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Hepatic ischemia–reperfusion (IR) injury is a clinical issue that can result in poor outcome and lacks effective therapies at present.
Mild hypothermia (32–35°C) is a physiotherapy that has been reported to significantly alleviate IR injury, while its protective effects
are attributed to multiple mechanisms, one of which may be the regulation of fatty acid β-oxidation (FAO). The aim of the present
study was to investigate the role and underlying mechanisms of FAO in the protective effects of mild hypothermia. We used male
mice to establish the experimental models as previously described. In brief, before exposure to in situ ischemia for 1 h and
reperfusion for 6 h, mice received pretreatment with mild hypothermia for 2 h and etomoxir (inhibitor of FAO) or leptin
(activator of FAO) for 1 h, respectively. Then, tissue and blood samples were collected to evaluate the liver injury, oxidative
stress, and changes in hepatic FAO. We found that mild hypothermia significantly reduced the hepatic enzyme levels and the
score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury. In addition, the expression
of the rate-limiting enzyme (CPT1a) of hepatic FAO was downregulated almost twofold by IR, while this inhibition could be
significantly reversed by mild hypothermia. Experiments with leptin and etomoxir confirmed that activation of FAO could also
reduce the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and
mitochondrial injury induced by IR, which had the similar effects to mild hypothermia, while inhibition of FAO had negative
effects. Furthermore, mild hypothermia and leptin could promote the phosphorylation of JAK2/STAT3 and upregulate the ratio
of BCL-2/BAX to suppress hepatocyte apoptosis. Thus, we concluded that FAO played an important role in hepatic IR injury
and mild hypothermia attenuated hepatic IR injury mainly via the regulation of JAK2/STAT3-CPT1a-dependent FAO.

1. Introduction

Hepatic ischemia–reperfusion (IR) injury is a serious clinical
problem that can hardly be avoided in certain kinds of sur-
geries, such as liver transplantation and resection, as well as
hemorrhagic shock [1, 2]. The paradigm of hepatic IR is

based on two apparently separate phases, involving the
ischemic phase and the reperfusion phase. The ischemic
phase mainly causes cellular metabolic disturbances that
result from glycogen consumption, lack of oxygen supply,
and ATP depletion, while the reperfusion phase results
not only in metabolic disturbances but also in a profound
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inflammatory immune response that involves both direct
and indirect cytotoxic mechanisms [1]. The complicated
IR injury is one of the main reasons for early graft failure
and the increased risk of organ rejection and liver dysfunction
[3]. Unfortunately, currently, the promising interventions for
the treatment of hepatic IR injury are limited in number [4–
6]. Thus, more effective strategies that can reduce hepatic IR
injury and improve graft viability are urgently needed.

Mild hypothermia (32–35°C) [7] is a clinical therapy that
is widely used in acute brain injury [8] and cardiac arrest [9],
and there has been growing interest in the protective effects
of mild hypothermia on IR injury in recent years. Our previ-
ous studies confirmed that mild hypothermia could signifi-
cantly attenuate organ IR injury, and the protective effects
are thought to be the result of interactions of multiple factors
[10–15]. Based on these preliminary studies, we performed a
proteomic analysis and found that the protective mecha-
nisms of mild hypothermia were extremely complex. There-
fore, it is of great importance to further study the protective
mechanisms of mild hypothermia. This will not only signifi-
cantly expand our knowledge on mild hypothermia but also
greatly facilitate its clinical application.

As is well known, hypothermia could lead to a significant
reduction in body metabolism; cellular oxygen and glucose
requirements decrease by an average of 5–8% for every
degree of decrease in temperature [7, 16, 17]. However, the
effects of the decrease in temperature on hepatic lipid metab-
olism are complex and interconnected [18–21]. Cold expo-
sure increases hepatic triglyceride (TG) concentrations but
reduces hepatic lipogenic gene expression [18]. Hepatic
expression of genes encoding proteins involved in cholesterol
synthesis and uptake and classical bile acid (BA) synthesis is
significantly increased upon cold exposure [18, 21]. After cold
exposure, hepatic BA concentrations and fecal BA excretion
are increased, while very low-density lipoprotein- (VLDL-)
TG secretion is reduced [18, 21]. Thus, it is very important
to clarify whether the complex effects of hypothermia on
hepatic lipid metabolism are involved in hepatic IR injury.

The liver is a key regulatory organ in lipid metabolism; it
can take up as well as oxidize fatty acids; it can synthesize,
store, and secrete TG in VLDL particles; and it is the main
metabolic orsgan that controls whole-body cholesterol and
BA metabolism [18, 22]. More importantly, mitochondrial
fatty acid β-oxidation (FAO) in the liver is the primary path-
way for the oxidation of fatty acids and also the key metabolic
pathway for energy homeostasis [23, 24]. Furthermore, the
liver can convert the products of FAO into ketone bodies,
which is an additional energy source in all tissues, including
the brain [23]. A large number of enzymes are necessary for
FAO, and deficiency in almost any of the enzymes involved
in this process, especially the rate-limiting enzyme carnitine
palmitoyltransferase 1 (CPT1), will result in lipid metabolic
disturbances [23, 25, 26]. Metabolic disturbances of the lipid
profile can induce inflammation, oxidative stress, and
apoptosis by regulating relevant signaling transduction
pathways, which can in turn exacerbate lipid metabolic
reprogramming [27, 28]. Zhang et al. showed that the patho-
genesis of hepatic IR injury was marked primarily by lipid
metabolic reprogramming that leads to a secondary effect

on inflammation, highlighting the importance of lipid
metabolism in the pathogenesis of IR injury [29]. In view of
these findings, fatty acid metabolism is currently attracting
considerable interest in hepatic IR injury [30], and the role
of FAO in IR injury is an important research topic.

