
Research Article
Metabolomic Analysis Reveals That the Mechanism of
Astaxanthin Improves the Osteogenic Differentiation Potential in
Bone Marrow Mesenchymal Stem Cells

Guangfeng Zhao ,1 Huiming Zhong ,1 Taiwen Rao,1 and Zhijun Pan 2

1Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University,
Hangzhou 310009, China
2Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University,
88 Jiefang Road, Hangzhou 310009, China

Correspondence should be addressed to Zhijun Pan; zrpzj@zju.edu.cn

Received 14 November 2019; Revised 9 January 2020; Accepted 25 February 2020; Published 25 March 2020

Academic Editor: Giuseppe Cirillo

Copyright © 2020 Guangfeng Zhao et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

At present, little research has been done on the metabolic phenotype of the differentiation of mesenchymal stem cells (MSCs) into
osteoblasts. In this study, the effect of astaxanthin on improving osteogenic differentiation potential of mesenchymal stem cells was
studied by metabolomics. Results showed that L-methionine, L-tyrosine, and 2-hydroxycinnamic acid were upregulated in MSCs
treated with astaxanthin, while L-lysine, L-pipecolic acid, L-histidine, L-arginine, D-fructose, and L-aspartic acid were
downregulated in samples treated with astaxanthin. In addition, astaxanthin exhibited a significant dose-dependent relationship
with these markers. Metabolic pathway enrichment analysis revealed that AST mainly regulated phenylalanine metabolism;
phenylalanine, tyrosine, and tryptophan biosynthesis; and pantothenate and CoA biosynthesis during the process of osteogenic
differentiation of MSCs. Furthermore, the staining results showed that astaxanthin could actively promote the osteogenic
differentiation of mesenchymal stem cells. These findings clearly indicate that astaxanthin plays an important role in inducing
osteogenic differentiation of mesenchymal stem cells. In addition, the changed metabolites can be used to monitor the
differentiation process.

1. Introduction

Mesenchymal stem cells (MSCs) are multifunctional cells
widely used in muscle and skeletal tissue regeneration and
currently account for the largest share of the global tissue
engineering market [1, 2]. MSCs derived from fetal tissues
have become an attractive alternative to adult mesenchymal
stem cells. Because of their high proliferation potential, they
have become a promising source of cells for personalized
bone transplantation [3, 4]. Mesenchymal stem cells undergo
unique metabolic changes during their differentiation into
osteoblasts. At present, there is little information about the
metabolic phenotype of the process of osteogenesis. Astax-
anthin (AST), a lipid-soluble red-orange carotenoid pigment
discovered in 1938, was originally used as the sole pigmenta-

tion in aquaculture. Then, AST was used as a food supple-
ment due to its antioxidant physiological properties as the
precursor of vitamin A [5]. At present, AST research is
increasing due to its promotion of human health [6]. AST
exhibits several of the common physiological and metabolic
activities assigned to carotenoids [7, 8]. AST can be employed
in the treatment of OA [9]. AST reduces the expression of
MMP-1, MMP-3, andMMP-13 in osteoarthritis, rheumatoid
arthritis, and osteoporosis and the phosphorylation of chon-
drocytes induced by MAPK p38, ERK1/2, and IL-1beta [10].
AST can also enhance the proliferation and differentiation of
osteoblasts in neural stem cells [11].

Metabolomics provides a global analysis of cell metabo-
lism and has been proven to be a useful tool for monitoring
cell culture [12]. Metabolomics can be used for the study of
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the physiology of stem cell metabolism to clarify the met-
abolic network state [13], by use of multivariate analysis to
explain the correlation between pathways, which is
neglected by traditional enzyme activity tests that focus
on a limited number of enzymes and the analysis of spe-
cific metabolites, and it also has been used to identify
small molecules secreted by ESCs when exposed to sodium
valproate [14] and steroid hormones [15] and to monitor
cartilage formation in MSCs [16]. Recent studies on the
metabolism of MSCs, mainly based on extracellular metab-
olites, have shown that differentiated MSCs exhibit a spe-
cific metabolic phenotype. However, a specific marker of
osteogenic differentiation of mesenchymal stem cells was
not identified.

