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The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction,
cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the
past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many
underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to
be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has
attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of
the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment.
Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction
will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.

1. Introduction

Redox imbalance (RI), as a hallmark event in cardiac and
other pathophysiology [1], results from the perturbance of
balance between oxidants and antioxidants [2], which can
lead to either reductive stress or oxidative stress [3]. The
redox state of cells is established by four redox pairs includ-
ing NAD+/NADH, NADP+/NADPH, reduced glutathione
(GSH)/oxidized glutathione (GSSG), and FAD/FADH2 [4, 5].
In comparison with oxidative stress, reductive stress has
recently gained more interest, and many related investiga-
tions have been published [6–9] since the concept was first
introduced [10]. Reductive stress is considered to be a
double-edged sword in terms of antioxidation and disease
induction. As many relative mechanisms are still unclear,
the area of reductive stress is certainly worth of further inves-
tigations. Remarkably, the striking discovery that reductive
stress can cause cardiomyopathy by protein aggregation

published in Cell in 2007 [11] has been a driving force for this
area of research.

A key difference between reductive stress-induced and
oxidative stress-induced cardiomyopathy is the enzymes
and pathways controlled or regulated by certain factors.
For instance, inhibition of NADPH oxidase activities by
NecroX-7 can prevent oxidative stress-induced cardiomyop-
athy [12]. Sulforaphane prevents the deterioration of cardio-
myopathy by reversing oxidative stress-induced inhibition of
LKB/AMPK pathway [13]. Fibroblast growth factor 19
prevents the heart against oxidative stress-induced cardio-
myopathy by activating the AMPK/nuclear factor erythroid
2-related factor 2 (Nrf2)/HO-1 pathway [14].

By comparing with oxidative stress-induced cardiomyop-
athy, in this review, we seek to summarize the studies focus-
ing on reductive stress-induced mitochondrial dysfunction
and cardiomyopathy published in the past five years. In the
section of cardiomyopathy, reductive stress-inducing factors
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including heat shock protein 27 (Hsp27 or HspB1), alpha-B
crystalline (CryAB or HspB5), and Nrf2 were specifically
elaborated. Moreover, current insights into dithiothreitol-
(DTT-) induced reductive stress, and the side effects of
DTT were also discussed. In addition, under reductive stress
conditions, activities of NADPH-dependent reductases such
as glutathione reductase (GR) and thioreductase-2 (TrxR2)
are closely related to reactive oxygen species (ROS) reactions
[15], which have been established to contribute to mitochon-
drial dysfunction. Therefore, relevant studies and discussions
are presented as well. It should be noted that our review is not
meant to exhaust all the possible mechanisms or signaling
pathways of reductive stress documented in the literature.

2. Redox Imbalance (RI) and
Mitochondrial Dysfunction

Many studies currently focus on the interrelationship
between RI and mitochondrial dysfunction. They are sum-
marized and graphically presented in Figure 1. RI increases
mitochondrial ROS production by upregulating the activities
of complexes I to IV [16] and impacts the NAD+/NADH bal-
ance leading to damage to lipids, proteins [17, 18], and DNA
[19]. Impaired oxidation of NADH to NAD+ by the electron
transport chain (ETC) is an adaptive mechanism of hypoxia,
analogous to the “hypoxia-like” RI resulting from increased
flux of glucose [20, 21]. “Hypoxia-like” RI, often induced
in vitro by cobalt [22], is the cytosolic metabolic imbalance

due to reductive stress and increased superoxide and nitric
oxide production [23]. Both hypoxia and “hypoxia-like” RI
result in a loss of essential sterols and unsaturated fatty acids,
but the basis for these alterations are disparate [22]. The
function of ETC can be impacted by the imbalance between
the generation of ROS and oxidation of ETC components,
which can alter the membrane permeability, increase the
heteroplasmic mitochondrial DNA, and finally weaken the
mitochondrial defense system [24]. Moreover, the spontane-
ous DNA damage caused by mitochondria-derived ROS is
able to activate the cycle of escalating ROS production, oxida-
tive damage, senescent cell accumulation, and age-related
pathology [25]. The extent of DNA damage paralleled the
oxidation of cellular GSH and induction of oxidative stress
[26]. Therefore, energy failure and RI can also result from
mitochondrial depletion of DNA [27]. In response to
DNA damage, the cell activates complicated and conserved
kinase-involved signaling response termed DNA damage
response to protect genomic stability; and once DNA damage
is beyond repair, the cell initiates the apoptotic mechanism
resulting in the demise of the damaged cell [28].