Both mild hypothermia and IR injury have significant
effects on lipid metabolism. However, the effects of changes
in fatty acid metabolism under mild hypothermia on IR
injury have not been addressed. Hence, the concrete effects
of hepatic FAO under mild hypothermia on liver IR injury
in male mice and the exact signaling pathway associated with
these processes will be described in the following sections.

2. Materials and Methods

2.1. Animal Studies. The experiments were performed with 6-
to 8-week-old C57BL/6J male mice purchased from Wuhan
Wan Qian Jia Xing Bio-Technology Co., Ltd. (Hubei, China).
Mice were housed in the Animal Center of Zhongnan Hospi-
tal of Wuhan University and kept in a temperature-
controlled environment (20-25°C) with a 12/12 h light/dark
cycle with free access to food and water. The study was
approved by the Ethical Committee of Wuhan University.
All animal experiments were carried out in accordance with
the Experimental Animal Management Ordinance (National
Science and Technology Committee of China) and the Guide
for the Care and Use of Laboratory Animals (National Insti-
tutes of Health (NIH), Bethesda, MD, USA). Animals fasted
overnight while with access to water before the experiments.
Mice were randomly divided into six groups (n = 5 for each
group): (1) normal group (N), with mice only suffering a
midline incision to expose the liver; (2) mild hypothermia
pretreatment group (MH), with mice only receiving pretreat-
ment with mild hypothermia; (3) IR group (IR), with mice
exposed to in situ ischemia for 1 h and reperfusion for 6 h;
(4) mild hypothermia pretreatment+IR group (MHP), with
mice receiving pretreatment with mild hypothermia for 2 h
and then exposure to IR; (5) etomoxir+IR group (EIR), with
mice receiving pretreatment with etomoxir for 1 h and then
exposure to IR; and (6) leptin+IR group (LIR), with mice
receiving pretreatment with leptin for 1 h and then exposure
to IR. The animal experiments were similar to those
described previously [13]. Briefly, animals were anesthetized
with sodium pentobarbital via i.p. injection (40mg/kg body
mass); (+)-etomoxir sodium salt hydrate (5mg/kg, Sigma-
Aldrich, E1905, USA) and Recombinant Mouse Leptin
(5mg/kg, Protein Specialists, cyt-351, USA), dissolved in
saline, were administered i.p. 1 h before in situ warm ische-
mia. For mild hypothermia pretreatment, the animal core
temperature was rapidly cooling to 32:0 ± 0:25°C with an
ice blanket and kept for 2 h with a heating panel and an ice
blanket at room temperature (20-25°C) and then rewarmed
to 36:2 ± 0:2°C. Subsequently, a midline incision was made
to expose the liver and free the perihepatic ligament; then,
the branches of the portal vein and the hepatic artery that
supply the left lateral and median lobes of the liver were
occluded with an atraumatic Glover bulldog clamp for 1 h.
Finally, the clamp was removed to initiate hepatic reperfu-
sion and the abdominal midline incision was sutured. The
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whole experiment was conducted at room temperature (20-
25°C), and the rectal temperature was monitored throughout
the experiment (Figure 1(a)). After 6 h of reperfusion, mice
were reanesthetized and sacrificed to collect livers and blood
samples; 5ml cold heparinized Ringer per animal was used
via the abdominal aorta to flush the blood from the liver.

2.2. Biochemical Analysis. Blood was drawn from the post-
cava and centrifuged at 3500 rpm for 10min. Serum was
collected and stored at −80°C. Hepatocellular injury was
determined by serum level of alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) by automatic
analysis in the Zhongnan Hospital of Wuhan University.
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Figure 1: Mild hypothermia pretreatment attenuates hepatic IR injury. (a) Animal temperature changes throughout the experiment. (b)
Serum ALT levels. (c) Serum AST levels. (d) Representative hematoxylin and eosin (HE) staining of liver tissues, the white “→” refers to
sinusoidal congestion and the black “→” refers to necrosis. Original magnification, 200x and 400x. (e) Representative images of TUNEL
staining, green fluorescence represents the TUNEL-positive cells. Original magnification, 100x. (f) Suzuki’s histological score of liver
tissue. (g) Quantitative analysis of apoptotic liver cells. n = 5 per group; data are expressed as mean ± SD; ∗P < 0:05 versus N group,
#P < 0:05 versus IR group; N: normal group; MH: mild hypothermia pretreatment group; IR: IR group; MHP: mild hypothermia
pretreatment+IR group.
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2.3. Histopathology and TUNEL Staining. Ischemic lobes
were harvested and fixed in 4% formalin. Samples were
embedded in paraffin as previously described [13]. All paraf-
fin sections for histological observation were stained with
hematoxylin and eosin (H&E), and tissue sections of IR
injury were graded blindly by Suzuki’s criteria [31]. Histolog-
ical changes were graded from 0 to 4 based on the degree of
cellular vacuolization, hepatic sinusoid congestion, and hepa-
tocyte necrosis.