In our study, LCMS was used to detect the metabolite
changes of mesenchymal stem cells (MSCs) during the differ-
entiation of osteoblasts induced by AST. The results showed
that mesenchymal stem cells exhibited a specific metabolite
change related to the differentiation. This study shows that
astaxanthin has the ability to induce osteogenic differentia-
tion of mesenchymal stem cells. It is feasible to monitor the
differentiation of mesenchymal stem cells by using cell-
specific metabolic markers identified by LCMS.

2. Materials and Methods

2.1. Experimental Procedures. DMEM medium, fetal bovine
serum, penicillin, and streptomycin were purchased from
Gibco (Gibco, Life Technologies, UK). Trypsin, beta-glycero-
phosphate, 3-isobutyl-1-methylxanthine (IBMX), dexameth-
asone sodium phosphate, L-ascorbic acid, and insulin were
purchased from Sigma-Aldrich Chemicals (St. Louis, MO,
USA). CD34, CD44, CD45, and CD90 antibodies were
obtained from BD Biosciences. Astaxanthin was purchased
from Sigma-Aldrich Chemicals (St. Louis, MO, USA) and
was made a stock solution with dimethyl sulfoxide (DMSO)
and then was diluted to 1μg/ml and 10μg/ml.

2.2. Isolation and Culture of BMSCs. Rats were anesthetized
with 2% pentobarbital, and 75% ethanol solution was used
for a 5min whole body disinfection. The femur and tibia
were removed under aseptic conditions and cleaned 3 times
with PBS. The epiphyses of the femur and tibia were removed
to expose the bone marrow cavity. The bone marrow was
washed out with DMEM medium supplemented with peni-

cillin and streptomycin, resuspended repeatedly into a single
cell suspension, and then centrifuged at 1000 rpm for 5min.
The supernatant was discarded, and the cells were inoculated
into a 25 cm [3] culture flask at a concentration of 1 × 109/l.

2.3. Cultivation, Purification, and Passage of BMSCs. After
48 h, the medium was completely replaced and thereafter
replaced with fresh medium every 3 days. The cells were
digested with 0.25% trypsin and subcultured in a ratio of
1 : 2 when the cells covered the bottom of the flask and fused
into a single layer with a density of 70%~80%. Cells were fur-
ther cultured with the same culture medium at 37°C in an
environment of 21% O2 and 5% CO2. The culture medium
was changed twice a week, and the cells were passaged before
reaching 80% confluence. Cells between passages 4 and 6
were used for subsequent experiments. For osteogenic differ-
entiation, the culture medium was supplemented with
1μg/ml and 10μg/ml AST (Sigma-Aldrich, UK).

Bone marrow mesenchymal cells (BMSCs), from SD rats,
that were growing well were cultured for 2 generations and
inoculated into a 96-well culture plate. When the density of
the BMSCs was 5 ∗ 103/well, the culture plate was placed in
a CO2 incubator. Aliquots were taken daily for the CCK-8
assay. The wavelength of 450 nm was selected, and the optical
absorption value of each well was measured by ELISA. The
cell growth curve was drawn on the longitudinal axis with
the time as the transverse axis and the light absorption value
as the longitudinal axis. The cell concentration was adjusted
to 1 ∗ 109/l. The cell cycle was detected by flow cytometry
after a 30min incubation with 100μl RNAase and 400μl PI
stain in a water bath at 37°C.

2.4. Identification of BMSCs. The cells were digested by 0.25%
trypsin and centrifuged at 4°C at 1000 rpm for 5min. The
cells were washed 3 times with PBS (containing 1% BSA)
and then counted. Monoclonal antibodies CD34, CD44,
CD45, and CD90 were then added to the tubes. The cells
were incubated on dry ice for 45min and washed with PBS
(containing 1% BSA) three times to remove the unbounded
antibody. The cells were suspended with 500μl of PBS (con-
taining 1% BSA) and analyzed by flow cytometry.