3. Reductive Stress-Induced
Mitochondrial Dysfunction

Reductive stress, first introduced in 1987 [10], is described as
an excess of reducing equivalents, in the forms of NAD(P)H
and/or glutathione, in the presence of intact oxidoreductive
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Figure 1: Interrelationship between RI andmitochondrial dysfunction. NAD+/NADH imbalance is the main cause leading to lipids, proteins,
and DNA damage and triggering the increase in ROS production by the electron transport chain [16–19]. ROS are metabolic by-products
generated by mitochondria that can damage macromolecules by structurally altering protein amino acids leading to formation of protein
carbonyls, DNA mutation (e.g., single- and double-strand breaks, inter/intrastrand cross-links, and DNA-protein cross-links), and lipid
peroxidation [29, 30].

2 Oxidative Medicine and Cellular Longevity



systems [31, 32]. NADPH-producing reactions are trigged
under oxidative stress [33], because isocitrate dehydrogenase
reaction with the release of NADH in the TCA cycle is
essential for the generation of reducing power, which
defends against oxidative stress [34]. NADPH is the driving
energy source for removing peroxide by glutathione- and
thioredoxin-dependent antioxidant system [35]. Increased
NADPH accelerates the reduction of GSSG to GSH, and
the elevated level of GSH can abundantly provide thiol
group to the detoxification reactions [36], which also serves
as an important antioxidation mechanism [37]. In Figure 2,
reductive stress is presented as an aberrantly increased elec-
tron pressure, and it can occur as a result of pathological
processes leading to an excess of electrons with high-
energy compounds, and a failure of mechanisms for han-
dling this rise in electron pressure, or a combination of both
[38]. The rate of the mitochondrial ROS production is con-
nected with the level of reduction of electron carriers capable
of transferring electrons to O2 [39]. Mitochondrial ROS are
generated when electrons leak from the ETC resulting in
univalent reduction of O2 to superoxide, which contributes
to the production of additional ROS such as hydrogen per-
oxide (H2O2) and hydroxyl radical (OH·) [40]. Reductive
stress also can result in ROS production, by controlling
mitochondria to utilize the abundance of reducing equiva-
lents or by perturbing protein folding and endoplasmic
reticulum (ER) function [41–43]. ER, containing diverse sys-
tems to constrain ROS accumulation [44], is much more
oxidizing than other cellular compartments and is more vul-
nerable to reductive stress [45]. In fact, there is a redox cross
talk between mitochondria and ER [44]. Oxidative protein
folding in the ER leads to the release of ROS as by-products,
which can be utilized to activate some transcriptional factors
such as nuclear erythroid 2-related factor 2 (Nrf2) [46]. Elec-
trons from aerobic breakdown of glucose are mainly stored

in NADH for oxygen reduction and ATP generation. GSH
and NADPH accumulation are closely connected with
NADH metabolism [47, 48]. GSH upregulation is consid-
ered to be a protective mechanism, at least, when followed
by an oxidative stimulus [49]. However, aberrant increase
in GSH/GSSG ratio leads to reductive stress [37, 50] that
could trigger mitochondrial dysfunction and cytotoxicity
[51–53] and enhance maladaptive responses [41]. It should
be pointed out that mitochondrial activity impacted by
antioxidant-induced reductive stress is initially hampered
by a low dose of antioxidants (0.003-0.013%), rather than
by a high dose of antioxidants (0.03-0.1%) [54]. Low dose
of antioxidants neutralizes ROS, inhibits the glycolysis, and
finally decreases pyruvate for TCA cycle [55]. Therefore,
reductive stress at the onset of pathology could evolve into
oxidative stress later in disease progression [56]. However,
one recent article demonstrates that, particularly in aged tis-
sues, oxidative stress appears more prevalent than reductive
stress, giving the impression that reductive stress is not a
cause of mitochondrial oxidative stress in aging-related dis-
eases [57]. Nonetheless, it should be noted that one should
not focus just on oxidative stress, but also consider the path-
ways that are altered by reductive stress [58]. In healthy cells,
ETC generates ATP and simultaneously recycles mitochon-
drial NADH to NAD+; while in the presence of a dysfunc-
tional ETC, glycolysis can compensate the insufficiency of
ATP [59]. However, NAD recycling should be the critical
step for cell proliferation, because many pathways produce
NADH as a metabolic factor [60].