Apoptosis was assayed by Terminal deoxynucleotidyl
transferase-mediated dUTP nick end labeling (TUNEL)
staining following the manufacturer’s instructions. The
total hepatocytes and TUNEL-positive cells were detected
in three randomly chosen views (100x) for each liver sec-
tion using a fluorescence microscope. The rate of apoptosis
(number of TUNEL − positive cells/total number of hepato-
cytes × 100 %) in each view was calculated with Image-Pro
Plus 6.0 (Media Cybernetics, Rockville, MD, USA).

2.4. Electron Microscopy. Fresh ischemic livers were fixed in
2.5% glutaraldehyde and washed with PBS for 15min three
times. Samples were fixed in 1% osmic acid for 1–2h
followed by washing with PBS for 15min three times again.
Next, samples were dehydrated with a graded series of etha-
nol solutions (50%, 70%, 80%, 90%, and 95%) for 15min at
each concentration and then treated with ethanol and ace-
tone for 20min each. Next, samples were treated with a mix-
ture of embedding agent and acetone (V : V = 1 : 1) for 1 h
and (V : V = 3 : 1) for 3 h, then treated with embedding
agent overnight, and heated at 70°C overnight. Finally, sam-
ples were sliced to 70–90nm sections in a Reichert ultrathin
slicer and then stained with lead citrate solution and uranyl
acetate 50% ethanol-saturated solution for 15min for
observation.

2.5. Western Blot Analysis. Western blot was performed
using whole lysates extracted from livers as previously
described [13]; phosphatase inhibitors were purchased from
Roche. The primary antibodies used in these experiments
were the following: rabbit anti-JAK2 (1 : 750, Proteintech,
Manchester, UK), rabbit anti-p-JAK2 (phosphorylated
JAK2 at Tyr1007/1008) (1 : 1000, Cell Signaling, Danvers,
MA, USA), rabbit anti-STAT3 (1 : 750, Proteintech, Man-
chester, UK), mouse anti-p-STAT3 (phosphorylated STAT3
at Tyr705) (1 : 1000, Cell Signaling, Danvers, MA, USA),
rabbit anti-ACSL1 (1 : 750, Proteintech, Manchester, UK),
rabbit anti-CPT1a (1 : 1000, Proteintech, Manchester, UK),
rabbit anti-ACADVL (1 : 750, Proteintech, Manchester,
UK), rabbit anti-HADHA (1 : 1000, Proteintech, Manches-
ter, UK), rabbit anti-HMGCS1 (1 : 750, Proteintech, Man-
chester, UK), mouse anti-BCL-2 (1 : 1000, Cell Signaling,
Danvers, MA, USA), rabbit anti-BAX (1 : 750, Proteintech,
Manchester, UK), rabbit anti-PFKM (1 : 1000, Proteintech,
Manchester, UK), rabbit anti-IDH2 (1 : 1000, Proteintech,
Manchester, UK), and rabbit anti-CS (1 : 1000, Proteintech,
Manchester, UK). Blots were incubated and visualized with
enhanced chemiluminescence (ECL) reagent (Proteintech,
Manchester, UK). The protein expression levels were nor-
malized to β-actin (1 : 3000, mouse anti-β-actin antibody,

Proteintech, Manchester, UK) and GAPDH (1 : 2000, rabbit
anti-GAPDH antibody, Proteintech, Manchester, UK). The
protein expression was quantified by densitometric analysis
using the Image J software.

2.6. CPT1, ATP, ADP/ATP, NAD+/NADH, Acetyl CoA, and
Malonyl CoA Analysis. For the evaluation of mitochondrial
function and FAO, frozen liver tissue was homogenized with
specified buffer that was included in the ELISA kits specific
for CPT1 (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China), adenosine triphosphate (ATP) (Nanjing Jian-
cheng Bioengineering Institute, Nanjing, China), ADP/ATP
Ratio Assay Kit (Abnova Corporation, Taiwan, China),
NAD+/NADH Assay Kit (Abnova Corporation, Taiwan,
China), acetyl coenzyme A (Acetyl CoA) (Elabscience Bio-
technology Co., Ltd., Wuhan, China), and malonyl coenzyme
A (Malonyl CoA) (Biorbyt Ltd., Cambridge, UK); detections
were performed following the manufacturers’ instructions. The
results were measured as ng/ml, μmol/gprot, μg/g, and μg/g.

