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Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis.
Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular
diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and
carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular
system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S
donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin).
Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous
delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct,
hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous
experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this
review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the
treatment of myocardial fibrosis.

1. Introduction

Although fibrosis is an essential process for the restoration
and maintenance of organ integrity after injury or stress via
the timely deposition of the extracellular matrix (ECM), the
aberrant accumulation of stiff and disorganized ECM pro-
gressively disrupts tissue function and can ultimately cause
organ failure [1–5]. Myocardial fibrosis is a hallmark feature
of heart failure and is associated with hypertension, myocar-
dial infarction (MI), and pathological hypertrophy followed
by injury and stress [1, 2]. Systemic responses induced by
the decline in systolic function, particularly neurohumoral
activation (angiotensin–aldosterone system and β-adrener-
gic nervous system), are associated with the progression of
heart failure (HF). Traditional therapies, such as β-blockers
and renin-angiotensin-aldosterone system (RAAS) inhibi-
tors, have been found to have beneficial effects in patients

with cardiac fibrosis in clinical trials [6, 7]. However, these
conventional drugs do not aim at directly curing myocardial
fibrosis but rather aim at alleviating the underlying cardiac
dysfunction mechanisms indirectly [6]. Therefore, great
effort is currently being devoted to research on the develop-
ment of therapeutic interventions for decreasing the high
morbidity and mortality associated with myocardial fibrosis,
particularly on the identification and modulation of its core
mechanisms [1–4].

Despite its previous characterization as a toxic gas with a
rotten egg smell, H2S is beginning to be associated with a
growing family of gasotransmitters, with properties similar
to nitric oxide (NO) and carbon monoxide (CO) [8–10]. As
a gasotransmitter, H2S is involved in both the physiology
and pathophysiology of the nervous, cardiovascular, and gas-
trointestinal systems via its antioxidant, anti-inflammatory
[11], antinociceptive, antihypertensive, neuromodulative,
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and cytoprotective effects [9, 12–14]. The modulation of
signals involved in myocardial fibrosis, and thereby the atten-
uation of pathological fibrosis, is an area of intense scientific
interest due to its evident therapeutic implications for the
treatment of HF [15]. Reduced levels of H2S have been
identified in patients with ischemia [16], diabetes [17, 18],
high-fat diet-induced cardiomyopathy [19], hypertension
[20], and heavy metal detoxifications, such as nickel
detoxification [21].

The role of an exogenously delivered H2S in antifibrosis
has been identified in a variety of experimental settings
(Table 1). In this review, myocardial fibrosis and the poten-
tial antifibrosis effects of H2S are outlined. H2S is not the sole
gasotransmitter in the body and can interact with other gaso-
transmitters including NO and CO. In addition to direct
chemical crosstalk, NO, CO, and H2S compete in heme- or
metal-containing proteins and at the posttranslational mod-
ification sites of proteins [9]. Thus, various types of crosstalk
between CO, H2S, and NO in the cardiovascular system exist
[9]. For example, nitrosopersulfide, polysulfides, and dinitro-
sosulfite can be formed by the interaction of NO and H2S.
These anionic intermediates modulate the bioavailability of
NO/HNO or H2S/sulfane sulfur and are thus responsible
for distinct physiological consequences [22]. Although bioac-
tive intermediates that form interactions with each other are
an emerging research field, the modulatory role of H2S inter-
mediates in myocardial fibrosis is beyond our current review.

2. Hydrogen Sulfide

2.1. Synthesis of H2S. H2S is the simplest thiol, which are sul-
fur analogs of alcohol (R-SH); is associated with the smell of
rotten eggs; and has a high redox potential [23]. As depicted
in Figure 1, H2S is endogenously synthesized from L-cysteine
or L-homocysteine via cystathionine β-synthase (CBS) and
cystathionine γ-lyase (CSE), which are pyridoxal 5′-phos-
phate-dependent cytosolic enzymes in the transsulfuration
pathway [24]. CSE is involved in the cardiovascular system,
especially in myocardial cells [25], vascular smooth muscle
cells [26, 27], and endothelial cells [28], whereas CBS is
predominantly found in the nervous system [29]. In the
mitochondria, cysteine aminotransferase (CAT) catalyzes
L-cysteine and glutamate to 3-mercaptopyruvate and α-keto-
glutarate. Then, 3-mercaptopyruvate is metabolized to
pyruvate and H2S via 3-mercaptopyruvate sulfurtransferase
(3-MST) [23]. Nonenzymatically, H2S can also be released
from preexisting intracellular sulfur stores (sulfane sulfur)
through the activities of reducing agents [24, 30]. For exam-
ple, the production of H2S from sulfur-containing amino
acids (e.g., cysteine) via iron and vitamin B6 under physiolog-
ical conditions has been found in red blood cells and tissues
[31]. However, the exact biological roles of this nonenzy-
matic production of H2S have not yet been established.

