to initiation and progression
of various cardiovascular dysfunctions, such as myocardial
infarction (MI) [30, 31]. Moreover, many researchers have
suggested that oxidative stress induces amplification of the
inflammatory response and apoptosis leading to the initia-
tion of ischemic lesion [32, 33]. Thus, the use of antioxidant
drugs as a scavenger of free radicals may reduce the extent of
myocardial damage [34]. Recently, several coumarins based
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Figure 9: Photomicrographs of myocardial tissue in control and experimental treated rats in TTC staining (a) and scored (b) by the
semiquantitative percentage of the myocardial infarct size. Values are expressed as mean ± SD of eight rats in each group. ∗∗p < 0:01
significant differences compared to controls; ¥p < 0:05 significant differences compared to the ISO group of rats.
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Control ISO
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Figure 10: Impact of 7-hyd.HC precotreatment on histology of myocardial tissue (H&E X 400). The control group revealed normal
myocardial structure with clear transverse striations. The ISO-treated group showing myocardial cell necrosis with separation of cardiac
myofibrillar and excessive leukocyte infiltration. The ISO+Sin-treated group showing moderate injury with few inflammatory cell
infiltration. ISO+7-hyd.HC showing normal myocardial arrangement and limited focal neutrophil infiltration in a small area.
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natural and synthetic derivatives have been used as anti-
inflammatory, anticoagulant, antithrombotic, antioxidant,
and antihyperlipidemic [14, 35, 36]. Hence, our study investi-
gated the effects of precotreatment with (E)-N′-(1-(7-
hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydra-
zide, a potent synthesized hydrazone coumarin, on the
changes in oxidative parameters and cardiac biomarkers
levels, myocardial proapoptotic and antiapoptotic factors,
and the modification on histopathological parameters and
heart function, during ISO-induced MI in rats.

Results clearly showed that the body weight of the rats
was not affected by the isoproterenol treatment. The obtained
data were in line with the findings reported by Mnafgui et al.
[37] who suggested that isoproterenol did not induce changes
in the body weight of rats in the acute MI study. Data showed
that the increase in the relative weight of the heart of the
isoproterenol-induced myocardial infarction group was sig-
nificantly improved by 7-hyd.HC precotreatment. The
observed cardiac hypertrophy could be due to an invasion
of inflammatory cells associated with fibrose [5, 20], which
was confirmed by biochemical and histological evaluations.

Furthermore, the ECG pattern in ISO-treated groups
revealed ischemic and conduction abnormalities as evi-
denced by significant ST elevation together with unidentifi-
able P wave. The observed conduction abnormalities might
be associated with necrosis of cardiac muscle fibers [4, 38].
Additionally, the remarkable elevation in the heart rate is
supposed to cause the increase of oxygen consumption which
then leads to accelerated myocardial necrosis [39]. Results
showed also that the precotreatment with 7-hyd.HC restored
normal ECG recordings. It seemed that the 7-hyd.HC
neutralized the effect of isoproterenol on the myocardium
tissue and coronary vessels, as has been suggested previously
by Ghazouani et al. [21] who reported the beneficial effect of
a synthesized coumarin towards the cell membrane in
infarcted rats.

The toxic effect of isoproterenol together with the benefi-
cial effect of the 7-hyd.HC was confirmed by a biochemical
and a histological examinations in the present work. The
current findings revealed that isoproterenol treatment
induced deterioration in the cardiac function, revealed by
an increased in the plasma levels of troponin-T, LDH,
ALT, AST, and CK-MB activities, indicating a severe dam-
age of the myocardium cell and leakiness of the plasma
membrane. These findings were in accordance with previ-
ous studies [40, 41]. It was interesting that 7-hyd.HC pre-
cotreatment revealed a significant decrease in the amounts
of all these cardiac markers, which was also observed in
the Sin-treated group. The current findings indicated a
cardiopreventive role of the 7-hyd.HC by the maintenance
of the myocardium membrane integrity and therefore
restricting the leakage of these enzymes into the blood-
stream [21].

Oxidative stress is recognized as the major inducer in the
progression of MI [42]. In the present work, ISO-treated
groups showed a significant increase in the oxidative stress
markers (TBARS) with subsequent depletion of endogenous
antioxidants (GSH, SOD, CAT, and GPx), which is known

as a experimental and clinical marker of tissue damage
[43, 44]. The appearance of cardiac oxidative stress might
be due to free radical production which mediate myocardial
membrane dysfunction following isoproterenol intoxication
[28]. However, precotreatment with 7-hyd.HC lessened the
oxidative stress produced by ISO, which reduced lipid
peroxidation, and increased the activities of the studied
antioxidant enzymes (SOD, CAT, and GPx), as well as
GSH contents. Therefore, the inhibition of lipid peroxida-
tion with activation of antioxidant activities is considered
a protection from MI [2]. The beneficial role of 7-hyd.HC
seemed to be due to the scavenging of reactive oxygen spe-
cies generated by the metabolism of isoproterenol, which
could protect the cardiac tissue from oxidative stress-
induced injury. In fact, 7-hyd.HC exerts their strong anti-
oxidant capacity owing to their design and construction,
thereby known for its radical scavenging activities [20, 21].