2.7. Superoxide Dismutase (SOD), Malondialdehyde (MDA),
ROS, and 4-HNE Analysis. For the evaluation of oxidative
stress, frozen liver tissue was homogenized with specified
buffer that was included in the colorimetric assay kits specific
for superoxide dismutase (SOD), malondialdehyde (MDA),
reactive oxygen species (ROS) (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China), and 4-hydroxynonenal
(4-HNE) (Elabscience Biotechnology Co., Ltd., Wuhan,
China), which were detected following the manufacturers’
instructions. The results were measured as U/mgprot,
nmol/mgprot, FI/mg, and ng/g.

2.8. Statistical Analysis. Data were analyzed using SPSS 19.0
statistical software for Windows (SPSS Inc., Chicago, IL,
USA). All results are presented as mean ± SD. Differences
between experimental groups were analyzed by one-way
analysis of variance (ANOVA); P < 0:05 was considered sta-
tistically significant.

3. Results

3.1. Mild Hypothermia Attenuates Hepatic IR Injury in Mice.
We monitored the rectal temperature throughout the exper-
iment to ensure the stability of the experimental model; data
is shown in Figure 1(a). To confirm the protective effects of
mild hypothermia against IR injury, hepatic function,
hepatic architecture distortion, and hepatocyte apoptosis
rates were measured. As shown in Figures 1(b) and 1(c),
compared with the normal group, the levels of ALT and
AST were significantly increased after IR, i.e., from 51:5 ±
23U/L and 87:4 ± 39:2U/L to 9029:8 ± 981:8U/L and
10434:8 ± 1094:8U/L, respectively; this increase could be
greatly alleviated by mild hypothermia (P < 0:05), as ALT
and AST levels decreased to 5071:2 ± 776U/L and 5735:2
± 1886:3U/L. Meanwhile, hepatic histopathology changes
were assessed. As shown in Figures 1(d) and 1(f), IR injury
resulted in serious cytoplasmic vacuolization of hepatocytes,
severe necrotic areas, and moderate vascular and sinusoidal
congestion, while only mild cytoplasmic vacuolization and
necrosis of hepatocytes and almost no vascular and
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sinusoidal congestion could be observed after pretreatment
with mild hypothermia. The score of hepatic pathological
injury increased from 0:6 ± 0:5 to 9 ± 1 after IR injury and
decreased to 4:2 ± 0:8 after pretreatment with mild hypo-
thermia (P < 0:05). Similarly, as shown in Figures 1(e) and
1(g), mild hypothermia could also reduce the apoptosis rate
upon IR injury; it decreased from 37:82% ± 3:18% to 13:94
% ± 3:67% (P < 0:05). In addition, the hepatic functional
and morphological changes and cell apoptosis did not
exhibit a significant difference between the normal group
and the mild hypothermia pretreatment group (P > 0:05).
These results further confirm our previous research findings
that mild hypothermia could attenuate IR injury.

3.2. Pretreatment with Mild Hypothermia Ameliorates
Mitochondrial Injury and Oxidative Stress after Hepatic IR
Injury. Based on the aforementioned results and our pre-
liminary studies, we performed a proteomic analysis and
found that metabolism, especially lipid metabolism, was
markedly changed in these animal models (see Figure 2);
this suggests that lipid metabolism may play an important
role in mild hypothermia which attenuates hepatic IR
injury. Since mitochondria are the main intracellular site
of metabolism, transmission electron microscopy was used
to observe the mitochondrial morphological changes; ATP
levels, ADP/ATP Ratio, and NAD+/NADH in liver tissue
were measured to evaluate the mitochondrial functional
changes. As shown in Figure 3(a), the mitochondria were
seriously injured by IR; we observed severe mitochondrial
swelling, and most mitochondria were blurry or invisible;
however, the mitochondrial morphology was much better
after mild hypothermia pretreatment, as only moderate
swelling could be seen, and most mitochondria were clear.
Furthermore, the mitochondrial function were evaluated,
as shown in Figures 3(b)–3(d), the ATP levels and NAD+/-
NADH were significantly decreased, and ADP/ATP Ratio
was significantly increased after IR injury, while mild hypo-
thermia could improve these changes in the liver. These
results were consistent with the mitochondrial morpholog-
ical changes (P < 0:05). Moreover, mitochondrial injury
induced by IR resulted in increased ROS, 4-HNE, and
MDA levels and decreased SOD levels, which are bio-
markers of lipid peroxidation and oxidative stress. Pretreat-
ment with mild hypothermia could also significantly
prevent these changes and thus ameliorates lipid peroxida-
tion and reduces oxidative stress injury (P < 0:05) (see
Figures 3(e)–3(h)). Likewise, the levels of mitochondrial
injury, lipid peroxidation, and oxidative stress were not sig-
nificantly different between the normal group and the mild
hypothermia pretreatment group (P > 0:05). These results
show that mild hypothermia could reduce IR-induced mito-
chondrial injury, lipid peroxidation, and oxidative stress.

3.3. Mild Hypothermia Regulates Fatty Acid Oxidation in
Hepatic IR Injury. To test whether regulation of FAO was
involved in mild hypothermia which attenuates hepatic IR
injury, we evaluated the levels of proteases that are involved
in the process of FAO and the associated products of FAO
in liver tissue, such as ATP, Acetyl CoA, and Malonyl CoA.

