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Diabetes mellitus affects 451million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular
disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive
oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide
synthase (eNOS). We have identified (–)-epicatechin (EPICAT), a plant compound and known vasodilator, as a potential therapy.
We hypothesized that mitochondrial ROS in cells treated with antimycin A (AA, a compound targeting mitochondrial complex III)
or high glucose (HG, global perturbation) could be normalized by EPICAT, and correlate with improved mitochondrial dynamics
and cellular signaling. Human umbilical vein endothelial cells (HUVEC) were treated with HG, AA, and/or 0.1 or 1.0 μM of
EPICAT. Mitochondrial and cellular superoxide, mitochondrial respiration, and cellular signaling upstream of mitochondrial
function were assessed. EPICAT at 1.0 μM significantly attenuated mitochondrial superoxide in HG-treated cells. At 0.1 μM,
EPICAT nonsignificantly increased mitochondrial respiration, agreeing with previous reports. EPICAT significantly increased
complex I expression in AA-treated cells, and 1.0 μM EPICAT significantly decreased mitochondrial complex V expression in
HG-treated cells. No significant effects were seen on either AMPK or eNOS expression. Our study suggests that EPICAT is
useful in mitigating moderate ROS concentrations from a global perturbation and may modulate mitochondrial complex
activity. Our data illustrate that EPICAT acts in the cell in a dose-dependent manner, demonstrating hormesis.

1. Introduction

Diabetes mellitus (DM) confers an excess risk of cardiovas-
cular disease (CVD), preceded by dysfunction in vascular
reactivity [1]. In the context of DM, excess reactive oxygen
species (ROS) correlate with vascular inflammation and vas-
cular stiffness [2–4]. Disruptions in redox regulation and
elevated ROS are linked to hyperglycemia, dampened anti-
oxidant defenses, insulin resistance, and dysfunctional cellu-
lar signaling [2, 3, 5–8]. It is established that elevated ROS
promotes vascular pathology; however, multiple clinical
attempts at establishing the efficacy of antioxidants have
failed [9, 10]. Stochiometric approaches to excess ROS allevi-

ation do not consider the important signaling role of ROS in
cellular homeostasis [11, 12]. Therefore, studies targeting ele-
vated ROS must approach redox from a broad perspective.
For example, mitochondria are a central source of cellular
superoxide under normal physiological conditions; however,
excess mitochondrial-derived oxidative damage has been
shown to cause age-related vascular inflammation and arte-
rial stiffness [13–16]. As the mitochondrial function is critical
to effective vasoreactivity, targeting redox homeostasis in this
organelle is a promising therapeutic direction.

Flavonoids are a class of botanical compounds found
ubiquitously in common plant-based foods that impact vaso-
motion. Flavonoids are characterized by a two-benzene ring
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basal structure and include well-known subclasses of com-
pounds such as anthocyanins and catechins; as a class, these
chemicals promote vasodilation and have specific antioxi-
dant activity [17, 18]. The botanical flavonoid (–)-epicate-
chin (EPICAT) is found in commonly consumed foods,
primarily chocolate (Theobroma cacao, Sterculiaceae) and
tea (Camellia sinensis, Theaceae). This compound has been
shown to induce vasorelaxation in rat femoral artery ex vivo,
increase mitochondrial respiration in cardiomyocytes, prevent
derangements in mitochondrial membrane potential and
decrease in mitochondrial complex expression in mouse kid-
ney cells, and activate nitric oxide synthase (NOS) activity,
the enzyme upstream of both vasodilation and mitochondrial
activity, in rat aorta and human coronary arterial endothelial
cells [19–23].

Importantly, EPICAT has been reported to have anti-
oxidant activity in multiple tissues and cells. Specifically,
EPICAT supports the activation of ROS-regulating tran-
scription factors and decreases ROS in aortic rings and
HepG2 cells, measured with immunohistochemistry (IHC)
and dihydroethidium (DHE) [24, 25]. EPICAT inhibits
cardiac, hepatic, adipose, and HepG2 ROS-generating enzy-
matic or protein expression activity, such as NADPH oxi-
dases (NOXs) and related proteins [26–28]. EPICAT has
also been shown to alleviate hydrogen peroxide production
in damaged cardiac and brain mitochondria by modifying
mitochondrial respiration [29]. In plasma and urine, EPI-
CAT promotes the activity of superoxide dismutase (SOD)
and glutathione peroxidase [30]. In human lung fibroblasts,
EPICAT restored SOD activity and complex I expression
dampened by damaged mitochondria [31]. Despite this con-
sistent antioxidant paradigm in numerous models and tis-
sues, EPICAT’s mechanism(s) at the cellular level remain
largely unverified.