2.2. Exogenous H2S. H2S can be inhaled directly, and the reg-
ulated inhalation of H2S is an effective method for the control
of hemorrhages in preclinical studies [32]. Although the
inhalation of H2S gas produces few byproducts, controlling
its dosage and handling the specialized equipment needed

for its delivery is difficult. There are a number of compounds
that have been synthesized specifically to deliver therapeutic
H2S to tissues [9, 23, 33], including inorganic sulfide salts
(e.g., NaHS), synthetic organic compounds with a slow
H2S-releasing mode, conventional drug molecules coupled
with an H2S-donating group, cysteine analogs, nucleoside
phosphorothioates, and plant-derived polysulfides (Table 1).

2.3. Modulation of H2S Level. The bioavailability of H2S
inside the cell is primarily regulated by H2S-synthesizing
enzymes (CSE, CBS, or 3-MST) and H2S-oxidizing enzymes
located in the mitochondria (e.g., sulfide quinone reductase,
persulfide dioxygenase, and thiosulfate sulfurtransferase)
[9]. Cysteine and its derivatives can be used to boost H2S syn-
thesis [33]. MicroRNA (miRNA) controls gene expression at
the posttranscriptional level [34] and is one of the main fac-
tors involved in the upregulation of CSE expression [16].
Interestingly, currently used drugs, including angiotensin-
converting enzyme (ACE) inhibitors (e.g., ramipril) [35], sta-
tins [36], calcium channel antagonists (e.g., amlodipine) [37],
digoxin [38], vitamin D3 [39], aspirin [40], metformin [40],
and others [23], may increase the production of H2S. For
example, statins can increase H2S synthesis via Akt-
mediated upregulation of CSE [36] or suppress H2S degrada-
tion by decreasing the concentration of coenzyme Q, which is
a sulfide quinone reductase cofactor [41]. It is worth noting
that either exogenously supplied or endogenously produced
H2S can be stored in the body in the form of bound sulfane,
which is a reductant labile sulfur (e.g., persulfide (R-S-S-
SH), polysulfide (RSSnSR), and protein-associated sulfur,
among others) [42]. With regard to the dietary supplementa-
tion of H2S, garlic and garlic-derived organic polysulfides,
such as diallyl trisulfide (DATS) and diallyl disulfide
(DADS), behave as H2S donors with the aid of a biological
thiol (e.g., glutathione), maintained via pentose phosphate
pathway-mediated NADPH production [43].

2.4. Functional Roles of H2S in the Biological System. H2S
displays antioxidant effects through the direct quenching of
reactive oxygen species (ROS) via a hydrosulfide anion
(HS-), which is a powerful one-electron chemical reductant
that is dissociated from H2S in physiological fluid [12]. H2S
derivatives such as nitrosopersulfide, polysulfides, and dini-
trososulfite may also be involved in redox switching in bio-
logical systems by generating redox congeners like nitroxyl,
nitrous oxide, and sulfane sulfur [22]. NaHS may indirectly
suppress ROS production through the H2S-mediated activa-
tion of a copper/zinc superoxide [44, 45]. In addition, H2S
induces the suppression of oxidative stress through the acti-
vation of Nrf2 (transcription factor nuclear factor (ery-
throid-derived 2)-like 2) and NAD-dependent deacetylase
sirtuin (SIRT)-3, resulting in increased expression of other
antioxidant enzymes and proteins (e.g., GSH and thiore-
doxin-1) [46, 47]. The low concentration of H2S may cause
oxidative stress, resulting in the depletion of tetrahydrobiop-
terin, which determines the levels of endothelial nitric oxide
synthase (eNOS) activity [48]. As latent matrix metallopro-
teinases (MMPs) can be activated by oxidative stress [49],
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the antioxidant capacity of H2S may be involved, at least in
part, in the suppression of MMP activation.