As shown in Figures 3(b) and 4, FAO was markedly inhibited
by IR. Levels of CPT1a, the rate-limiting enzyme of hepatic
FAO, which converts acyl-CoA into acylcarnitine, were
downregulated nearly twofold; HADHA, which exhibits
hydratase, long chain hydroxyacyl-CoA dehydrogenase,
and thiolase activity and is critical for the β-oxidation
cycle, was downregulated nearly twofold as well. Other
proteases that participate in FAO were also obviously
downregulated. The expression levels of these key enzymes
could, however, be preserved by mild hypothermia
(P < 0:05). Moreover, the production of ATP was also sig-
nificantly decreased upon IR injury, whereas these changes
could be reversed by pretreatment with mild hypothermia
(P < 0:05). However, the production of Acetyl CoA and
Malonyl CoA and the expression of HMGCS1, the rate-
limiting enzyme of ketogenesis, did not exhibit significant
differences between the normal group and the IR group
(P > 0:05); they were, however, significantly different from
the mild hypothermia pretreatment groups, with or with-
out IR (P < 0:05). These results further highlight the nota-
ble effects of mild hypothermia on FAO. Thus, we
conclude that mild hypothermia alleviates hepatic IR
injury, primarily by regulating FAO.

3.4. Fatty Acid Oxidation Plays an Important Role in Hepatic
IR Injury. After obtaining the above findings, pharmacolog-
ical interventions of FAO were carried out to further illumi-
nate the role of FAO in hepatic IR injury. Therefore,
etomoxir, a specific inhibitor of FAO, and leptin, an FAO
activator, were used in this experiment; their effects on
CPT1a expression were shown in Figure S1. As shown in
Figure 5, the use of etomoxir could worsen hepatic IR
injury to some extent but it was not statistically significant;
the levels of ALT and AST, the score of HE, and the rate
of hepatocyte apoptosis did not exhibit significant
difference with the IR group (P > 0:05). However, the
application of leptin could significantly reduce the damage;
levels of ALT and AST were reduced to 4065:6 ± 759:7U/L
and 4632:2 ± 1500U/L, respectively, the score of hepatic
pathological injury decreased to 3:8 ± 0:8, and the
hepatocyte apoptosis rate was lowered to 13:06% ± 1:92%
(P < 0:05). In addition, inhibition of FAO had negative
effects but activation of FAO had positive effects on
mitochondrial injury and oxidative stress, i.e., less-damaged
mitochondrial morphology, decreased ROS, 4-HNE, MDA
levels, and ADP/ATP Ratio, and increased SOD and ATP
levels, and NAD+/NADH were observed after pretreatment
with leptin (P < 0:05); these were consistent with the
observed hepatic functional and morphological changes
(see Figure 6). Furthermore, levels of the related proteases,
Acetyl CoA, Malonyl CoA, and ATP were also changed
accordingly, as the activation of FAO could upregulate the
expression of these critical enzymes and the production of
Acetyl CoA, Malonyl CoA, and ATP, and the effects are
similar to those of mild hypothermia upon IR injury
(P < 0:05), while inhibition of FAO had the opposite effects
(see Figures 6(b) and 7). These results further highlight the
important role of FAO in mild hypothermia-induced
alleviation of hepatic IR injury.
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Gene ontology and KEGG pathway analysis of MHP vs IR
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Figure 2: Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes.
(a–c) GO annotation via the top 20 enrichment scores in the BP, CC, and MF domains and KEGG pathway analysis of the top 10 enrichment
pathways of the MH vs. N groups (a), the IR vs. N groups (b), and the MHP vs. IR groups (c). P < 0:05means significant difference; P < 0:01
means highly significant difference.

6 Oxidative Medicine and Cellular Longevity



2 𝜇m 2 𝜇m

1 𝜇m 1 𝜇m

2 𝜇m 2 𝜇m

1 𝜇m

N MH IR MHP

1 𝜇m

(a)

0

50

100

150

200

250

#
#

MHPIRMHN

Ti
ss

ue
 A

TP
 (𝜇

m
ol

/g
pr

ot
)

⁎

⁎

(b)

0

1

2

3

4

#
#

MHPIRMHN

Ti
ss

ue
 A

D
P/

A
TP

 ra
tio

(fo
ld

 ch
an

ge
 re

la
tiv

e t
o 

no
rm

al
)

⁎

(c)

0

1

2

3

4

5

# #

MHPIRMHN

Ti
ss

ue
 N

A
D

+ /N
A

D
H

 ra
tio

⁎

⁎

⁎

(d)

0

500

1000

1500

2000

2500

#

#

MHPIRMHN

Ti
ss

ue
 R

O
S 

(F
I/m

g) ⁎
⁎

(e)

0

1000

2000

3000

#
#

MHPIRMHN

Ti
ss

ue
 4

-H
N

E 
(n

g/
g) ⁎

⁎

(f)

0

50

100

150
#

#

MHPIRMHN

Ti
ss

ue
 S

O
D

 (U
/m

gp
ro

t)