We hypothesized that in a vascular cell model, human
umbilical vein endothelial cells (HUVECs), treated with anti-
mycin (mitochondrial perturbation, AA) or high glucose
(cellular perturbation, HG) will generate mitochondrial
ROS and that treatment with EPICAT will reduce mitochon-
drial ROS concentrations while not impacting untreated
cells, restoring mitochondrial function and cellular homeo-
stasis. We chose these two cellular perturbations to test EPI-
CAT against oxidative stress targeted to the mitochondria as
well as global cellular stress. It is imperative to have these two
models, as EPICAT has mixed results as an antioxidant.
Employing a mitochondrial specific versus global model
allows for specific determination about its activity. Here,
we report our results from testing concentrations of 0.1
or 1.0μM of EPICAT, based on previous literature, in cells
exposed to either AA or HG. We measured cytosolic or
mitochondrial-derived superoxide, mitochondrial respiration,
and cellular nutrient signaling, as well as endogenous redox
defenses. Our study demonstrates the dose-dependent redox
and mitochondrial regulatory activity of EPICAT. This effect
is of interest for diseases characterized by chronic redox dys-
function impacting the vasculature, such as diabetes. To our
knowledge, this is a singular, comprehensive effort to investi-
gate EPICAT’s bioactivity in a human vascular cell model
with the goal of expanding the understanding of the actions

of this compound beyond its well-established activity as a
vasodilator.

2. Methods and Materials

2.1. Reagents. For cell culture, Hyclone Ham’s Nutrient Mix-
ture F12 Media (Fisher #SH30526.01) was purchased from
Fisher. Penicillin/streptomycin, trypsin, and fetal bovine
serum (FBS) were purchased from Gemini Bioproducts
(CA, USA). For Western blotting and general experiments,
gels were from BioRad, PVDF membranes from Millipore,
fluorescent secondary antibodies were from Licor. Mamma-
lian Protein Extraction Reagent (M-PER,) was obtained from
Thermo Scientific Hyclone (MA, USA), and dimethyl sulfox-
ide (DMSO), sodium chloride, sucrose, and bovine serum
albumin were purchased from Fisher Scientific (PA, USA).
For Western blot and respiration experiments, collagenase,
ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetra-
acetic acid (EGTA), sodium pyrophosphate, sodium orthova-
nadate, sodium fluoride, okadaic acid, 1% protease inhibitor
cocktail, dithiothreitol, magnesium chloride, K-lactobionate,
taurine, potassium phosphate, HEPES, digitonin, pyruvate,
malic acid, glutamic acid, adenosine diphosphate, succinic
acid, oligomycin, carbonyl cyanide 4 (trifluoromethoxy)phe-
nylhydrazone (FCCP), antibody to β-actin (mouse), phenyl-
ephrine and acetylcholine, trypsin inhibitor, and cytochrome
c were procured from Sigma-Aldrich (MO, USA). EPICAT
was sourced from Cayman Chemical (MI, USA).