4. Current Insights into the DTT-Induced
Reductive Stress

DTT is a strong reducing agent, which can protect mito-
chondria from oxidative stress, radiation exposure, and
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Figure 2: Interrelationship between reductive stress and mitochondrial dysfunction. Under reductive stress, abnormally increased electron
pressure caused by increases of NADH, NADPH, and GSH leads to mitochondrial dysfunction [38]. Oxidative protein folding in the ER
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mitochondrial damage [62, 63]. Mitochondrial dysfunction
along with depletion of reduced glutathione can be recovered
via DTT administration [64]. DTT also increases electrolyte
leakage rate (ELR) and antioxidant enzymes activities
(ANA) [65]. A previous study showed that, under DTT treat-
ment, cytosolic redox active proteins become partially oxi-
dized. However, under H2O2 treatment, ER-resident redox
active proteins become oxidized with H2O2 and reduced after
DTT treatment [66]. The main function of DTT is preventing
disulfide bond formation [67, 68], disrupting protein folding
in the ER, and being widely used as a chemical tool to pro-
mote reductive stress [3, 69–71]. Oxidative quality control
genes (oqcg) modulate this ER stress in the presence of
chronic reductive stress, not acute reductive stress [72].
Moreover, ER stress induced by DTT does not elevate the
pool of secretory pathway. Rather, the reductive stress desta-
bilizes a select set of proteins including collagens, the compo-
nents of extracellular matrix (ECM), and mitogen-activated
protein kinase (MAPK) signaling pathway targets [73]. In
addition, although DTT is widely used, the side effect of
DTT should be noted. Thiol is effective in protecting DNA
against irradiation damage, which is thought to be due to
its ability to scavenge ROS and reactive nitrogen species
(RNS). However, at certain concentrations, thiols have the
ability to produce oxidative species, such as OH·, leading to
DNA breaks and other impairments in DNA molecules,
which could further be connected with chromosome damage
and cell apoptosis [74]. As DTT is often one of cell culture
media components and can be added directly to the medium
[75], studies have demonstrated that DTT lacks selectivity
and spatial resolution [76] and leads to cellulose-anchored
biofilm formation in Mycobacterium tuberculosis cultures,
which contain metabolically active but drug-tolerant bacteria
[77, 78]. Importantly, in certain studies, while DTT has been
implemented as a therapy-oriented approach or treatment of
some syndromes and complications [63, 79], its efficacy
remains poorly understood [80]. Therefore, we think it is
necessary to summarize the current studies to highlight the

potential risks of DTT-involved approaches as presented
graphically in Figure 3.

5. Reductive Stress and ROS

ROS, the products of partial O2 reduction, such as superoxide
anion (O2·-), H2O2, and OH·, can induce necrotic death
by producing oxidative stress. Exogenous or endogenous
H2O2-induced apoptosis leads to a significant drop in the
intracellular pH and O2·- concentration [81, 82]. Moreover,
during reductive stress, NADPH-dependent reductases such
as GR and TrxR2 can directly generate ROS when the natural
electron acceptors are hampered (Figure 4). The capacity of
recombinant TrxR1 to generate NADPH-dependent H2O2
was 8-fold higher than recombinant GR. Lower GSH/GSSG
levels in the matrix, whereby Trx is present at micromolar
levels, could indicate that depletion of oxidized Trx might
occur more readily than depletion of GSSG [15]. In contrast
to GSH-related systems, removing H2O2 without oxidation
of NAD(P)H is useless for the alleviation of the reductive
stress [83]. Increased O2·- and H2O2 levels can be viewed as
creating oxidative stress or reductive stress depending upon
the relative abundance of redox-coupled species [84]. O2·- is
dismutated by superoxide dismutase (SOD) resulting in
H2O2 formation, and then H2O2 is detoxified by catalase or
glutathione peroxidase (GPX) [85]. GPX, when knocked
down, not only induces oxidative stress indicated by the
increase of ROS but also causes reductive stress characterized
by an elevation of GSH/GSSG [86].