⁎
⁎

(g)

0.0

0.5

1.0

1.5

##

MHPIRMHNTi
ss

ue
 M

D
A

 (n
m

ol
/m

gp
ro

t) ⁎

⁎

(h)

Figure 3: Mild hypothermia pretreatment alleviates mitochondrial injury and oxidative stress induced by hepatic IR. (a) Representative
transmission electron microscope images of liver tissues, “→” refers to mitochondria. Original magnification, 1700x and 5000x. (b–d)
Mitochondrial function was evaluated by detecting (b) ATP levels, (c) ADP/ATP Ratio, and (d) NAD+/NADH Ratio in liver tissue. (e–h)
The levels of oxidative stress were estimated by measuring the levels of (e) ROS, (f) 4-HNE, (g) SOD, and (h) MDA. n = 5 per group; data
are expressed as mean ± SD; ∗P < 0:05 versus N group, #P < 0:05 versus IR group.
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In addition, glycolysis and TCA cycle were also involved
in IR injury. Phosphofructokinase (PFKM), which is the key
enzyme of glycolysis, and Citrate Synthase (CS) and Isoci-
trate Dehydrogenase 2 (IDH2), which are the key enzymes
of TCA cycle, were downregulated after IR injury, while these
changes could be preserved by mild hypothermia pretreat-
ment and leptin. However, these changes were not as signif-
icant as those in FAO (see Figure S2).

3.5. Mild Hypothermia Ameliorates Liver IR Injury through
Regulating the JAK2/STAT3 Pathway. To further illustrate
the predominant signaling pathway involved in these pro-
cesses, we measured the activation of the JAK2/STAT3
pathway, which is upstream of CPT1 and downstream of
leptin. As shown in Figure 8, the phosphorylation levels
of both JAK2 and STAT3 were downregulated after IR
injury. Similarly, inhibition of FAO inhibited protein
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Figure 4: Mild hypothermia regulates FAO in hepatic IR injury. (a) Representative blots of proteases that are related to FAO. (b–f) Protein
expression levels of (b) ACSL1, (c) CPT1a, (d) ACADVL, (e) HADHA, and (f) HMGCS1. The gray values were calculated, and protein
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phosphorylation, whereas activation of FAO and mild
hypothermia could maintain the phosphorylation levels
of JAK2 and STAT3 (P < 0:05). Moreover, the apoptosis-
related proteins BCL2 and BAX showed significant
changes; that is, the ratio of BCL2/BAX increased after

activation of FAO and pretreatment with mild hypother-
mia, while it decreased after inhibition of FAO (P < 0:05).
These results strongly suggest that activation of the JAK2/-
STAT3 pathway is closely associated with the protective
effects of mild hypothermia against hepatic IR injury.
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These suggest that the JAK2/STAT3 pathway is of great
importance in the protective effects of mild hypothermia
against IR injury.

4. Discussion

Hepatic IR injury is a complex pathological process that can
result in serious liver injury and severely threatens the short-
and long-term prognosis of the patients who undergo liver

surgery [3, 32, 33]. The limited number of currently available
therapeutic strategies for IR injury urged us to explore more
methods that can effectively prevent and attenuate IR injury.
Recently, mild hypothermia attracted scholars’ attention due
to its profound protective effect and limited side effects;
besides that, it is easy to reach and maintain and has been
proven to be safe to patients [7 – 9, 16] and it also has been
proven to have a positive effect on kidney transplantation
from organ donors after declaration of death [34]. More
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Figure 7: FAO plays an important role in hepatic IR injury. (a) Representative blots of proteases that are related to FAO. (b–f) Protein
expression levels of (b) ACSL1, (c) CPT1a, (d) ACADVL, (e) HADHA, and (f) HMGCS1. The gray values were calculated, and protein
expression levels were normalized to β-actin. (g) CPT1 levels in liver tissue were measured by ELISA. (h) Acetyl CoA levels in liver tissue.
(i) Malonyl CoA levels in liver tissue. n = 5 per group; data are expressed as mean ± SD; #P < 0:05 versus IR group.
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importantly, our previous studies have preliminarily con-
firmed that mild hypothermia can significantly alleviate
inflammation and apoptosis induced by IR injury [10 – 13].
In the present study, we used a well-established animal model
of hepatic IR injury with or without mild hypothermia
pretreatment. The results showed that mild hypothermia
could significantly attenuate IR-induced hepatic functional
and morphological injury, which were consistent with our
previous studies. However, the underlying mechanisms by
which mild hypothermia exerts protective effects still
needs further research.

In order to elucidate the underlying mechanisms, we per-
formed a proteomic analysis and found that metabolism
exhibited significant changes upon IR injury and mild hypo-
thermia pretreatment, of which, lipid metabolism, especially
fatty acid oxidation, was of great significance. As is well
known, the liver is one of the most important organs for
FAO, and mitochondria are the main site where metabolism
occurs. Therefore, we evaluated the mitochondrial morpho-
logical and functional changes and the hepatic FAO activity;
results showed the IR-induced mitochondrial injury and
FAO inhibition were largely reversed by mild hypothermia,
thus demonstrating for the first time that FAO is one of the
potential mechanisms by which mild hypothermia protects

against IR injury. These results are consistent with previous
studies, which concluded that metabolic disturbances during
ischemia are a necessary precursor for reperfusion-induced
inflammation and could also serve as a molecular target for
therapeutic intervention [29].