2.5. Differentiation of BMSCs In Vitro.When the cell density
reached 80%, the following inducers were added to the
complete culture medium of each induction well: (1)

Figure 1: Morphological observation of BMSCs.
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adipocyte inducers (1mmol/l dexamethasone, 10mg/l
insulin, 50mmol/l IBMX, and 0.2mmol/l indomethacin)
and (2) osteoblast inducers (1mmol/l dexamethasone,
1mmol/l beta-glycerophosphate, and 50mmol/l ascorbic
acid). The inducting medium in each induction well was
changed 2 times a week, and the cell culture wells without
inducing medium were used as controls. After 21 days of
induction, the effect of AST on BMSC culture mineraliza-
tion was evaluated using Alizarin Red Staining (ARS). And
cells were stained for 15min with 0.01% ARS (3,4-dihy-
droxy-9,10-dioxo-2-nthracenesulfonic acid sodium salt,
from Sigma-Aldrich, St. Louis, MO) dissolved in 70% eth-
anol. Acetic acid (10%) (Sigma-Aldrich, UK) was added to
the ARS-stained culture, and the suspension was vortexed
and heated to 85°C for 10min. Subsequently, the pH was
adjusted between 4.1 and 4.5 with 10% ammonium
hydroxide (Sigma-Aldrich, UK), and the absorbance values
were read at 405 nm with an ELISA reader (ELx808, Bio-
Tek, UK). Cell nuclei were evident due to hematoxylin
counterstaining. Images were captured using a digital color
camera (Nikon D1) mounted on the microscope. The end
results were quantified as described in this paper [17].

For the sample selected for LCMS analysis, the growth
medium was removed, cells were washed with sterile 1x
PBS and quenched with 1ml ice-cold methanol, and the mix-
ture was transferred to 5ml tubes. And the mixture was
quickly vortexed and then centrifuged at 12,000 rpm for
10min at 4°C. The supernatants were transferred to the injec-
tion vial for LCMS analysis.

2.6. Metabolomic Analysis. LCMS was performed using a
binary high-performance liquid chromatography system
(Agilent 1290 series) connected to an electrospray ionization
time-of-flight mass spectrometer (Agilent 6545). Chromato-
graphic separation was carried out on a Waters ACQUITY
UPLC BEH C18 analytical column (2:1 × 100mm, 1.7μm,
pore size 130Å; Waters Co.). Solvent A consisted of water
with 0.1% (v/v) formic acid, and solvent B consisted of
ACN with 0.1% (v/v) formic acid. The gradient was as fol-
lows: 0-2min, 2% B; 2-15min, 2-95% B; and 15-20min,
95% B. The flow rate was 350μl/min.

2.7. Data Processing and Statistical Analyses. Raw data were
converted to a common (mz. data) format by Agilent
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Figure 2: Expression of markers in BMSCs of the third generation. (a) For the expression of CD34, the positive rate was 0.92%; (b) for the
expression of CD44, the positive rate was 96.11%; (c) for the expression of CD45, the positive rate was 0.95%; and (d) for the expression of
CD90, the positive rate was 95.14%.
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MassHunter Qualitative Analysis B.08.00 software (Agilent
Technologies, USA). The XCMS package in R software
was used for peak extraction and peak matching. Then,
the data were normalized with an internal standard. A table
containing the sample name, m/z-RT pair, and peak area
was obtained, and then, the data was analyzed with principal
component analysis (PCA) and partial least squares discrimi-
nant analysis (PLS-DA) by SIMCA-P 13.0 software (Umetrics,
Umea, Sweden). The metabolites were identified based on
retention time and accurate mass matching to a standard
library or accurate mass matching to the human metabolome
database (HMDB). The mass accuracy tolerance window was

set at 30ppm for the database search. Metabolite set enrich-
ment analysis and pathway analysis were based on MetaboA-
nalyst (http://www.metaboanalyst.ca) using the Homo sapiens
pathway library.

3. Results

3.1. Morphological Observation of BMSC Primary Cultures.
After inoculating bone marrow cells into culture flasks,
the cells suspended in the culture medium were round
and varied in size. After 24h, some cells began to adhere
to the wall, exhibiting fusiform or polygonal shapes, as
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Figure 3: Cell cycle and growth curve of BMSCs. (a) Growth curve of BMSCs: the growth curve of cells on the 3rd to 6th day is basically linear,
which indicates that this period is the logarithmic growth period of cells. After 7 days, the curve became smooth and cell proliferation slowed
down. (b) Cell cycle: the results of cell cycle analysis by flow cytometry showed that 60.73% of BMSCs were in the G0/G1 phase, 17.49% in the
G2/M phase, and 21.78% in the S-phase, indicating that BMSCs had strong ability to divide and proliferate.
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shown in Figure 1. The results of flow cytometry showed
that CD44 was uniformly expressed in 3rd-generation
BMSCs (96.11%), and the rate of CD90 positivity was