2.2. Antibodies. Antibodies to total adenosine monopho-
sphate kinase (AMPK, Cell Signaling #2532S, 1 : 500, mouse),
phosphorylated AMPK (pAMPK, Cell Signaling #2532S,
1 : 500, rabbit), Sirtuin 3 (SIRT3, Cell Signaling #2627S,
1 : 500, rabbit), total endothelial nitric oxide synthase (eNOS,
Cell Signaling #9572S, 1 : 500-1 : 250, mouse), Ser1177 phos-
phorylated eNOS (Cell Signaling #9571S, 1 : 500-1 : 250
rabbit), were obtained from Cell Signaling (MA, USA).
Antibody cocktail to representative subunits of mitochon-
drial oxidative phosphorylation (Total OXPHOS Blue
Native WB Antibody Cocktail Abcam #ab110412, 1 : 1000-
1 : 500, mouse) complexes I (subunit NDUFA9), II (subunit
SDHA), III (subunit UQCRC2), IV (subunit IV), and V
(subunit ATP5A); PPARγ coactivator 1 alpha (PGC-1α,
Abcam #ab54481, 1 : 500, rabbit); and MnSOD antibody
(Anti-SOD2/MnSOD antibody [2a1], Abcam, #ab16956,
1 : 1000-1 : 500) were obtained from Abcam (Cambridge,
MA). Secondary Fluorescent antibodies (IRDye 680RD goat
antimouse, Li-COR, #926-68070 1 : 5,000, IRDye 680RD goat
antirabbit, Li-COR, #926-68071 1 : 5,000, IRDye 800CW goat
antimouse, Li-COR, #926-32210, 1 : 10,000, IRDy 800CWgoat
antirabbit, Li-COR, #926-32211, 1 : 10,000) for Western blot
detection were purchased from Li-COR (NE, USA).

2.3. Cell Experiments.Human umbilical vein endothelial cells
(HUVECs) were purchased from ATCC and grown in media
supplemented with 10% FBS and 1% penicillin/streptomycin
at 7mM glucose. Cells were incubated in 0.1% FBS starvation
media for 12-15 hours. HUVECs were then preincubated for
1 hour with either 0.1 or 1.0μM EPICAT diluted into
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phosphate-buffered saline (PBS) or PBS alone. Following
this incubation, antimycin (10μM, AA), ethanol, glucose
(30mM, high glucose [HG]), or PBS were directly added
into media for a 2-hour incubation. The antimycin con-
centration was chosen based on previous studies of mito-
chondrial ROS generation [32, 33]. Cells were then
harvested for electron paramagnetic resonance spectros-
copy, respiration, or Western blotting. No evidence of cell
death was observed. All experiments were conducted in
triplicate or quadruplicate.

2.4. Electron Paramagnetic Resonance Spectroscopy (EPR).
Total ROS production was measured by EPR using the super-
oxide sensitive spin probe 1-hydroxy-3-methoxycarbonyl-
2,2,5,5-tetramethylpyrrolidine (CMH), while mitochondrial
ROS production was measured using the mitochondrial spin
probe 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,
2,6,6-tetramethyl-piperidine,1-hydroxy-2,2,6,6-tetramethyl-
4-[2-(triphenylphosphonio)acetamido] piperidinium dichlor-
ide (mito-TEMPO-H). HUVEC Cells were seeded in 6-well
plates, and experiments were completed prior to the EPR
measurements. Spin probes CMH and mito-TEMPO-H were
prepared in deoxygenated 50mM phosphate buffer. Cells
were washed and treated with CMH and mito-TEMPO-H
0.25mM in Krebs-HEPES buffer (KHB) containing 100μM
of a metal chelator DTPA. Cells were incubated for 50min
at 37°C then gently scraped and transferred to ice. 50μl of cell
suspension was loaded in an EPR capillary tube, and EPR
measurements were performed at room temperature using
Bruker EMXnano X-band spectrometer. EPR acquisition
parameters are microwave frequency =9.6GHz; center field
= 3432G; modulation amplitude= 2.0G; sweep width= 80G;
microwave power = 19.9mW; total number of scans = 10;
sweep time=12.11 s; and time constant = 20.48ms. CMH or
mito-TEMPO-H both are detected as nitroxide radicals; the
concentration was obtained by simulating the spectra using
the SpinFit module incorporated in the Xenon software of
the bench-top EMXnano EPR spectrometer followed by the
SpinCount module (Bruker). Nitroxide concentrations were
normalized to total protein.