H2S is able to modulate the functions of proteins contain-
ing prosthetic metal complexes in acceptor proteins due to its
high reactivity with metal ions [50, 51]. For example, polysul-
fides bind to inactive ferric indoleamine 2,3-dioxygenase
(IDO1), which strongly suppresses the immune response,
thereby reducing it to its oxygen-binding ferrous state, thus
activating IDO1 to maximal turnover [52]. As such, H2S is
able to elicit an anti-inflammatory response through the acti-
vation of IDO1. H2S can lead to protein S-sulfhydration (sul-
furation or persulfidation) by covalently converting the -SH
group of cysteine into an -SSH group in the protein [53],
thereby altering the activities of various enzymes, including
that of F1F0-ATPase [54], the ATP-sensitive potassium
(KATP) channel [55], and the phosphatase and tensin homo-
log (PTEN) [56]. In addition, protein sulfhydration changes
the localization and stability of proteins inside cells and
increases the resistance of proteins to oxidative stresses
[54, 55]. H2S can activate soluble guanylyl cyclase (sGC)
via direct heme binding [57] or by the inhibition of the
cGMP phosphodiesterase (PDE) activity [57], resulting in
the activation of cyclic GMP (cGMP)–protein kinase G
(PKG) pathways.

The bioavailability of H2S may play an important role in
the integrated stress response, that is, in coping with changes
to the cellular environment [58, 59]. H2S transiently
increases the phosphorylation of eukaryotic initiation factor
2 (eIF2α) via the inhibition of protein phosphatase-1
(PP1c) via H2S-driven persulfidation [59], thereby inducing
a transient adaptive reprogramming of global mRNA transla-
tion independent of upstream kinases [59]. As an epigenetic
modulator, H2S can modify the expression of Brahma-
related gene 1 (Brg1) at the promoter region, thus suppress-
ing the transcriptional activity of the ATP-dependent chro-
matin remodeling complex [60]. This suppressive activity of
H2S in the expression of Brg1 contributes to the inhibition
of vascular smooth muscle cell proliferation [60]. H2S may

be involved in the decrease of the lysine acetylation of
enzymes involved in fatty acid β-oxidation and glucose oxi-
dation in diabetic conditions, thereby exerting a beneficial
effect on cardiac energy substrate utilization by favoring a
switch from fatty acid oxidation to glucose oxidation [61].

Mitochondrial damage associated with cardiovascular
pathological stimuli, including oxidative stress, the over-
activation of the renin-angiotensin-aldosterone and adrener-
gic systems, and the dysfunction of growth hormones, plays a
central role in the loss of ischemic, and even nonischemic,
cardiomyocytes [62, 63]. The levels of mitochondrial DNA
(mtDNA) content are dramatically reduced in CSE gene-
knockout mice; however, this reduction can be reversed via
the exogenous delivery of H2S [64]. H2S can induce the
replication of mtDNA and mitochondrial biogenesis by sup-
pressing the methylation of mitochondrial transcription fac-
tor A (TFAM) [64]. In a different way, H2S may be involved
in the stimulation of cardiac mitochondrial biogenesis
through the activation of the 5′ AMP-activated protein
kinase (AMPK)-peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1α) pathway [65]. The sulf-
hydration of AMPK and protein phosphatase 2A (PP2A),
which leads to the activation of AMPK and the inhibition
of PP2A, respectively, has been suggested as a mechanism
that may be involved in the H2S-mediated stimulation of
mitochondrial biogenesis under nonstressed conditions [65].