6. Reductive Stress-Induced Cardiomyopathy

In the heart, reductive stress has been connected with mito-
chondrial dysfunction, heart failure, ischemia-reperfusion
injury, and cardiomyopathy, which all are the pathological
conditions associated with oxidative stress [87]. Therefore,
reductive stress is as important as oxidative stress in ischemic
cardiac injury. It should be noted that mitochondrial
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Figure 3: DTT-induced reductive stress and its potential risks. DTT induces chronic reductive stress and breaks disulfide bond [67, 68],
which leads to ER stress [72]. Moreover, the concentration of DTT is closely related to DNA protection or DNA damage [74]. In addition,
further investigations on its drug-tolerance and therapy as well as efficacy should also be highly warranted [63, 77–80].
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morphological abnormalities cannot be identified in some
studies in spite of the presence of severe cardiomyopathy
and mitochondrial dysfunction [88]. Here we would like to
focus on three cardiomyopathy-related factors: Hsp27,
CryAB, and Nrf2 (Figure 5).

6.1. Hsp27-Induced Cardiomyopathy. Hsp27-induced car-
diomyopathy could be attributed to the increase of GPX
and mediated by activation of Class III phosphoinositide
3-kinase (PI3K) via a prolonged autophagy activation
[89, 90]. Hsp27 also ameliorates cardiac aging, which
involves antioxidation and mitophagy activation [91]. More-
over, phosphorylated Hsp27 (pHsp27) is catalyzed by one of
the downstream targets of MAPK [92]. Activation of MAPK
by ROS is also proven to protect cells against death [93].
Although pHsp27 decreases ROS accumulation and could
constrain cardiac cell death [94–96], overexpression of

Hsp27 can lead to reductive stress and contributes to cardio-
myopathy (Figure 5) [97, 98]. However, other studies showed
that overexpression of Hsp27 could protect myocardium
during ischemic stress [95, 99–101]. Therefore, Hsp27, with
its potent antiaggregation activity [102], may serve as an
important indicator of the risk assessment and prevention
of developing heart lesion as well as a target for cardiomyop-
athy treatment [103, 104]. Further studies are needed to clar-
ify if increased Hsp27 is actually beneficial and is in response
to stress exposure [105].

6.2. CryAB and CryABR120G-Induced Cardiomyopathy.
CryAB, an ER chaperone [106], is substantially expressed
in the heart, where it constitutes as much as 5% of total
heart protein [107]. CryAB, with its wide-spectrum chap-
erone activities [108], promotes the folding of multipath
transmembrane proteins from the cytosolic face of the
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ER [109]. It also protects functional and structural proteins
from compression-induced oxidative stress, which is crucial
for maintaining cytoskeletal integrity in cardiac muscle
[41, 110, 111]. Protection by CryAB overexpression is con-
nected with maintenance of appropriate mitochondrial
protein levels, inhibition of aberrant mitochondrial perme-
ability transition pore activation, and mitochondrial mem-
brane potential (ΔΨ) [112]. Moreover, CryAB brings
protection against apoptosis through inhibiting caspase-3
activation, segregation of the antiapoptotic protein Bcl-2,
and prevention of Bcl-2 translocation into the mitochondria
[113]. In addition, CryAB is also inducible in response to
other forms of stress such as inflammation and heat [114].
Mutations in CryAB [115], specifically the dominant R120G
mutations in the CryAB gene (CryABR120G), lead to myopa-
thies via reductive stress, which is responsible for cellular
hypertrophy in cardiomyocytes derived from induced plurip-
otent stem cells [116, 117]. CryABR120G-induced cardiomy-
opathy has been established to occur along with reductive
stress-induced GSH/GSSG imbalance (Figure 5) [11]. It is
reported that during aging and during the progression of
cardiomyopathy, both CryAB and its phosphorylation
are elevated [118, 119]. The molecular tweezer CLR01
protects against CryABR120G-induced cytotoxicity, hampers
CryABR120G-induced protein aggregation, and alleviates
proteotoxicity in cardiomyocytes [120]. Besides CLR01
treatment, other recent studies state that activation of
transcriptional factor EB (TFEB) by intermittent fasting
also can be utilized as a treatment of CryABR120G-induced
cardiomyopathy [121]. TFEB expression and activity are dra-
matically vigorous during the whole course of desmin-related
cardiomyopathy development. TFEB activities increase in the
compensatory stage of cardiac proteinopathy and become
impaired in the congestive heart failure stage. Therefore,
it is important to test the effect of TFEB stimulation at any
stages of cardiac proteinopathy for potential therapeutic
purpose [122].