2.5. Western Blotting.HUVECs were harvested in 4°C mam-
malian lysis buffer (MPER with 150mM sodium chloride,
1mM of EDTA, 1mM EGTA, 5mM sodium pyrophos-
phate, 1mM sodium orthovanadate, 20mM sodium fluo-
ride, 500 nM okadaic acid, 1% protease inhibitor cocktail),
and protein was measured using Western blotting as previ-
ously described [34]. Cell lysates were sonicated at 4°C cen-
trifuged at 18,000 x g at 4°C for 10min, and the Bradford
protein assay was used to measure the protein concentra-
tion of the lysate. Protein samples (15μg to 40μg) in
Laemmli sample buffer (boiled with 100mM dithiothreitol)
were run on precast SDS-4-15% polyacrylamide gels. Pro-
teins were transferred to PVDF membranes. Ponceau S
staining was used to evaluate protein loading. Blots were
probed with antibodies described above and left overnight
at 4°C. Fluorescent secondary antibodies were applied
following the primary antibody incubation (1 : 10,000
IRDye800CW and 1 : 5,000 IRDye680RD, 1 hour at room

temperature). Proteins were detected by fluorescence with
the Li-COR Odyssey CLX, and Image Studio v 4.1 was used
for densitometric analysis. All protein data has been nor-
malized to β-actin protein expression. Specific activity was
determined as the ratio of phosphorylated signal to total
signal following β-actin normalization. To rule out bleed-
through, antibodies were probed on the same blot using
different animal primary antibodies between the phosphor-
ylated (rabbit) and total protein (mouse) allowing for two-
color detection and analysis when used with secondary
fluorescent antibodies with differing wavelengths (IRDye
680RD and IRDye 800CW).

2.6. Respiration. Oroboros Oxygraph-2k (O2k, OROBOROS
INSTRUMENTS Corp., Innsbruck, Austria) was used for
mitochondrial respiration analysis. Permeabilized HUVEC
protocols were optimized according to previously described
protocols [34–36]. HUVECs were trypsinized using 0.25%
trypsin/EDTA, washed with PBS, and spun (3 minutes at
800 g). Cells were then resuspended in MiR05 respiration
buffer (0.5mM EGTA, 3mM magnesium chloride, 60mM
K-lactobionate, 20mM taurine, 10mM potassium phos-
phate, 20mM HEPES, 110mM sucrose, 1 g/l fatty acid-free
bovine serum albumin) and counted under a microscope
using a hemocytometer. HUVECs were added to the O2k
chamber at a cell count of 0:5 × 106 and 1 × 106 per chamber
and permeabilized with 3μg of digitonin. Substrates and
inhibitors designed to mimic carbohydrate metabolism were
added to assess respiration rates. State 2 (leak state) was
defined following the addition of 5mM pyruvate, 2mM
malate, and 10mM glutamate (PMG); state 3 (ATP-generat-
ing respiration) was defined as PMG with 2mM adenosine
diphosphate (ADP); state 3S was defined as PMG, ADP,
and 6mM succinate; 2μg/ml oligomycin revealed state 4
(leak state); and 0.5μM of carbonyl cyanide 4-(trifluoro-
methoxy)phenylhydrazone (FCCP) was added incrementally
until a peak uncoupling state was reached (uncoupled). Cells
were recounted following the experiments, and respiration
rates normalized to cell count. An area of consistent respira-
tion rate of 3-5 minutes or longer was representative of the
various states.

2.7. Statistical Analysis. A two-way ANOVA was used for
data analysis with Tukey multiple comparisons post hoc anal-
ysis for comparing each group. Data are presented on separate
graphs to represent each ANOVA comparison. For analysis of
the mitochondrial superoxide data, controls (negative and
positive for both HG and AA) from all experiments were
pooled. A p value of less than 0.05 for interaction, treatment,
or EPICAT effects was used as the cutoff for statistical signifi-
cance in all tests. A p value of equal or less than 0.08 was con-
sidered indicative of data trends approaching significance.
Data are expressed as mean ± SEM.

3. Results

3.1. Differential Measurement of Total Cellular Versus
Mitochondrial Superoxide. We employed electron paramag-
netic resonance spectroscopy using two different spin probes
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to differentiate total cell (CMH) and mitochondrial (Mito-
TEMPO-H) superoxide to measure both total cellular and
mitochondrial-derived superoxide. When the mitochondrial
probe was used in these same experiments, we measured
elevated superoxide concentrations in both AA (p = 0:05,
Figure 1(a)) and HG-treated cells (p < 0:05, Figure 1(b)).
Representative nitroxide spectra for mitochondrial-specific
superoxide are shown in Figure 1(c). To determine whether
we could isolate the measurement of mitochondrial-derived
superoxide from total cellular superoxide, we tested cells
with HG and measured superoxide in total cells
(Figures 1(a) and 1(d)). HG failed to generate significantly
higher concentrations of superoxide in the total cell as com-
pared with the control (Figure 1(d)), demonstrating the
mitochondrial specificity of our superoxide measurements.