3. Myocardial Fibrosis and Antifibrosis
Potential of H2S

3.1. Myocardial Fibrosis. The heart is a highly organized
structure composed of cardiomyocytes and noncardiomyo-
cytes such as fibroblasts (nonexcitable cells of mesenchymal
origin), endothelial cells, and vascular smooth muscle cells
[66, 67]. Maladaptive crosstalk between cardiomyocytes and
noncardiomyocytes responding to pathological stress may
result in myocardial fibrosis, adverse remodeling, and
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arrhythmogenesis. Myocardial fibrosis is a reparative process
involving the restoration of cardiomyocytes from cell death
or sustained stress and is involved in maintaining the integ-
rity of the heart, an action exerted mainly by the fibrillar,
collagen-rich extracellular matrix (ECM), in the short term
[68]. However, reactive fibrosis, such as interstitial and peri-
vascular fibrosis [69], contributes to the progressive architec-
tural remodeling of the heart as a result of the formation and
deposition of excess fibrous connective tissue [70]. RAAS,
transforming growth factor-β (TGF-β), and β-adrenergic
systems are common contributors to cardiac remodeling.
These systems are connected to each other in an auto-/para-
crine manner as a part of a larger signaling network [71].
During the progression of myocardial fibrosis, various dis-
tinct immunological and molecular mechanisms are inter-
connected via interactions between various cells, including
macrophages, myofibroblasts, and matrices [68, 70, 72, 73].
As depicted in Figure 2, the loss of cardiomyocytes driven
by various injurious agents and stresses has a detrimental
effect on the architecture and function of the heart due to
the negligible regenerative capacity of the heart, especially
with regard to cardiomyocytes [72, 74]. Inflammatory cells,
such as macrophages, appear in damaged regions of the heart
and are tasked with removing the necrotic cardiomyocyte
debris. TGF-β is the best-known fibrogenic growth factor
involved in cardiac fibrosis, even though a baseline level of
TGF-β signaling or an early-responsive increase in TGF-β
may protect the heart from acute injury [75]. It has been
demonstrated that angiotensin-II (Ang-II) is an important
mediator of cardiac fibrosis, working with the TGF-β in the
fibrotic response, due to the coexistence of TGF-β receptors
and Ang-II receptors in cardiomyocytes, inflammatory cells,
and cardiac fibroblasts. TGF-β1 triggers the appearance of
inflammatory cells and myofibroblasts at the site of injury
[75, 76] and stimulates the deposition of ECM, including

fibronectin, fibrillar collagen types I and III, and proteogly-
cans. During this initial stage, in addition to the production
of inflammatory cytokines, inflammatory cells secrete Ang-
I, which is converted to Ang-II via the action of ACE. Ang-
II plays a pivotal role in stimulating TGF-β production,
prompting the proliferation of circumambient fibroblasts
and their transdifferentiation into myofibroblasts. The pool
of fibroblasts can be enlarged by the transformation of either
circulating bone marrow cells or endothelial/epithelial cells
into fibroblasts [66, 77]. During the proliferative phase of car-
diac repair, fibroblasts undergo transdifferentiation into con-
tractile myofibroblasts, secreting large amounts of matrix
proteins, such as collagens [66]. Then, the scar tissue matures
with the formation of a collagen-based matrix [78], where the
removal of myofibroblasts is controlled by unknown endog-
enous stop signals in order to restrain the fibrotic response
[78]. However, a clear mechanistic view of phenotype and
heterogeneity of cardiac fibroblasts in the process of fibrosis
has yet to be fully established [77]. In terms of the underlying
molecular mechanisms involved in the progression of
fibrosis, several pathways, including the TGF-β, JNK/p38,
PI3K/AKT, WNT/β-catenin, and Ras-Raf- mitogen-
activated protein kinase- (MEK-) extracellular signal-
activated kinase (ERK) pathways, have been identified
[79]. Involved in canonical fibrotic signaling, TGF-β
induces the nuclear translocation of the complex known
as “mothers against decapentaplegic homolog,” or SMAD
complex promoting fibrosis. In noncanonical signaling,
TGF-β signaling induces SMAD-independent pathways,
including the PI3K/AKT and mitogen-activated protein
kinase (MAPK) pathways, nuclear factor kappa light chain
enhancer of activated B cell (NF-κβ), RHO/RAC1, and
CDC42 [75]. Interestingly, it has been suggested that, if
supplied in a timely manner, H2S can suppress TGF-β1-
induced transdifferentiation from fibroblasts to
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myofibroblasts via the inhibition of SMAD3 activation in
human fibroblast cells [80].