95.14%; however, CD34 and CD45 were negative, with
positivity rates of 0.92% and 0.95%, respectively, as shown
in Figure 2. Differences in the osteogenic efficacy of AST

Control AST 1 𝜇g/ml AST 10 𝜇g/ml

Figure 4: Alizarin Red S over 21 days of differentiation. Con: control group, medium+vehicle; AST: astaxanthin group. The mineralization of
the AST groups was higher than that of the control group. The area of red staining in the 10 μg/ml dose group and the 1mg/ml dose group was
larger than that of the control group, and the area of the 10μg/ml dose group was larger than that of the 1mg/ml dose group.
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Figure 5: Principal component analyses of AST1, AST10, and control group cells. ▲ represents QC samples, ★ represents control samples,
● represents AST-1 μg/ml samples, and ■ represents AST-10 μg/ml samples.
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Figure 6: Continued.

6 Oxidative Medicine and Cellular Longevity



0.4

e

e1

0.2

0

–0.2

–0.4

–0.6

t[
2]

–2 –1.5 –1 –0.5 0 0.5 1 1.5

Control
AST10

] = 0.554 R2×[2] = 0.09
t[1]

Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 10:38:32 [UTC+8]

1.5
1

0.5
0

–0.5
–1

–1.5
–2

t[
2]

Control
AST1

–1.5–2 –1 –0.5 0 0.5 1 1.5

] = 0.364 R2×[2] = 0.309

t[1]

Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 11:19:24 [UTC+8]

(e)

0.6

f1

f

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
1.

28
46

4
⁎  to

 [1
]

–2 –1.5 –1 –0.5 0 0.5 1 1.5

Control
AST10

] = 0.532 R2×[Xside Comb.1] = 0.112
1.00085 ⁎ t[1]

Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 10:40:38 [UTC+8]

0.6
0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

1.
28

46
4
⁎  to

 [1
]

–2 –1.5 –1 –0.5 0 0.5 1 1.5

Control
AST10

] = 0.532 R2×[Xside Comb.1] = 0.112
 1.00085 ⁎ t[1]

Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 10:40:38 [UTC+8]

(f)

0.8

g

g1

0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1

t[
2]

–1.5 –1 –0.5 0 0.5 1

AST10
AST1

] = 0.365 R2×[2] = 0.229
t[1]

Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 10:42:04 [UTC+8]

1

0.5

0

–0.5

–1

–1.5

t[
2]

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2
t[1]

Control
AST10

] = 0.51 R2X[2] = 0.172 Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 11:23:31 [UTC+8]

(g)

0.6

h

h1

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
–1.5 –1 –0.5 0 0.5 1

t[1]

t[
2]

AST10
AST1

] = 0.362 R2×[2] = 0.144 Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 10:42:52 [UTC+8]

2
1.5

1
0.5

0
–0.5

–1
–1.5

–2
–2.5

t[
2]

–1.5 –1 –0.5 0 0.5 1
t[1]

AST10
AST1

] = 0.193 R2×[2] = 0.486 Ellipse: Hotelling’s T2 (95%)
SIMCA 13.0 – 2018/10/16 11:24:04 [UTC+8]

(h)

Figure 6: Continued.
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are associated with distinct metabolic transitions. Flow
cytometry analysis showed that 60.73% of BMSCs were in
the G0/G1 phase, 17.49% were in the G2/M phase, and
21.78% were in the S-phase, indicating that BMSCs had a
strong ability to divide and proliferate, as shown in Figure 3.

3.2. AST-Induced Osteogenesis of MSCs. The ability of AST to
induce osteogenic differentiation was evaluated by Alizarin
Red Stain. The result showed bright red staining in the AST
groups, and the mineralization of the AST groups was higher
than that of the control group, as shown in Figure 4.