3.2. (–)-Epicatechin Attenuated Mitochondrial Superoxide
Production. In all experiments, the mitochondrial toxin and
superoxide generator AA significantly increased superoxide
production (p < 0:05, Figure 1(a)). AA plus EPICAT at
1.0μM (Figure 1(a)) tended to decrease superoxide in cells
compared to AA alone (p = 0:06, EPICAT effect,
Figure 1(a)). Post hoc analysis revealed that AA-treated cells
showed significantly elevated superoxide as compared with
controls, and cells with control plus EPICAT at both concen-
trations had significantly lower superoxide as compared with
treated cells (p < 0:05, Figure 1(a)). Cells with AA plus EPI-
CAT were significantly different than both controls with
and without EPICAT (both concentrations, p < 0:05,
Figure 1(a)). At 1.0μM, EPICAT significantly attenuated
superoxide production stimulated by HG, with post hoc
analysis revealing significantly less superoxide in cells with
EPICAT as compared with HG-treated cells (p = 0:05 and
p < 0:05, interaction and EPICAT effects, respectively,
Figure 1(b)). EPICAT at 0.1μM concentrations did not
show any significant impact on mitochondrial-derived super-
oxide (Figure 1(b)). MnSOD expression was not altered by
either AA or HG, alone or in the presence of EPICAT treat-
ment (Figure 1(e)).

3.3. (–)-Epicatechin Had No Significant Impact on
Mitochondrial Respiration. Permeabilized HUVECs were
exposed to a suite of substrates and inhibitors designed to
mimic carbohydrate metabolism; respiration was measured
as mitochondrial oxygen disappearance. No significant dif-
ferences were observed in any respiration state in response
to HG and EPICAT treatment (Figure 2). However, a nonsig-
nificant increase in all respiration states was observed with
0.1μM EPICAT (Figure 2). Cells treated with AA showed
decreased respiration at all states, as expected with a mito-
chondrial toxin; however, the toxic effect of AA did not per-
mit full respiration measurements (data not shown).

3.4. (–)-Epicatechin Modulated AMPK Expression. AA treat-
ment resulted in a significant increase in pAMPK expression,
regardless of EPICAT concentrations (p < 0:05, Figure 3(a)).
AA treatment also elevated AMPK specific activity at 0.1μM
EPICAT (p < 0:01, Figure 3(a)). Post hoc analysis revealed
significant differences in pAMPK expression between control

and treated cells in the 0.1μMEPICAT experiments, and also
in AMPK specific activity between control cells plus EPICAT
and AA-treated cells, and between control and AA-treated
cells with EPICAT (p < 0:05, Figure 3(a)). Post hoc analyses
showed no differences between groups in the 1.0μMEPICAT
experiments (Figure 3(a)). In cells treated with AA, EPICAT
did not impact pAMPK expression (Figure 3(a)). In cells
treated with HG, no effects were noted on pAMPK expres-
sion (Figure 3(a)).

3.5. (–)-Epicatechin Nonsignificantly Impacted eNOS Activity.
In cells treated with AA, 0.1μM EPICAT resulted in no
change in peNOS expression (Figure 3(a)). In cells treated
with HG, 1.0μM EPICAT resulted in a nonsignificant eleva-
tion of eNOS specific activity (p = 0:08, Figure 3(b)).

3.6. (–)-Epicatechin Modulated the Expression of SIRT3 but
Did Not Impact PCG1-α. Cells exposed to AA showed a sig-
nificant decrease of PGC1-α expression (p < 0:01, treatment
effect and significant post hoc differences between control
and AA-treated cells, p < 0:05, Figure 3(a)). Post hoc analysis
revealed significant differences between both AA-treated
groups and the control cells (p < 0:05, Figure 3(a)). No effect
of EPICAT was observed. A significant interaction effect
between treatment and EPICAT was observed in SIRT3
expression in HUVECs treated with AA and 1.0μMEPICAT
(p < 0:01, interaction effect, p < 0:05 difference between
vehicle control ± EPICAT, Figure 3(a)); however, no differ-
ences were noted in post hoc analyses. No effects were noted
with HG-treated cells (Figure 3(b)).