3.2. Antifibrosis Potential of H2S

3.2.1. Myocardial Infarction. Extensive necrosis of cardio-
myocytes in infarcted hearts not only triggers a strong
inflammatory response but also induces interstitial and
perivascular fibrosis due to geometrical, biomechanical, and
biochemical changes in the uninjured ventricular wall [69].
During cardiac injury and hypertrophic remodeling, the
production of inflammatory signaling molecules, such as
tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and
IL-6, can contribute to hypertrophic and fibrotic responses.
Interestingly, ischemia causes a significant reduction in the
levels of H2S associated with decreased expression of CSE,
which is an H2S-synthesizing enzyme under the control of
the miRNA-30 family [16]. Moreover, it has been sug-
gested that reduced plasma H2S levels are correlated with
the severity of coronary heart disease [81]. Similar to the
cardioprotective role of NO [82–84], various signaling
pathways from different types of exogenous H2S may be
involved in the suppression of MI-associated fibrosis
(Table 1). These pathways include GSK-3β/β-catenin
[85], cGMP-PKG [86], Nrf2 [87–89], miRNA signaling
pathways [16, 90, 91], and the protection of mitochondria
[92–95]. Although postconditioning only exerts cardiopro-
tection in young hearts, exogenous H2S restores postcondi-
tioning benefits by upregulating autophagy via the
activation of the AMPK/mammalian target of rapamycin
(mTOR) pathway in the aged hearts and cardiomyocytes
[96]. It is unclear whether the signaling pathways identi-
fied share common contributors derived from H2S, or
whether this is simply the result of experimental settings
targeting different signaling pathways. Therefore, the iden-
tification of a unique contributor of H2S involved in the
suppression of MI-mediated myocardial fibrosis is
necessary.

3.2.2. Hypertension. Hypertension increases oxidative stress,
vascular inflammation, and vascular remodeling, such as
in the case of fibrosis [97]. The antihypertensive effects
of H2S, associated with its modulation of various levels
of channel activity and cGMP-PKG pathways, may
contribute to the suppression of fibrosis caused by hyper-
tension [98–101]. As presented in Table 1, H2S supple-
mentation under hypertensive conditions may suppress
myocardial fibrosis via the modulation of several different
signaling pathways. It is worth noting that H2S can inhibit
ACE via the binding of zinc ions to the active center of
ACE [102]. It has been postulated that the H2S-mediated
suppression of ACE may indirectly contribute to vasore-
laxation and the suppression of the Ang-II-mediated
transition of fibrosis. Alternatively, the suppression of
inflammation [103] and the reduction of cardiomyocyte
death from oxidative stress [104], as well as the activation
of eNOS/NO pathway [105], are likely to have antifibrosis
roles with regard to H2S under hypertensive conditions.
Interestingly, it has been noted that local delivery of H2S

can lower systemic blood pressure. For example, the
intra-cerebroventricular (ICV) infusion of NaHS in both
spontaneous and Ang-II-induced hypertensive rat models
was found to decrease the mean arterial blood pressure
and heart rate during ICV infusions [106]. Moreover,
H2S secreted from periadventitial adipose tissue has been
previously found to contribute to blood pressure homeo-
stasis [107].

3.2.3. Diabetes. The metabolic environment of diabetes,
including hyperglycemia, hyperlipidemia, and oxidative
stress, causes cardiomyocyte cell death. The early stages of
diabetic remodeling of the heart are usually asymptomatic,
such that myocardial changes mostly occur at the molecular
level. In the middle stage of remodeling, progressive cardio-
myocyte hypertrophy and myocardial fibrosis result in
impaired ejection fraction [108]. In patients with diabetes,
as well as in streptozotocin- (STZ-) treated rats, lowered
circulating levels of H2S due to the downregulated expres-
sion of H2S-synthesizing enzymes have been frequently
found [109–111]. As depicted in Table 1, several underly-
ing mechanisms of H2S involve the suppression of myo-
cardial fibrosis in diabetic rats via (1) the suppression of
the TGF-β1/SMAD3 pathway [110, 112, 113] and canoni-
cal Wnt pathway [114], (2) the suppression of endoplas-
mic reticulum stress [19, 115], (3) the downregulation of
the JAK/STAT signaling pathway [110], and (4) the regu-
lation of autophagy [112, 116]. Although it has not yet
been clearly elucidated, there is a possibility that H2S
may be involved in the modulation of ECM remodeling
via miRNA or other transcription machinery affecting
the expression of ECM-processing enzymes in diabetes.
For example, H2S has been found to attenuate fibrotic
changes in diabetic kidneys via the downregulation of
miRNA-194, which plays an important role in the modu-
lation of proteins involved in collagen realignment [117].