FAO plays a pivotal role in energy homoeostasis, and the
process is extremely complex. Briefly, after translocation
across the plasma membrane, fatty acids are rapidly con-
verted into acyl-CoA by acyl-CoA synthetases such as long-
chain-fatty-acid-CoA ligase 1 (ACSL1) [23, 35, 36]. Then,
acyl-CoA is converted to acylcarnitine by CPT1 at the mito-
chondrial outer membrane. CPT1 is the rate-limiting enzyme
of FAO; it contains three isoforms, i.e., CPT1a (liver iso-
form), CPT1b (muscle isoform), and CPT1c (brain isoform)
[37, 38]. Once acylcarnitine enters the mitochondria, it
reconverted into CoA ester by carnitine palmitoyltransferase
2 (CPT2), and the CoA ester can finally enter the β-oxidation
cycle [23]. The β-oxidation cycle is a process in which
acyl-CoA is shortened, whereby the two carboxy-terminal
carbon atoms are released as acetyl-CoA units for each
cycle. In short, directly after import, acyl-CoA is metabo-
lized first by an acyl-CoA dehydrogenase, such as very
long-chain acyl-CoA dehydrogenase (ACADVL), and then
by mitochondrial trifunctional protein (HADHA), which
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Figure 8: Mild hypothermia maintains the activation of the JAK2/STAT3 pathway after hepatic IR injury. (a) Representative blots of JAK2,
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exerts hydratase, long-chain hydroxyacyl-CoA dehydroge-
nase, and thiolase activity [23]. The process of β-oxidation
produces large amounts of acetyl-CoA, flavin adenine
dinucleotide (FADH2), and nicotinamide adenine dinucle-
otide (NADH). Of the processes, acetyl-CoA can enter
the citric acid cycle to produce ATP, it can be converted
into ketones upon the catalysis of hydroxymethylglutaryl-
CoA synthase (HMGCS1), and it can also be converted
into malonyl-CoA. Moreover, FADH2 and NADH can be
used to produce ATP [23]. The impaired mitochondrial
function would not only result in severe disturbance of
lipid metabolism but also increase the production of
ROS, thus leading to serve lipid peroxidation and oxidative
stress injury [24, 39]. In the present study, we show that IR
injury can cause serious mitochondrial damage, downregu-
lated expression of key enzymes in FAO, and also, a
decreased rate of FAO. Furthermore, IR injury can also
increase the production of ROS, which is one of the most
common free radicals, and then lead to the increase in 4-
HNE and MDA and decrease in SOD. However, these
changes could be significantly reversed by pretreatment with
mild hypothermia. These observations demonstrate that the
protective effects of mild hypothermia on IR injury are
mainly due to the preservation of mitochondrial FAO.

To further confirm the above results, in vivo pharma-
cological interventions of FAO were performed. Etomoxir,
a small molecule developed for metabolic and cardiovascu-
lar disease that exhibits nanomolar potency toward CPT1
upon enzymatic conversion to the active inhibitor etomox-
iryl-CoA, was used to block mitochondrial FAO [40]. At
the same time, leptin, one of the adipokines that can reg-
ulate appetite and food intake, basal metabolism, vascular
function, reproductive function, insulin secretion, inflam-
mation, and immunity, was used to activate mitochondrial
FAO [41–43]. The results of our study show that activa-
tion of FAO by leptin significantly alleviated hepatic IR
injury, the effects were similar to those of mild hypother-
mia on IR injury. However, inhibition of FAO by eto-
moxir had negative effects on IR injury. These results
demonstrate that the regulation of FAO plays an impor-
tant role in IR injury and is a potential mechanism by
which mild hypothermia attenuates hepatic IR injury.

Based on the above results, we investigated the main
signaling pathway involved in these processes. Several
pathways have been demonstrated to be associated with
FAO, including the PPARα pathway [24, 44], the AMPK
pathway [45], and the JAK2/STAT3 pathway [46]. These
pathways are also closely related to IR injury. The JAK2/-
STAT3 pathway is directly downstream of leptin, and
JAK2/STAT3 can be phosphorylated after leptin binds to
the leptin receptor (LEPR) [41]. Phosphorylation of
JAK2/STAT3 leads to their dissociation from the receptor
and the formation of active dimers, which translocate to
the nucleus to regulate gene expression, thus regulating
metabolism, reproduction, oxidative stress, apoptosis, and
inflammation [47, 48]. As we know, apoptosis is one of the
most important mechanisms of IR injury; thus, we evaluated
the protein expression levels of BCL-2 and BAX in liver tissue
to explore the role of mild hypothermia and FAO regulation

on apoptosis upon IR injury. Our results show that the phos-
phorylation of JAK2/STAT3 and the ratio of BCL-2/BAXwere
decreased after IR injury, while mild hypothermia significantly
prevented these changes. In addition, treatment with leptin
also increased the phosphorylation of JAK2/STAT3 and the
ratio of BCL-2/BAX, whereas etomoxir pretreatment did not
cause any significant changes. These results suggest that the
main signaling pathway involved in the protective mecha-
nisms of mild hypothermia against IR injury is the JAK2/-
STAT3-CPT1a pathway.