3.7. (–)-Epicatechin Attenuated the Expression of
Mitochondrial Complexes I and V. In cells exposed to AA,
there was a significant decrease in complex I expression with
0.1μM EPICAT (interaction (p < 0:05), treatment (p < 0:01),
and EPICAT effect (p < 0:05), with significant post hoc dif-
ferences between control cells with EPICAT and both control
and AA-treated cells, and between control and AA-treated
cells with EPICAT p < 0:05 for all, Figure 4(a)). Complex
III expression was significantly decreased by AA treatment
(p < 0:05, treatment effect, Figure 4(a)). In HUVECs exposed
to HG, EPICAT at 1.0μM concentration significantly atten-
uated the expression of mitochondrial complex V (p < 0:05,
EPICAT effect, p < 0:05, significant differences between
vehicle control ± EPICAT, Figure 4(b)). No impact on com-
plex expression was observed with 0.1μM concentration
(Figure 4(b)).

4. Discussion

Here, we report our results from an acute in vitro study
investigating the bioactivity of two concentrations of EPI-
CAT in vascular cells. Endothelial cells were exposed to
insults designed to mimic either direct mitochondrial insult
(AA) or broad metabolic stress (HG). These perturbations
were specifically designed to gauge the biological activity of
EPICAT at the cellular level, harnessing HUVEC’s, a human
endothelial cell, versatility for in vitro vascular studies. The
dosage range of EPICAT 0.1-1.0μM has been used exten-
sively in the literature, particularly in in vitro experiments
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[21, 37]. At these concentrations in cells, EPICAT attenuated
mitochondrial superoxide in HG-treated cells but not in
AA-treated cells, stimulated a nonsignificant mitochondrial
respiration signal, and modulated mitochondrial complex
expression. Although others have reported an impact of
EPICAT on cellular signaling, we do not observe this in
our acute study at 2 hours of treatment.

To date, very little research has been conducted in an
informative vascular cell model to provide a detailed under-
standing of the vasoreactivity results observed with EPICAT
in vivo. Using a comprehensive suite of endpoints to
pinpoint EPICAT bioactivity on mitochondrial ROS and
content and function, we found a difference between the
response of a mitochondrial poison (AA) versus nutrient
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measured in HUVECs by electron paramagnetic resonance spectroscopy using two different spin probes to differentiate mitochondrial
(Mito-TEMPO-H) and total cell (CMH) superoxide. CM or mito-TEMPO nitroxide radicals concentration was obtained by simulating the
spectra using the SpinFit module incorporated in the Xenon software of the bench-top EMXnano EPR spectrometer followed by the
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control data from all experiments was pooled n = 8, and separate tests were run on each experiment of different EPICAT concentrations.
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control, b = p < 0:05 as compared to treatment, c = p < 0:05 as compared to EPICAT control. Data are expressed as mean ± SEM.
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stress (HG) on ROS profiles and mitochondrial respiration
using state of the art approaches. EPR enables precise and
specific superoxide measurement to delineate superoxide
concentrations of mitochondrial origin. We chose our cell
model, HUVECs, as they are a human-derived in vitro model
widely used in vascular cellular studies. A 2-hour incubation
period was chosen based on preliminary experiments
addressing specific intercellular ROS pools, mimicking the
acute postmeal state. The novelty of our current study lies,
in part, in its assessment of cellular signaling and bioactivity
upstream of vasodilation during an acute AA (targeted) or
HG (global) exposure.