3.2.4. Neurohormonal Overstimulation. The activation of the
β-adrenergic nervous system and RAAS has been commonly
found in fibrotic HF patients, and β-blockers and RAAS
inhibitors have been suggested as a first-line treatment to
correct the underlying cardiac dysfunction and reduce mor-
bidity [7, 118]. The overstimulation of β-adrenoceptor may
result in the impairment of the negative modulation of H2S
on the β-adrenoceptor system, resulting in a calcium over-
load, leading to the impairment of cardiac contractility and,
ultimately, to cardiomyocyte death [119]. Exogenous H2S
supplementation inhibits isoprenaline- (ISO-) induced car-
diac hypertrophy depending on SIRT3, which is predomi-
nantly localized in the mitochondria, and may be associated
with antioxidant properties [120]. Other signaling pathways,
including reducing NADPH oxidase [121] or S-sulfhydration
of Ca2+/calmodulin-dependent protein kinase II [122], have
been associated with the antifibrosis role of H2S under condi-
tions of β-adrenoceptor overstimulation. Mast cells will infil-
trate into the heart at the site of inflammation and serve as a
local source of renin in cardiovascular tissues. H2S may ben-
efit from the action of renin secreted frommast cells [123]. In
view of hormone-associated myocardial fibrosis, the
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excessive generation of thyroxine from thyroid induces thy-
rotoxicosis and affects the cardiovascular system, resulting
in the symptoms of hypertension, arrhythmia, and cardiac
hypertrophy [124]. Under conditions of excessive thyroxine,
H2S may bolster rat myocardial fibrosis through the activa-
tion of autophagy mediated by the PI3K/AKT signaling path-
way and via the downregulation of miRNA-21, miRNA-34a,
and miRNA-214 expression [125].

4. Summary and Perspectives

Currently, strategies for the treatment of established HF are
focused on relieving the symptoms and signs of HF, such as
treating edema, preventing hospital admission, and improv-
ing survival [6]. Myocardial fibrosis determines the clinical
course of heart dysfunction and can eventually lead to heart
failure. A substantial amount of research has been dedicated
to the identification of HF target(s) to improve the diagnosis
and treatment of fibrotic pathways with organ specificity.
Myocardial fibrosis has many steps and usually involves sev-
eral pathways. Complex networks of molecular signaling,
including GSK-3β, β-catenin, and TGF-β1/SMAD3, have
been implicated in the initiation, progression, and regression
of myocardial fibrosis [1–5]. The targeting of collagen fibril-
logenesis should be performed with caution as collagen
turnover is a common process in most tissues whose effects
can be detrimental [150]. Although TGF-β1 is a central pro-
fibrogenic cytokine and a critical contributor during myocar-
dial fibrosis, treatment with TGF-β antibody has been found
to result in an increased mortality rate and poor MI-
associated ventricular remodeling in a mouse model [151].
Although SMAD3 and TNF-α signaling play a fundamental
role in fibrosis progression, the targeting of SMAD3 and
TNF-α antagonism has not yet been found to provide a suc-
cessful antifibrosis outcome [151]. Based on the important
role of Ang-II in the initiation of myocardial fibrosis, the
antagonism of the angiotensin pathway via ACE inhibitors
and angiotensin receptor antagonists is considered to be a
useful approach for the management of fibrotic diseases.
Recently, AMPKα activators (e.g., metformin) have been
found to be a promising therapeutic target for fibrosis
[152]. Myocardial fibrosis is not caused by a single profibrotic
pathway but is rather associated with the activation of several
profibrotic pathways, including immunological and molecu-
lar mechanisms [70]. It is also worth noting that a combined
antifibrotic strategy, including inflammatory mediators, pro-
fibrotic cytokines, and epigenetic and cell and/or tissue
intrinsic changes, has been suggested as a possible method
for the successful treatment of myocardial fibrosis [7, 70].