3.3. Significant Metabolite Changes and Metabolic Pathway
Analysis. The effects of AST on the metabolism of mesenchy-
mal stem cells during osteogenesis were evaluated by metabolic
analysis, and themetabolic differences among different doses of
AST were compared. The results showed that the metabolism
of undifferentiated cells and differentiated cells was signifi-
cantly different, and different doses of AST-induced differenti-
ation also showed different metabolic profiles. As shown in the
score plots of the PCA analysis (Figure 5), the AST1 group,
AST10 group, and control group are separated from each other
and clustered in different areas. The PLS-DAmodels (Figure 6)

also showed separation between the two experimental groups
(AST1/C, AST10/C, and AST10/AST1). Volcano plot analyses,
which combined the fold change (FC) and p values from
the t-tests, were also used to identify the unique metabolites
that separated the two groups (control and AST groups).
Metabolites with a p < 0:05 and an FC of either >1.5 or
<0.67 (i.e., >±50% change) were considered significant
(red dots). Using these thresholds, only 25 correlated markers
(Table 1) were significantly changed in response to AST treat-
ment. L-Methionine, L-tyrosine, and 2-hydroxycinnamic acid
were upregulated in samples treated with astaxanthin, while
L-lysine, L-pipecolic acid, L-histidine, L-arginine, D-fruc-
tose, and L-aspartic acid were downregulated in samples
treated with astaxanthin. Metabolic pathway enrichment
analysis revealed that AST mainly regulated phenylalanine
metabolism; phenylalanine, tyrosine, and tryptophan bio-
synthesis; and pantothenate and CoA biosynthesis during
the process of osteogenic differentiation of MSCs (Table 2).

4. Discussion

It is recommended that metabolic profiles be used to monitor
the differentiation of stem cells and to establish quality
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Figure 6: PCA, PLS-DA, and OPLSDA of AST1, AST10, and control group cells. (a–c) Positive ion mode: AST1 vs. control; (a1–c1) negative
ion mode: AST1 vs. control; (d–f) positive ion mode: AST10 vs. control; (d1–f1) negative ion mode: AST10 vs. control; (g–i) positive ion
mode: AST10 vs. AST1; (g1–i1) negative ion mode: AST10 vs. AST1. ★ represents control samples, ● represents AST-1μg/ml samples,
and ■ represents AST-10 μg/ml samples.

8 Oxidative Medicine and Cellular Longevity



control standards for biotechnology processes and products.
The study of metabolomics has shown the success of osteo-
genic differentiation of bone marrowmesenchymal stem cells
stimulated by dexamethasone [18]. Surrati et al. monitored
the osteogenesis of mouse mesenchymal stem cells treated
with dexamethasone. It was found that the TCA cycle and
glycerol derivatives were increased in the medium [19]. How-
ever, these studies were limited by the detection of extracellu-
lar metabolites that provided only an approximation of
intracellular metabolism [20].

In the present study, MSC differentiation induced by AST
was characterized by cellular metabolomics. L-Methionine,
L-tyrosine, PC(P-17:0/0:0), and oleic acid were upregulated
in samples treated with astaxanthin, while L-lysine, L-
pipecolic acid, L-histidine, L-arginine, D-fructose, and
palmitic acid were downregulated in samples treated with
astaxanthin. In addition, there was a significant dose-
dependent relationship with these markers. The activation
of pathways is related to amino acid metabolism, fatty acid
biosynthesis, and lipid metabolism during the osteogenic

Table 1: Significant changes in metabolites of AST1 vs. control, AST10 vs. control, and AST10 vs. AST1.