4.1. (–)-Epicatechin Suppresses Mitochondrial Superoxide.
Here, we observed a suppression of AA-induced mitochon-
drial superoxide at the higher concentration of EPICAT,
albeit not significant, and significant lowering effect of EPI-
CAT on HG-induced superoxide, confirming previous stud-
ies suggesting that EPICAT is an antioxidant [22, 24–31, 38].
We also demonstrate that both AA and HG specifically
increase mitochondrial ROS acutely. Surprisingly, we did
not observe a concurrent response in mitochondrial superox-
ide dismutase (MnSOD); however, we did capture significant
elevation of SIRT3 expression with 1.0μM EPICAT concen-
tration in our AA perturbation experiments. EPICAT has
previously been shown to have antioxidant activity [22, 38],
but the mechanisms of this activity are not entirely eluci-
dated. Taken together, our data strongly suggest that EPI-
CAT does not work stoichiometrically, as has been seen
with other compounds such as vitamin C [10, 11], but mod-
ulates endogenous cellular redox defenses. These data show
EPICAT as an intriguing solution to excess mitochondrial
superoxide, a known phenomenon in chronic disease, such
as diabetes and metabolic syndrome [2, 3, 5–8].

4.2. (–)-Epicatechin Modulated Mitochondrial Activity. EPI-
CAT has been shown to increase mitochondrial respiration

[23, 39]. However, we did not observe any significant impact
on mitochondrial respiration at 2 hours. Interestingly, EPI-
CAT treatment at the higher concentration resulted in a sig-
nificantly less expression of complex V in cells treated with
HG; this may indicate a dose-dependent impact of EPICAT
depressing mitochondrial function and therefore lessening
the generation of superoxide. At the AA experiment with
0.1μM EPICAT treatment, EPICAT significantly increased
complex I expression in control cells but failed to rescue the
AA-dampened response in AA-treated cells. EPICAT also
failed to restore complex III expression dampened in AA-
treated cells. This suggests a stimulatory effect of EPICAT
on mitochondrial activity that is not sufficient to overcome
the toxicity caused by AA. This dampening of complex
expression is expected in AA-treated cells, as AA targets
complex III of the electron transport chain. Employing the
use of the Oxygraph 2k Oroboros in conjunction with pro-
tein expression measurements is a highly rigorous way to
assess mitochondrial function; here, we show that EPICAT
may stimulate mitochondrial respiration while protecting
against resultant oxidant damage, but cannot restore cell
function in the context of a specific mitochondrial insult.

4.3. (–)-Epicatechin Has Only a Moderate Effect on Cellular
Signaling Upstream of Mitochondria Regulation. EPICAT
has been shown to increase or modulate AMPK and eNOS
signaling in previous studies [20, 21, 40, 41]. Our results
show that AA had a significant stimulatory effect on AMPK
expression, but EPICAT was unable to modulate this effect.
Our results may not agree with those previously reported
due to the acute nature of our study (2 hours of incubation
with AA or HG), or other experimental differences. Other
studies report that EPICAT induces and increases eNOS
expression, but we failed to see a significant increase in the
eNOS expression or specific activity in either AA- or HG-
treated cells. We acknowledge that we measured protein
expression, not a true enzymatic activity for either pAMPK
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Figure 2: Mitochondrial respiration of permeabilized cells. Permeabilized HUVECs were exposed to substrates and inhibitors mimicking
carbohydrate metabolism and states 2 (leak state), 3, 3S (both ATP-generating respiration), 4 (leak state), and uncoupled were determined.
Respiration rates normalized to cell count (n = 4). ∗p < 0:05, †p < 0:08, interaction, treatment, or EPICAT effect, two-way ANOVA,
Bonferroni’s multiple comparisons analysis. Data are expressed as mean ± SEM.
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Figure 3: (a, b) Cellular signaling: Cells were harvested and lysates processed for protein expression via Western blot analysis (n = 3 − 4).
Blots were probed for pAMPK, AMPK, peNOS, eNOS, SIRT3, and PGC1-α. Specific activity (SA) was calculated as phosphorylated signal
normalized to total signal for AMPK and eNOS. ∗p < 0:05, interaction, treatment, or EPICAT effect, two-way ANOVA, Tukey multiple
comparisons analysis. A long horizontal bar over the entire graph indicates an interaction effect, smaller bars over the EPICAT groups
indicates an EPICAT effect, while bars with tabs indicate a single main effect of either AA or HG. Post hoc analyses are described as a =
p < 0:05 as compared to control, b = p < 0:05 as compared to treatment, c = p < 0:05 as compared to EPICAT control. Data are expressed
as mean ± SEM.
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Figure 4: (a, b) Mitochondrial complex expression: Cells were harvested and lysates processed for protein analysis via Western blot analysis
(n = 3 − 4). Blots were probed for mitochondrial complexes I, II, III, and IV using a single antibody-containing subunits of all complexes.
∗p < 0:05, †p < 0:08, interaction, treatment, or EPICAT effect, two-way ANOVA, Tukey multiple comparisons analysis. A long horizontal
bar over the entire graph indicates an interaction effect, smaller bars over the EPICAT groups indicates an EPICAT effect, while bars with
tabs indicate a single main effect of either AA or HG. Post hoc analyses are described as a = p < 0:05 as compared to control, b = p < 0:05
as compared to treatment, c = p < 0:05 as compared to EPICAT control. Data are expressed as mean ± SEM.
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or eNOS.We anticipated that the impact on cellular signaling
would be detectable after 2 hours of perturbation. Further
studies will be needed to determine whether EPICAT signals
more acutely, whereas longer incubations may result in
indirect effects. Further in vitro experiments in other vas-
cular cell lines and experimental designs may clarify the
activity of these and additional mechanisms of action of
EPICAT in cellular signaling.