Literature suggested that cardiomyocyte apoptosis
induced by oxidative stress plays a significant role in the car-
diac tissue damage and progression of myocardial infarction
[6]. The protein like Bcl-2 is a key regulatory component
which protect cells from apoptosis, while Bax and caspase-
3, as proapoptotic genes, promotes cell death [29]. Indeed,
oxidative stress activates pathways of apoptosis through
upregulating Bax protein and caspase enzyme and downreg-
ulating the antiapoptotic Bcl-2 [28]. This hypothesis was
strengthened by the present study showing that ISO treat-
ment significantly increased the expression of Bax and
caspase-3 genes and reduced the expression of Bcl-2 protein
compared to the control group, a phenomenon which could
increase apoptosis and result in functional abnormalities of
the myocardium.

The inhibition of caspase and Bax activation is one of the
major approaches to attenuate myocardial apoptosis [45].
7-hyd.HC precotreatment inhibited oxidative stress, by its
antioxidant effect, and increased the expression of Bcl-2
genes in the myocardium and decreased the expression
of Bax and caspase-3 genes in ISO-induced myocardial
infarcted rats, thereby protected the myocardial cells from
apoptosis.

In addition, the accumulation of free radicals in the heart
after an MI can cause cardiac tissue damage to multiple
degrees and lead to cell death [46]. Accordingly, histopatho-
logical examination of theMI group evidenced focal ischemic
lesions in the myocardium and interstitial edema and cellular
necrosis which were in accordance with previous data [39].
The 7-hyd.HC by its proven antioxidant capacity may have
ameliorative effects on the abolition of myocardium cell
necrosis, which could be attributed to their antioxidant
potential [19]. Indeed, the structure of this new synthesized
hydrazone coumarin containing different privileged sub-
structures within the same molecule (coumarin) and func-
tion (hydrazone) represents an important strategy to fight
against oxidative stress [20].

In the present study, a significant perturbation of the
lipid profile was observed in rats receiving supramaximal
doses of isoproterenol, as observed by a remarkable rise in
plasma TC, TG, and LDL-C and considerable decrease in
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HDL-C. These changes in lipid parameters are considered as
a risk of developing ischemic heart disease [47]. However, a
strong inhibition of the alteration of lipid profile by 7-
hyd.HC was observed in the plasma of ISO+7-hyd.HC-
treated rats. Therefore, the hypolipidemic capacity of 7-
hyd.HC may be due to the inhibitory effects on pancreatic
lipase, the most important enzyme in digestion of fat [37,
48]. In fact, the action of 7-hyd.HC in lowering lipid could
be a strategy to prevent and treat MI [10]. Plasma fibrinogen
is a major determinant of platelet aggregation and blood vis-
cosity. The increase in plasma fibrinogen concentrations is
associated with an increase in the risk of cardiovascular dis-
eases and myocardial infarction [49, 50]. The current data
were in agreement with those of previous findings [13]. The
isoproterenol-treated group exhibited a remarkable elevated
amount of plasma fibrinogen as compared to the negative
control group, which explained the necrosis and ischemic
development observed in the myocardium tissue of the
infarcted rats [51]. Precotreatement with 7-hyd.HC effec-
tively restored the normal level of fibrinogen in plasma of
infarcted rats. A similar effect has been observed by
Ghazouani et al. [21]. The antithrombotic effect of 7-
hyd.HC may be attributed to its coumarin nature by acting
as a vitamin K antagonist (VKA) [20]. In fact, the mechanism
underlying the potential antiembolic effect exerted by 7-
hyd.HC is a result of the inhibition of the vitamin K-
dependent gamma-carboxylation of diver coagulation factors
(II, VII, IX, and X), resulting in the formation of biologically
inactive forms of these coagulation proteins, as has been
reported previously [52, 53, 54].

5. Conclusion

The present study was conducted in order to find a new cou-
marin derivative against the cardiovascular trouble. Results
showed that the tested drug 7-hyd.HC exerted a significant
cardiopreventive effect against isoproterenol-induced MI, as
demonstrated by ECG, biochemical, molecular, and histolog-
ical examinations. It was clear that 7-hyd.HC reduced the
lipid peroxidation effects and ameliorated the myocardial
endogenous antioxidant activities. This antioxidative
capacity of 7-hyd.HC led to the improvement of the cardiac
biomarkers and the decrease of the level of fibrinogen which
induced a reduction in the inflammatory pathways. In
addition, 7-hyd.HC prevented cardiomyocyte apoptosis by
modulating Bcl-2, Bax, and caspase-3 gene expressions. Fur-
thermore, 7-hyd.HC exerted better antioxidative effects on
MI compared to conventional sintrom, which can lead to
improved myocardial function and attenuated the ischemic
lesions of myocardium tissue. These results highlighted new
insights into the development of a novel therapeutic target
for cardiovascular diseases.
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