6.3. Nrf2-Induced Cardiomyopathy. Nrf2 is a master regula-
tor of many cytoprotective genes [123]. Nrf2 in the heart is
manipulated through a transcriptional mechanism, and its
activation brings about cardioprotective effects in diverse dis-
ease models. Therefore, the Nrf2 signaling pathway is a
potential target for cardiomyopathy therapy [124]. The anti-
oxidant program regulated by Nrf2 can promote GSH syn-
thesis and decrease intracellular ROS [125] and is thus
protective against oxidative stress. Pathogenic disorders that
enhance continuous stimulation of the Nrf2 response can
cause reductive stress that leads to disease development
[41]. Previous studies demonstrated that Nrf2-antioxidant
response element signaling enhanced reductive stress in
the human mutant protein aggregation cardiomyopathy
(MPAC) [61]. In the MPAC-transgenic mouse model, Nrf2
scarcity was identified, which impedes ER stress and reduc-
tive stress-induced hypertrophic cardiomyopathy [126]. It
should also be noted that continual activation of Nrf2 may
contribute to a remarkable reduction of protein oxidation
in correlation with chronic reductive stress [127]. Indeed,
chronic reductive stress can exacerbate mutant protein

aggregation and result in pathological cardiac remodeling,
which indeed has been identified in Nrf2-transgenic mice
with a constitutive activation at 10-12 weeks of age [128].
Moreover, in protein aggregation cardiomyopathy and
reductive stress, the Nrf2-Kelch-like ECH-associated protein
(Nrf2-Keap1) pathway is the essential transcriptional
restrainer of antioxidants, proteotoxicity and isoproterenol
toxicity in the heart [61, 129, 130]. Deletion of either Nrf2
or Keap1 may lead to ROS overproduction indicating the
mutual control of Nrf2-Keap1 [131]. In addition, a recent
study revealed that the Nrf2-Keap1 pathway is also closely
related to protection against the toxicity by lead- (Pb-)
induced lipid peroxidation [132]. Interestingly, another study
also shows that Nrf2 level alone is capable of serving as the
master regulator of the antioxidant response element without
regulating the activity of Keap1, which leads to the hyperre-
ducing power of the glutathione system [133].

7. Summary

In this review, we have summarized studies published mainly
between 2014 and 2019, which accounts for more than four-
fifth of all the citations. Further investigations should focus
on identifying more reductive stress indicators as the risk
assessment and prevention of developing heart damage as
well as exploring more targets for cardiomyopathy treatment.
Although there are still some ambiguous statements, such as
the paradox between mitochondrial morphological abnor-
malities and mitochondrial dysfunction, we firmly believe
that studying mitochondria is the critical step to reveal more
unknowns. Therefore, it is expected that future investigation
of underlying mechanisms of reductive stress-induced mito-
chondrial dysfunction will provide novel insights into thera-
peutic approaches for ameliorating reductive stress-induced
cardiomyopathy.
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