4.4. Hormesis. Our data largely demonstrate that EPICAT is
more bioactive at the lower concentration tested as compared
with the higher concentration. This phenomenon, known as
hormesis, refers to a biphasic response of beneficial stimula-
tion of cellular response at low doses, but toxic or null activity
promoted by compounds at higher concentrations [42].
Hormesis is observed with many phytochemicals, including
catechins [43], and the overall result is homeostatic adap-
tation [42]. This concept agrees with other reports of a
peak bioactive EPICAT concentration for the stimulation
of mitochondrial complex expression in vitro, with higher
concentrations showing diminished bioactivity [44, 45].
This observation of EPICAT’s hormetic effect is also
reported in certain hormones sharing a common structural
backbone [45], perhaps explaining this commonality in
demonstrating hormesis. Taken together, these results
show that EPICAT is an agent of hormesis, ultimately pro-
moting cellular and physiological adaptation. These results
also agree with a recent paradigm shift on the role of ROS
and antioxidants in health [46, 47]. Current understanding
on mitochondrial-derived ROS considers the possibility
that this excess mitochondrial ROS may have a hormetic
effect on cellular pathways in the context of chronic glu-
cose exposure, providing cellular adaptation to nutrient
excess [47]. Our results showing bioactivity at a lower dose
of EPICAT, and those of others reporting lack of clinical
impact of antioxidant supplements [46], align with this
new paradigm. It is possible that EPICAT has an adaptive
effect on cellular homeostasis at a low concentration but
allows for cells’ necessary responsiveness to higher ROS
concentrations of mitochondrial-derived ROS.

4.5. Limitations. Previous preliminary and scout experiments
in our laboratory pointed to the acute bioactivity of EPICAT,
impacting downstream cellular activity in incubation periods
shorter than 4 hours. Two-hour incubations were chosen to
determine whether EPICAT works acutely and signals at
the cellular level. As most of our cellular signaling and respi-
ration data failed to yield significant activity, longer incuba-
tion periods may be necessary in future experiments. We
did not measure enzymatic activity directly; we assessed pro-
tein expression, a proxy measurement. Also, we chose the
HUVECs as a widely used model of vascular cells; however,
these cells are venous in origin, and using cells from arteries
may be more representative of vascular physiology. Lastly, we
report many endpoints showing only nonsignificant results
(0:05 ≤ p ≤ 0:08). We are confident that we have repeated
our experiments sufficiently; thus, this may be due to reasons
stated above.

5. Conclusions

Our study shows that EPICAT acutely supports cellular
homeostasis in the context of oxidative stress, but not cellular
signaling. EPICAT is found in several commonly consumed
foods, such as chocolate and tea, and although we made no
attempt to compare our dosage in vitro with that of edible
EPICAT-containing sources, future studies will ideally inves-
tigate this further. Our future experiments will elucidate the
mechanism behind EPICAT’s redox normalization and
modulation of mitochondrial regulation and as a potential
therapeutic target. We also made use of an exciting tool
(EPR) for the measurement of cellular superoxide. In conclu-
sion, EPICAT shows promise as a potential modulator of oxi-
dant stress that needs to be further studied in the setting of
chronic ROS.
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