Importantly, regarding the protective effects of leptin on
hepatic IR injury, Lin et al. first found that endogenous leptin
fluctuates in hepatic IR injury [49] and Carbone et al. sug-
gested that leptin could reduce hepatic IR injury [50], but
they both did not explore the underlying mechanisms. Our
results are consistent with their findings and confirm the
potential protective effects. In addition, our study showed
that the phosphorylation levels of JAK2/STAT3 are down-
regulated after IR injury, while pretreatment with mild hypo-
thermia and leptin can upregulate these and thus attenuate
IR injury; these results confirmed that activating JAK2/-
STAT3 pathway can attenuate IR injury. However, our
results are in dispute with some studies, which showed that
the phosphorylation levels of JAK2/STAT3 are increased
after IR injury [51–53]. We think it has something to do with
the time of the models. The model of our study is in vivo
hepatic ischemia for 1 h and reperfusion for 6 h, the time is
relatively short, while the time of the models in the studies
opposite to us are relative long, which often is more than
24 h. In addition, there are also many studies consistent with
our results [54–56]; the time of their models is also relatively
short, which is often less than 10h. This means that the acti-
vation of JAK2/STAT3 may have different patterns at differ-
ent time points after IR injury, and this need to be confirmed
by our further research. All in all, regardless of the phosphor-
ylation of JAK2/STAT3 after IR injury, one thing all the stud-
ies have in common is that activating the JAK2/STAT3
pathway can attenuate IR injury. Nevertheless, we wish to
mention two limitations to our study. First, the mechanism
by which JAK2/STAT3 affects CPT1 expression thus regu-
lates FAO and reduces mitochondrial injury requires further
study. Second, we only conducted in vivo intervention exper-
iments, and we did not verify our findings by in vitro exper-
iments or clinical trials.

5. Conclusion

The major novel conclusions of the present study were the
following. (1) Mild hypothermia effectively attenuates IR
injury. (2) One of the mechanisms by which mild hypo-
thermia exerts protective effects against IR injury is the
preservation of mitochondrial FAO. (3) Pharmacological
interventions of FAO have significant effects on IR injury;
that is, activation of FAO can significantly attenuate IR
injury, while inhibition of FAO has negative effects. (4)
The JAK2/STAT3-CPT1a signaling pathway may play a
vital role in these processes. A schematic representation
of the underlying mechanisms is presented in Figure 9.
Our results strongly support the notion that pretreatment
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with mild hypothermia is a feasible strategy to prevent
hepatic IR injury, and we elucidated one of the possible
mechanisms of the protective effects of mild hypothermia;
these further improved our knowledge on mild hypother-
mia and provide a theoretical basis for further clinical
application of mild hypothermia in liver surgery.
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Supplementary Materials

Figure S1: the effects of Etomoxir and Leptin on CPT1a
expression. (A, B) Representative blots of CPT1a after the
use of Etomoxir and Leptin with different dose and time.
(C, D) Protein expression levels of CPT1a after the use of
Etomoxir and Leptin with different dose and time. The gray
values were calculated, and protein expression levels were
normalized to β-actin. n = 3 per group; data are expressed
as mean ± SD; ∗P < 0:05 versus N group. Figure S2: the
effects of mild hypothermia on glycolysis and TCA cycle.
(A) Representative blots of PFKM, the key enzyme of glycol-
ysis. (B) Representative blots of CS and IDH2, the key
enzymes of TCA cycle. (C) Protein expression level of PFKM.
(D) Protein expression levels of CS and IDH2. The gray
values were calculated, and protein expression levels were
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Figure 9: Schematic representation illustrating the potential mechanisms behind the protective effects of mild hypothermia against hepatic IR
injury. Pretreatment with mild hypothermia promotes the homodimerization of leptin (LEP) and leptin receptor (LEPR), leading to the
phosphorylation of JAK2/STAT3 and hence the activation of the signal transduction pathway. Activation of the JAK2/STAT3 pathway
leads to the upregulation of the expression of CPT1, which is the rate-limiting enzyme of FAO and thereby accelerates hepatic FAO and
ATP production. Sufficient ATP levels will alleviate IR-induced mitochondrial injury, inhibit the release of ROS, and reduce lipid
peroxidation, thus attenuating oxidative stress. Furthermore, activation of the JAK2/STAT3 pathway promotes the expression of BCL-2
and inhibits the expression of BAX, thereby reducing hepatocyte apoptosis.
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normalized to GAPDH. n = 5 per group; data are expressed
as mean ± SD; ∗P < 0:05 versus N group, #P < 0:05 versus
IR group. (Supplementary Materials)
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