m/z RT (min) FC (AST10/C) FC (AST1/C) FC (AST10/AST1) Name Formula

147.1163 0.69 0.27 0.53 0.51 L-Lysine C6H14N2O2

130.0839 0.72 0.22 0.61 0.36 L-Pipecolic acid C6H11NO2

156.0744 0.73 0.14 0.26 0.54 L-Histidine C6H9N3O2

175.1169 0.76 0.24 0.23 1.07 L-Arginine C6H14N4O2

179.0581 0.78 0.12 0.27 0.44 D-Fructose C6H12O6

132.0328 0.79 0.11 0.15 0.74 L-Aspartic acid C4H7NO4

282.2554 11.01 2.15 1.21 1.77 Oleic acid C5H7NO3

118.0892 0.95 0.36 0.56 0.65 L-Valine C5H11NO2

148.0455 1.08 75.49 3.39 22.27 L-Methionine C5H11NO2S

182.0824 1.17 82.51 1.87 44.18 L-Tyrosine C9H11NO3

165.0541 1.18 15.82 1.47 10.76 2-Hydroxycinnamic acid C9H8O3

130.0882 1.26 0.15 0.63 0.24 L-Leucine C6H13NO2

256.2399 10.82 0.11 0.59 0.18 Palmitic acid C9H7NO

557.3051 7.57 2.10 1.55 1.35 PC(P-17:0/0:0) C25H52NO6P

136.0766 1.85 0.12 0.46 0.26 2-Phenylacetamide C8H9NO

209.0926 2.17 0.28 0.49 0.59 Kynurenine C10H12N2O3

149.0601 2.19 0.19 0.52 0.36 trans-Cinnamic acid C9H8O2

166.0915 2.19 0.23 0.45 0.52 L-Phenylalanine C9H11NO2

218.1052 2.78 0.15 0.39 0.40 Pantothenic acid C9H17NO5

279.1355 3.51 0.10 0.35 0.28 Prolyl-tyrosine C14H18N2O4

146.0628 4.09 0.17 0.34 0.50 4-Formyl indole C9H7NO

205.1034 4.09 0.20 0.29 0.71 L-Tryptophan C11H12N2O2

118.0676 4.09 0.23 0.28 0.83 Indole C8H7N

493.3525 8.78 2.33 1.50 1.56 PC(21:4(6Z,9Z,12Z,15Z)/0:0) C29H52NO7P

Table 2: Pathway analysis of different significant changes in metabolites of AST1 vs. control, AST10 vs. control, and AST10 vs. AST1.

Pathway name Match status p -Log(p) Holm p FDR Impact

Aminoacyl-tRNA biosynthesis 10/75 1:2581E‐10 22.796 1:0065E‐8 1:0065E‐8 0.11268

Nitrogen metabolism 5/39 1:4452E‐5 11.145 0.0011417 5:7808E‐4 6:7E‐4
Phenylalanine metabolism 5/45 2:9653E‐5 10.426 0.0023129 7:9075E‐4 0.32518

Phenylalanine, tyrosine, and tryptophan biosynthesis 4/27 6:6065E‐5 9.6249 0.005087 0.0013213 0.008

Pantothenate and CoA biosynthesis 3/27 0.0014641 6.5265 0.11127 0.021742 0.18014

Beta-alanine metabolism 3/28 0.0016306 6.4188 0.1223 0.021742 0.0

Biotin metabolism 2/11 0.0038039 5.5717 0.28149 0.043473 0.20325

Valine, leucine, and isoleucine biosynthesis 2/27 0.02232 3.8023 1.0 0.2232 0.0265

Tryptophan metabolism 3/79 0.029564 3.5212 1.0 0.24582 0.16587

Lysine biosynthesis 2/32 0.030727 3.4826 1.0 0.24582 0.09993

Valine, leucine, and isoleucine degradation 2/40 0.046347 3.0716 1.0 0.33707 0.02232
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differentiation. These observations emphasize the fact that
metabolism changes significantly during (osteogenic) differ-
entiation. These amino acids are fundamental factors in
nutrition as building blocks for biomass components, such
as DNA, RNA, and proteins [21]. Our results indicated that
BMSCs consumed L-lysine, L-histidine, L-arginine, L-valine,
L-leucine, and L-phenylalanine. The observed metabolic pat-
tern is proposed to be representative of the basic nutritional
requirements for BMSCs in culture.

In addition, fatty acids have previously been reported to
affect cell survival. Saturated fatty acids have specifically been
reported to induce death in many cell types, including
BMSCs [22, 23]. In the present study, palmitic acid was
decreased in the AST-treated group, while the level of oleic
acid was higher in the AST-treated group. Fatty acids can
regulate flux through energy metabolic pathways and may
thereby regulate cell survival. A previous study showed that
oleic acid could prevent palmitic acid-induced BMSC death
[24]. These results indicate that the AST treatment may
increase the level of unsaturated fatty acids for the prolifera-
tion and differentiation of BMSCs. Interestingly, in our study,
phosphocholine was increased in the AST-induced group,
and the increased phosphocholine level during chondrogen-
esis was also found in the process of differentiation of hMSCs
into chondrocytes [25, 26]. The above results show that the
phospholipid level in osteoblasts is higher than that in non-
proliferation bone marrow mesenchymal stem cells, so it
may be a marker of cell differentiation and proliferation.
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