As briefly addressed in this review, H2S possesses anti-
oxidant capacities and modulates various signaling path-
ways, including the activation of cGMP-PKG pathways,
the posttranslational modification of proteins, metal-
binding (including heme), and mitochondrial respiratory
control [9]. In addition, H2S may serve as a fine-tuner of
mitochondrial homeostasis and the autophagic process in
the physiology and pathophysiology of the cardiovascular
system [153]. Moreover, H2S is involved in antiapoptosis
of cardiomyocytes, anti-inflammation, antihypertension,

and other beneficial cardiovascular processes [154, 155].
As a timely response to energy stress, autophagy is a bulk
degradation/recycling system that is tightly controlled by
the homeostatic pathway in the cardiovascular system
[153, 156]. Despite the existence of conflicting opinions
on the beneficial and harmful effects of autophagy, distur-
bances in the autophagic process have been found in var-
ious forms of HF, including age-related cardiomyopathies
[156]. H2S may be involved in the regulation of autophagy
by either suppressing or enhancing the signaling pathways
that contribute to the attenuation of myocardial fibrosis, as
reviewed in a previous paper [156, 157]. Although it is still
currently under investigation, numerous findings have
demonstrated that H2S may be involved in the suppression
of myocardial fibrosis caused by (1) myocardial infarction,
(2) hypertension, (3) STZ-induced diabetes, and (4) the
overstimulation of neurohormonal routes (Table 1). The
signaling pathways mediated by H2S may converge on
the suppression of myocardial fibrosis that occurs as a
result of various stresses, as shown in Figure 2 and
Table 1. It is unclear whether target pathways modulated
by the action of H2S work independently of each other;
however, it is most important to determine whether they
allow for the merging of multiple pathways into a single
antifibrosis signaling cascade. Versatile mechanisms and
signaling pathways triggered by H2S have already been
identified, as briefly shown in this review. In this context,
it appears that H2S is emerging as a new type of myocar-
dial fibrosis suppressor. However, it is necessary to identify
the molecular target or specific signaling pathway that is
under the control of H2S in a direct and specific manner
during myocardial fibrosis. It remains to be clearly estab-
lished whether H2S can directly control the cells involved
in fibrosis (e.g., cardiomyocytes, fibroblasts, and inflamma-
tory cells) and ECM deposition.

The advances being made in H2S biology are a promising
tool for the future development of medicines for the treat-
ment of myocardial fibrosis based on H2S, as well as multitar-
get molecules able to release H2S [158]. There is currently a
lack of fibrosis-specific biomarkers that can be used to deter-
mine the stage and grade of myocardial fibrosis, as well as for
the identification of patients who may benefit from a specific
type of therapy. In addition to the development of new tech-
niques for evaluating the stage and/or severity of myocardial
fibrosis [159], a new strategy for reversing preexisting fibrosis
using H2S could be a valuable approach. Moreover, the
potential of H2S in preventing or repairing cardiomyocyte
loss via the stimulation of cardiac stem cells or transdifferen-
tiation from noncardiomyocytes to cardiomyocytes needs to
be critically evaluated in future studies [160]. It is worth men-
tioning that H2S can have serious and toxic effects at high
concentrations or high release rates, including sudden
unconsciousness and death [14, 161]. Therefore, the optimal
concentration or dose of H2S for the desired antifibrosis
effect needs to be critically examined. Additionally, for the
therapeutic potential of H2S, pharmacological agents that
generate or release H2S need to be adequately harnessed for
the delivery of physiologically relevant concentrations in a
safe manner. Considering that myocardial fibrosis is a long-
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term consequence of heart disease, the study of dietary sup-
plements that are able to supply H2S safely or boost H2S syn-
thesis is needed for the management of myocardial fibrosis.
The long-term consequences and clinical benefits of H2S
against myocardial fibrosis should also be investigated in
the future. In addition, the study of the H2S-mediated the
study of the H2S-mediated reversal of myocardial fibrosis
could prove to be advantageous in clinical studies.
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